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Biofilm and human spaceflight 

On Earth, biofilms are ubiquitous and represent the predominant 
mode of growth by microorganisms in their natural environments 
including those of biomedical and industrial importance [1,2]. While 
microbial contamination has been reported on the Mir (1986–2001) and 
earlier spacecraft, notably Skylab (1973–1979) [3], the first experi-
mental evidence of biofilm formation during spaceflight was reported 
with Burkholderia cepacia flown on STS-81 in 1997 [4] and Pseudomonas 
aeruginosa during a 1998 experiment on STS-95 [5]. Biofilm formation 
has since been confirmed in a number of other spaceflight and micro-
gravity analog studies (reviewed in Ref. [6]). Due to the potential risk of 
damage to key spacecraft materials and instrumentation, biofilms 
represent a risk that must be addressed for future human space missions 
beyond low Earth orbit [7]. In this special issue of Biofilm, several 
notable publications are presented that all enhance the understanding 
and the importance of biofilms in space. 

Two manuscripts in the special issue provide a review of biofilms in 
space. Velez Justiniano et al. [8] describe both the positive and negative 
impacts of biofilm that need to be considered for long term space travel. 
In their paper, they present a schematic and detailed description of 
where biofilm may grow and therefore where astronauts may contact 
biofilm. Each section ends with a list of knowledge gaps and research 
needs at the time the paper was written. This theme is continued by 
Marra et al. [9] as they explore how biofilm may propagate in space 
habitats and what this means for astronaut health. Are biofilms in space 
more pathogenic and possess a larger threat than on Earth? 

While research on biofilms in space dates to the late 1990s and early 
2000s, it was during a workshop in 2019 that a team of researchers 
began discussing the importance of biofilm in the water recovery system 
on the International Space Station (ISS) [7]. This system processes water 
recovered from the humidity condensate system and the urine processor 
assembly. Biofilm growth may lead to equipment malfunction, thus it is 
critical to explore strategies to control and mitigate biofilm formation in 
this system during operation and dormancy. Nguyen et al. [10] identi-
fied the relative abundance of microorganisms in samples collected from 
used hoses on the ISS, characterized the microbial colonies, as well as 
captured images that documented that biofilm was the culprit. Diaz et al. 
[11] focused on one of the species recovered from the water processor 
assembly, Burkholderia contaminans, which they cultivated in a low 
shear modeled microgravity reactor to study how B. contaminans 
responded to the presence and absence of different essential nutrients. 
Mettler et al. [12] continued the exploration into the importance of 
growth media from the lens of planetary protection and the ability of 
brines on Mars to support the growth of terrestrial microbes. Demir et al. 
[14] investigated the use of an antimicrobial surface coating, N-hal-
amine, to control biofilm growth in the water systems necessary for long 

term space travel. Finally, Espinosa Ortiz et al. [13] investigated using 
biofilm as a water treatment solution, rather than considering biofilm as 
a problem for long term space travel. 

There is still a lot that we do not know about biofilm in space - we do 
not even know if the research done on Earth (for example using reactors 
to simulate microgravity), is translatable for how biofilm exists in space 
and if the biofilm has similar characteristics including virulence. De-
cisions based on risk-benefit calculations may need entirely new input 
parameters and initiatives for how biofilm impacts planetary protection 
will also be required. Regardless, we know that as a result of human 
spaceflight, we (and biofilms) will boldly go where no one has gone 
before. 
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