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ABSTRACT

Only a few bone marrow-derived macrophages (BM-M®) are positive for macrophage colony-stimulating factor
receptor (M-CSFR). Thus, a method is needed to increase the proportion of BM-M® that are positive for M-CSFR to
facilitate the investigation of the effects of M-CSFR downregulation on various diseases. We used mouse primary BM-
M® to evaluate the expression of M-CSFR on the cytoplasmic membrane using flow cytometry. Treatment with a
reducing agent, dithiothreitol (DTT), increased the proportion of BM-M® that were positive for M-CSFR, and this
increase was time dependent. We next determined whether DTT-treated BM-M® can lead to the downregulation of M-
CSFR. Treatment with lipopolysaccharide (LPS) for 24 h. decreased the proportion of DTT-treated BM-M® that were
positive for M-CSFR. These results suggest that DTT treatment increases the proportion of BM-M® that are positive for
M-CSFR and that the upregulation of M-CSFR on BM-M® can be abrogated by treatment with LPS. Here, we propose a
simple method to increase the number of M-CSFR-positive BM-M® using the reducing agent DTT, which could be useful
in investigations of the relationship between the downregulation of M-CSFR and some diseases.

e The proportion of BM-M® that expresses M-CSFR on the membrane increases by approximately twice

following DTT treatment.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Method details

Most experimental studies have been performed on macrophages derived from the spleen,
peritoneum, and bone marrow. It has been reported that only 2.4 + 0.4% of spleen-derived cultured
macrophages, 3.6 +0.2% of peritoneal cultured macrophages, and 65.4 + 3.0% of bone marrow (BM)-
cultured macrophages (M®) express macrophage colony-stimulating factor receptor (M-CSFR, CSF-
1R, c-fms, CD115) on the plasma membrane [1], indicating that only a small proportion of
macrophages is positive for M-CSFR. In our experiment, 95.34+0.8% of isolated peritoneal
macrophages expressed M-CSFR and 37.8 +2.7% of isolated BM-M® expressed M-CSFR (Fig. 1).
Thus, we have used BM-cultured M® and explored a method to increase the number of M-CSFR-
positive macrophages. The use of this proposed simple method allows the increase in the number of
M-CSFR-positive BM-M® on the plasma membrane.

Procedure: cell culture of primary bone marrow adherent cells [2-4]

1 Male C57BI/6 mice (Charles River Laboratories Japan, Inc., Kanagawa, Japan) were euthanized by
cervical dislocation, and bone marrow cells were collected from the tibia and femur.

2 Bone marrow cells were cultured in RPMI 1640 (Invitrogen, New York, USA) containing 20% fetal
bovine serum (FBS; Equitech-Bio, Texas, USA) at 37°C in 5% C0,/95% air for 14 days.

3 We selectively maintained adherent cells by removing floating cells during the change in medium.

Bone marrow adherent cells that take up Ac-LDL are macrophages.

Macrophages, endothelial cells, and endothelial progenitor cells are known to take up modified LDL
[5]. We have reported that most of the bone marrow adherent cells that participated in the uptake of
acetylated low-density lipoprotein (Ac-LDL) under our culture conditions are macrophages [6].

Procedure: measurement of M-CSFR expression on BM-M®

1 Bone marrow adherent cells were treated with 400 ng/mL of Ac-LDL (Biomedical Technologies, Inc.,
Madrid, Spain) labeled with 3,3’-dioctadecyloxacarbocyanine perchlorate (Dio) for 4h at 37°C.

2 The cells were then detached, treated with FcR blocking reagent (Miltenyi Biotec GmbH, Bergisch
Gladbach, Germany) for 10 min at 4 °C, and stained with the phycoerythrin (PE)-conjugated anti-M-
CSFR antibody (Miltenyi Biotec) for 10 min at 4°C.

3 The cells were washed and analyzed using a BD FACSCalibur instrument (Becton, Dickinson and
Company, New Jersey, USA).

4 24.4 + 4.6% of the BM-M® (bone marrow adherent cells that took up Ac-LDL) were positive for M-
CSFR (Fig. 2A).

DTT treatment increases the proportion of BM-M® that are positive for M-CSFR.
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Fig. 1. Proportion of peritoneal macrophages and BM-M® that is positive for M-CSFR.

Isolated bone marrow cells and isolated peritoneal cells were stained with phycoerythrin (PE)-conjugated anti-macrophage
colony-stimulating factor receptor (M-CSFR) antibody and fluorescein isothiocyanate (FITC)-conjugated anti-F4/80 antibody
and were analyzed by flow cytometry. (Upper) Representative histograms for bone marrow macrophages (BM-M®, F4/
80 positive bone marrow cells) and peritoneal macrophages (F4/80 positive peritoneal cells) are shown. (Bottom) The
proportion of macrophages that are positive for M-CSFR (%) is shown. n=5.

Treatment with a reducing agent dithiothreitol (DTT, 1 mM) for 24 h increased the proportion of
BM-M® that were positive for M-CSFR to 51.7 + 7.3% (Fig. 2A). This increase following DTT treatment
was time dependent (Fig. 2B, vehicle control; 1.0+ 0.1,1 h of DTT; 1.3 £0.0,4h of DTT; 2.1 +0.3, 24 h of
DTT; 2.2 + 0.3-fold increase). These results suggest that DTT treatment increases the proportion of BM-
M® that express M-CSFR on the cytoplasmic membrane.

DTT is known to be both a reducing reagent and an endoplasmic reticulum (ER) stress inducer.
Treatment with another reducing agent, 2-mercaptoethanol (1 mM), for 24h did not alter the
proportion of BM-M® that were positive for M-CSFR (Fig. 3, vehicle control; 1.0+ 0.0, 24 h of 2-
mercaptoethanol; 0.99 + 0.07-fold). Treatment for 24 h with a different ER stress inducer, tunicamycin
(0.5mg/mL), led to a decrease in the proportion of BM-M® that were positive for M-CSFR (Fig. 4,
vehicle control; 1.0 & 0.1, 24 h of tunicamycin; 0.17 4+ 0.06-fold). These results suggest that DTT, but not
areducing reagent, or an ER stress inducer increases the proportion of BM-M® that are positive for M-
CSFR.

DTT-treated BM-M® can lead to the downregulation of M-CSFR.

It has been previously reported that lipopolysaccharide (LPS) downregulates M-CSFR [7,8]. We
have also observed, as shown in Fig. 5A, that treatment with 2 g/mL of LPS for 24 h decreased the



(A) (B)

: | — negative . con

& con & ; — 1hr
8 —— DTT 8 —4hr | DTT
8 g —— 24hr

120
120

60

60

100 108 104 108 104
FLO-H

100] 3
g % * 2s
‘b ®©

ok 8> 2-
2,8 60 o 2
=S J =
o = =9
°8 g @
= @ oL

=] o9 1
28 29Q
£a 20 ;%
£e

0 0

con DTT con 1hr 4hr 24hr
DTT

Fig. 2. DTT treatment increases the proportion of BM-M® that are positive for M-CSFR.

BM-cultured cells were treated with vehicle or the reducing agent dithiothreitol (DTT, 1 mM) for 1h, 4h, or 24h and then were incubated with 400 ng/mL of acetylated-low density
lipoprotein (Ac-LDL) labeled with 3,3’-dioctadecyloxacarbocyanine perchlorate (Dio). After 4 h, the cells were stained with PE-conjugated anti-M-CSFR antibody and were analyzed by flow
cytometry. (Upper) Representative histograms for BM-M® (bone marrow cells that took up Ac-LDL) treated with DTT are shown. (Bottom) The proportion of BM-M® that was positive for M-
CSFR (A, %; B, relative value) is shown. (A) n=5; (B) n=3; * P<0.05, ** P<0.01 vs. control (vehicle).
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Fig. 3. Treatment with a reducing agent did not alter the proportion of BM-M® that were positive for M-CSFR.
BM-cultured cells were treated with vehicle or the reducing agent 2-mercaptoethanol (2-ME, 1 mM) for 24 h and then were
incubated with 400 ng/mL of Dio-conjugated Ac-LDL for 4 h. The cells were stained with PE-conjugated anti-M-CSFR antibody
and were analyzed by flow cytometry. (Upper) A representative histogram for BM-M® (bone marrow cells that took up Ac-LDL)
treated with 2-mercaptoethanol is shown. (Bottom) The proportion of BM-M® that was positive for M-CSFR (relative value) is
shown. n=4 (N.S.: not significant).

level of M-CSFR on the cytoplasmic membrane (vehicle control; 1.0 + 0.1, 24 h of LPS; 0.46 + 0.08-fold).
Additionally, treatment with 2 pg/mL of LPS for 24 h decreased the proportion of DTT-treated BM-M®
that were positive for M-CSFR (Fig. 5B, control; 1.0 + 0.3, DTT-treated group; 2.7 4+ 0.1, 24 h of LPS after
DTT-treatment; 1.4 & 0.2-fold). These data suggest that DTT treatment increases the proportion of BM-
M® that are positive for M-CSFR and that the upregulation of M-CSFR on BM-M® can be abrogated by
subsequent treatment with LPS. Here, we propose a simple method to increase the number of M-CSFR-
positive BM-M® using the reducing agent DTT.

Additional information

The study conformed to the guidelines given in the Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health. The experimental protocol was approved by
the Animal Care and Use Committee of Juntendo University.

Background: Macrophages play a role in the pathogenesis of atherosclerosis [9,10]. M-CSF (CSF-1)
regulates monocyte/macrophage survival, proliferation, differentiation, and migration via the
activation of its receptor (M-CSFR) [11-13]. Studies have demonstrated a decrease in aortic
atherosclerosis in both M-CSF- /-/ApoE- /- [14] and M-CSF- [-/LDLR- /- [15] mice. It has also been
reported that an M-CSFR-neutralizing antibody resulted in both a decrease in atherosclerosis [16] and
pharmacologic inhibition of M-CSF signaling via a specific inhibitor of M-CSFR (GW2580), which also
resulted in a decrease in atherosclerosis [17,18]. In this manner, the contributions of M-CSF and M-
CSER to atherogenesis, as well as the underlying mechanisms that are involved, have been revealed.
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Fig. 4. Treatment with an ER stress inducer decreases the proportion of BM-M® that is positive for M-CSFR.

BM-cultured cells were treated with vehicle or the ER stress inducer tunicamycin (Tu, 0.5 mg/mL) for 24h and then were
incubated with 400 ng/mL of Dio-conjugated Ac-LDL for 4 h. The cells were stained with PE-conjugated anti-M-CSFR antibody
and analyzed by flow cytometry. (Upper) A representative histogram for BM-M® (bone marrow cells that took up Ac-LDL)
treated with tunicamycin is shown. (Bottom) The proportion of BM-M® that was positive for M-CSFR (relative value) is shown.
n=3 (** P<0.01 vs. control (vehicle)).

It has been reported that treatment with M-CSF, phorbol ester (12-O-tetradecanoylphorbol-13-
acetate (TPA)), and LPS downregulates M-CSFR expression in macrophages [19-24]; however, few
studies of the relationship between the downregulation of M-CSFR and atherosclerosis have been
reported. One of the contributing factors is the small proportion of macrophages that is positive for M-
CSFR on the plasma membrane [1]. Thus, there is a need for a method to increase the number of
macrophages that are positive for M-CSFR and investigate the mechanisms underlying the
downregulation of M-CSFR during atherogenesis. In the present study, we have shown that
treatment of BM-M® with DTT increased the proportion that was positive for M-CSFR and that the
upregulation of M-CSFR on BM-M® can be abrogated by treatment with LPS. Here, we propose a
simple method to increase the number of M-CSFR-positive BM-M® that utilizes the reducing agent
DTT that may be useful in the investigation of the relationship between the downregulation of M-CSFR
and some diseases such as atherosclerosis.

Future perspectives to reveal the relationship between the downregulation of M-CSFR and various
diseases: We propose that DTT could be successfully utilized to investigate the relationship between
the downregulation of M-CSFR and atherosclerosis. However, when using DTT in animal models in
vivo, any possible side effects of DTT should be considered. For example, we may need to consider any
cytoprotective effects that DTT may exert via an increase in the production of hydrogen sulfide (H,S)
because there is now an abundance of scientific evidence that suggests that, despite its reputation as a
noxious gas with wide-ranging cytotoxic effects, H,S, in fact, has cytoprotective effects [25].

H,S also protects neurons from oxidative stress by restoring the levels of glutathione, a major
intracellular antioxidant, via enhancement of the activity of y-glutamylcysteine synthetase and the
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Fig. 5. DTT-treated BM-M® can cause the downregulation of M-CSFR.

BM-cultured cells were treated with vehicle (A) or DTT (1 mM, B) for 24 h followed by treatment with lipopolysaccharide (LPS, 2 jg/mL) for 24 h. The cells were then incubated with 400 ng/
mL of Dio-conjugated Ac-LDL for 4 h, stained with PE-conjugated anti-M-CSFR antibody, and analyzed by flow cytometry. (Upper) Representative histograms for BM-M® (bone marrow cells
that took up Ac-LDL) treated with LPS are shown. (Bottom) The proportion of BM-M® that was positive for M-CSFR (relative value) is shown. (A) n=4, (B) n=3, ** P < 0.01 vs. control (vehicle),
1 P<0.05 vs. DTT-treated group.
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transport of cysteine and cystine [26,27]. Additionally, it protects cardiomyocytes from ischemia/
reperfusion injury by contributing to the preservation of mitochondrial function [28]. The production
of H,S in mammalian systems has been attributed to three key enzymes: cystathionine pg-synthase
(CBS), cystathionine y-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST) [29-31]. 3MST
produces H,S from 3-mercaptopyruvate (3 MP), which is generated by cysteine aminotransferase
(CAT) from cysteine and a-oxoglutarate (a-KG) [31-34]. 3MP provides sulfur to the active-site
cysteine residue of 3MST to produce persulfide, which, in turn, releases H,S in the presence of DTT
[31,35]. Thus, the use of DTT, with due consideration to its possible cytoprotective effects, may
facilitate the investigation of the relationship between the downregulation of M-CSFR and various
diseases, including atherosclerosis, during future studies.

Discrepancy of the M-CSFR expression between this report and previous report: It was reported
that 65.4 +3.0% of BM-cultured M® express M-CSFR [1], and we showed that 24.4 4+ 4.6% of BM-
cultured M® express M-CSFR. It was also reported that 3.6 + 0.2% of peritoneal cultured macrophages
express M-CSFR [1], and we showed that 95.3 + 0.8% of isolated peritoneal macrophages express M-
CSFR in this report. M-CSF, phorbol ester, and LPS are known to downregulate M-CSFR expression in
macrophages [19-24]. Thus, differences in the culture condition (especially serum differences) might
cause the difference in M-CSFR expression in BM-cultured M®. The discrepancy in peritoneal
macrophages is consistent with our data that the proportion of macrophages positive for M-CSER is
higher in isolated cells (37.8 - 2.7% of isolated BM-M®; Fig. 1) than in cultured cells (24.4 + 4.6% of
BM-cultured M®; Fig. 2). Thus, the discrepancy in peritoneal macrophages might be explained by the
difference between cultured cells and isolated cells.
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