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Abstract

The structure of ligand-binding sites has been shown to profoundly influence the evolution of function in homomeric
protein complexes. Complexes with multichain binding sites (MBSs) have more conserved quaternary structure, more
similar binding sites and ligands between homologs, and evolve new functions slower than homomers with single-chain
binding sites (SBSs). Here, using in silico analyses of protein dynamics, we investigate whether ligand-binding-site
structure shapes allosteric signal transduction pathways, and whether the structural similarity of binding sites influences
the evolution of allostery. Our analyses show that: 1) allostery is more frequent among MBS complexes than in SBS
complexes, particularly in homomers; 2) in MBS homomers, semirigid communities and critical residues frequently
connect interfaces and thus they are characterized by signal transduction pathways that cross protein–protein interfaces,
whereas SBS homomers usually not; 3) ligand binding alters community structure differently in MBS and SBS homomers;
and 4) except MBS homomers, allosteric proteins are more likely to have homologs with similar binding site than
nonallosteric proteins, suggesting that binding site similarity is an important factor driving the evolution of allostery.
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Introduction
Proteins are dynamic entities, and usually experience confor-
mational changes upon binding their ligands (Pabis et al.
2018). Allostery is a special case of conformational change
induced by ligand binding, which is characterized by informa-
tion transfer within proteins (see recent reviews, Dokholyan
2016; Guo and Zhou 2016a; Schueler-Furman and Wodak
2016; Wagner et al. 2016). Allosteric proteins can have two
types of ligands: orthosteric ligands that are the substrate, and
allosteric ligands that bind a different site, and regulate the
activity of the orthosteric site. Allosteric ligands can be acti-
vators, inhibitors or regulators, depending on their effect on
the orthosteric site, and are usually required for the normal
functioning—or inhibition of function—of allosteric proteins.
Allostery has large practical importance for drug design, be-
cause allosteric sites are druggable, and in the case of proteins
with structurally similar orthosteric sites (e.g., in protein kin-
ases, with similar ATP-binding sites [Kornev and Taylor 2015;
Dokholyan 2016]), drugs that bind allosteric sites allow tar-
geting-specific proteins, without the side effects of molecules
that bind their unspecific orthosteric site.

Since its discovery five decades ago (Monod et al. 1963;
Koshland et al. 1966), several mechanisms of allostery have
been proposed, from the classic MWC (Monod et al. 1963),
KNF (Koshland et al. 1966), and Cooper and Dryden (Cooper
and Dryden 1984) models to the modern, ensemble-based
view of allostery (Motlagh et al. 2014). Current views of

allosteric signal transduction are based on dynamics
(Kumar et al. 1999), and can be fundamentally grouped
into two types: the “domino model” and the “violin model”
(Kornev and Taylor 2015; Wagner et al. 2016). In the domino
model, a distinct set of residues form a pathway within the
protein between the allosteric and orthosteric site, and can
transfer information, for example, by motions of the side
chains of residues (Bedem et al. 2013). Although this mech-
anism of information transfer has been demonstrated in cer-
tain proteins (Lockless and Ranganathan 1999; Süel et al.
2003), it is likely to be much less common than the violin
model, in which the motions of the entire protein are mod-
ulated by the binding of allosteric ligands at particular sites,
similar to the modulation of sound of a violin on the finger-
board. (Note that several proteins are known to have more
than one allosteric mechanism and pathway [Feher et al.
2014].) Here we focus on the violin model, using a relatively
recent computational method of allosteric pathway identifi-
cation: community analysis. Community analysis was first
performed by Daily and Gray (2009) and Sethi et al. (2009).
Using molecular dynamics (MD) and structure comparisons,
these authors found that, in allosteric proteins, residues can
be partitioned into “communities,” that is, groups of residues
with correlated motions, that move as rigid bodies in the
protein, and are connected by flexible “critical” residues,
with high degrees of betweenness centrality. Subsequently,
several studies have validated this approach experimentally
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(Rivalta et al. 2012; Farabella et al. 2014; McClendon et al.
2014; Aoto et al. 2016; Guo and Zhou 2016b; Zhong et al.
2017), showing that community analysis is an effective way of
identifying allosteric signal transduction pathways (STPs) in
proteins and protein complexes.

In this work, we use community analysis to test whether
there are general relationships between the ligand-binding-
site structure, the protein complex topology, and the struc-
ture of allosteric pathways. We have recently found that the
structure of ligand-binding sites has profound consequences
for the evolution of function and quaternary structure of
protein complexes (Abrus�an and Marsh 2018). We grouped
ligand-binding sites into two categories: multichain binding
sites (MBSs, fig. 1A), which contain residues from more than
one protein chain in a complex, and single-chain binding sites
(SBSs, fig. 1B), that are restricted to a single protein chain.
Homomers with MBSs are characterized by much slower
evolution of new functions, more similar binding sites and
ligands. In the case of cofactor and metal-binding sites, they
are also characterized by less variable quaternary structure
than homomers with SBSs, or monomers (Abrus�an and
Marsh 2018), indicating different strength of selection in
the two types of complexes.

Since the binding sites of homologous MBS homomers are
much more similar to each other than the binding sites of SBS
homomers, we hypothesized that the activity of MBS com-
plexes must be regulated more tightly to avoid off-target
activity. Thus, nature essentially faces a similar specificity
problem with the activity of MBS complexes as the research
and pharmaceutical community in the development of spe-
cific drugs for targets with unspecific binding sites. A solution
for this problem might be regulation by allostery, which is
supported by our observation that complexes with MBSs are
significantly more flexible than complexes with SBSs (Abrus�an
and Marsh 2018), as flexibility is a key requirement of
dynamics-driven allostery. It has also been pointed out (but
not tested quantitatively) by Changeux (2012) that ligands
binding several protein chains are common in allosteric pro-
tein complexes. In this article, we address the following ques-
tions: 1) Are MBS complexes more likely to be allosteric than
SBS complexes? 2) Are there qualitative differences in the
topology and functioning of allosteric pathways in MBS and
SBS complexes? 3) Does the structural similarity of binding
sites influence the frequency of allostery?

Results

The Frequency of Allostery Depends on Ligand Type
and Binding Site Type
To test whether the frequency of allostery is different in dif-
ferent protein complexes, we analyzed proteins in the
Allosteric Database (ASD, v.3) (Shen et al. 2016), a compre-
hensive, manually curated database of allosteric proteins and
modulators, that currently contains data on 1,473 allosteric
proteins. Protein complexes were divided into MBS and SBS
complexes, using a comparable procedure as in Abrus�an and
Marsh (2018) (see Materials and Methods for details and an
example of MBS homomers and SBS homomers on fig. 1A

and B). Since we previously found that metal ions and cofac-
tors are particularly important in the evolution and function
of quaternary structure, we tested whether the presence of
metal ions and cofactors influences the frequency of allostery.
Our results show that in MBS complexes and monomers,
allostery is significantly more common among the metal
binding ones, whereas in SBS complexes, this is not the case
(fig. 1C–E). In contrast, the frequency of allostery is consider-
ably lower among cofactor binding heteromers than among
the ones without cofactors, irrespective of the binding site
type, although there is a trend but no significant difference in
homomers (supplementary fig. S1A–C, Supplementary
Material online). This suggests that some of the most studied
examples of allostery like hemoglobin are actually atypical
cases, in the sense that that cofactor binding proteins are
generally less likely to be allosteric, probably due to their
more rigid tertiary structure. In heteromers, although the
frequency of allosteric complexes is higher than in homomers,
the frequency of allosteric proteins is not (fig. 1C vs. E), indi-
cating that in allosteric heteromers, frequently only some of
their subunits are allosteric (although the incompleteness of
ASD is likely to significantly contribute to this pattern).
Additionally, in homomers, the frequency of allostery is sig-
nificantly higher in MBS than in SBS complexes (fig. 1D,
P< 0.005 for all four possible comparisons, tests of propor-
tions; see also analyses below), whereas in the case of hetero-
mers, only metal-binding MBS complexes have higher
frequency of allostery than SBS complexes (fig. 1C,
P< 0.005 for both possible comparisons, tests of
proportions).

Since the symmetrical nature of protein complexes is
thought to have a pivotal role in allostery (Changeux 2013),
we tested whether there are consistent differences in the
symmetry types of MBS and SBS complexes (fig. 1F and G,
supplementary fig. S1D and E, Supplementary Material on-
line). Our findings indicate that the differences in symmetry
are not sufficient to explain the difference between MBS and
SBS complexes. In heteromers, complexes with cyclic and
dihedral symmetry are significantly (P¼ 1.25e-18, test of pro-
portions) less frequent in SBS complexes (20.3%) than in MBS
complexes (43.5%), and the frequency of “monomeric” sym-
metry (i.e., where all protein chains have a single copy in the
complex) is higher; however, their higher frequency among
MBS complexes without metals does not translate to a higher
frequency of allostery (fig. 1F). In homomers, the frequency of
dihedral symmetry is higher in allosteric than nonallosteric
MBS complexes (32.7% vs. 21.1%; P¼ 0.0046, test of propor-
tions), consistent with a previous report (Bergendahl and
Marsh 2017), but generally we found no dramatic differences
between the different complex types (fig. 1G). However, since
the large majority of homomers are symmetric, and among
the asymmetric ones quaternary structure assignment errors
are much more frequent (Ahnert et al. 2015), the frequency of
symmetry can be used only to a limited degree to test for any
link between symmetry and allostery. Similarly, we found no
dramatic differences in the frequency of allosteric modulators
and orthosteric ligands (fig. 1H and I), indicating that system-
atic differences in the type of allostery, that is, activation vs.
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FIG. 1. The frequency of allostery is influenced by the ligand type and the ligand-binding site. (A) Example of a homomer with MBS (global nitrogen regulator
protein, NtcA, PDB ID: 3la3). (B) A homomer with SBS (UDP-galactose 4-epimerase, PDB ID: 5gy7). (C–E) In MBS complexes and monomers that bind metals,
allostery is significantly more frequent than in such complexes without metals (see supplementary fig. S1, Supplementary Material online for the pattern with
cofactors). Additionally, in MBS homomers and metal-binding MBS heteromers, allostery is significantly more frequent than in SBS complexes (see P-values in
the text). In heteromers, the frequency of allosteric proteins is much lower than the frequency of allosteric complexes (E), and comparable to homomers, metal
binding still has a significant effect in ones with MBSs. (F and G) In heteromers, the frequency of cyclicþ dihedral symmetry is twice as high in MBS compared
with SBS complexes (43.5% vs. 20.3%, P� 0.005), whereas in allosteric MBS homomers, dihedral symmetry is more frequent than in nonallosteric ones (32.7%
vs. 21.1%; P¼ 0.0046). Generally, however, there are no dramatic differences in the symmetry types of allosteric and nonallosteric complexes (note that
“monomeric” symmetry indicates heteromers where every protein in the complex has only a single copy). (H and I) The vast majority of allosteric proteins are
crystallized only with their orthosteric ligand, both in the case of homomers and heteromers. (All tests are tests of proportions, whiskers are 95% CIs.)
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inhibition, or the presence of inactive or active (orthosteric
ligand binding) forms in the PDB are unlikely to cause the
observed higher frequency of allostery in MBS complexes.

Allosteric MBS and SBS Complexes Have Different
Patterns of Community Structure
When analyzing allostery in individual proteins, the compu-
tational method of choice is MD. However, MD simulations
are time consuming, have size limitations, and are unsuitable
for large-scale analyses. Since our analysis involves hundreds
of structures, we used a much more computationally efficient
method that is based on normal mode analysis (Sanejouand
2013). We characterized the allosteric pathways of protein
complexes with STRESS (Clarke et al. 2016), a recently devel-
oped tool that uses elastic networks to detect correlated
motions between residues, and to identify communities
and critical residues in structures. Elastic network models
are less accurate but orders of magnitude faster than MD
simulations, and are generally able to qualitatively reproduce
the community structure and dynamics of proteins obtained
with MD simulations (Mishra and Jernigan 2018; Tekpinar
and Yildirim 2018). Similar to most MD studies, STRESS iden-
tifies correlated motions of residues using their C-a atoms. It
has been reported that using residue center of mass (c.o.m.)
instead of C-a atoms is necessary to identify critical residues
with experimentally verified allosteric function (VanWart
et al. 2012) in MD simulations. Therefore, we modified
STRESS, to use residue c.o.m., and performed all calculations
using both the residue c.o.m. and C-a method (see Materials
and Methods for details).

We determined communities and interior critical residues
for all protein complexes of the PDB where at least one of
their subunits is present in the Allosteric Database and that
have a biologically relevant ligand: 158 MBS homomers, 135
SBS homomers, 44 MBS heteromers, and 66 SBS heteromers.
For every protein complex, a representative structure was
chosen, which usually was its largest structure in the PDB
(see Materials and Methods for the structure selection pipe-
line, and supplementary table S1, Supplementary Material
online for the list of structures). For each structure, we deter-
mined its critical residues and communities with STRESS (see
supplementary fig. S2, Supplementary Material online for a
summary of the main parameters of the allosteric networks,
and supplementary fig. S3, Supplementary Material online for
examples of communities). STRESS models the protein com-
plex as a network of residues, where each node is a residue,
while edges are contacts between the residues. Communities
are “modules” of the network that show much higher degree
of correlated motion with residues of the same community
than with residues of other communities, while critical resi-
dues are residues that connect communities, and have par-
ticularly high betweenness centrality in the network, and are
particularly important in transmitting motions between com-
munities. The comparison of communities of MBS and SBS
complexes indicates that there are clear structural differences
in the community structure of MBS and SBS homomers
(fig. 2): most MBS homomers contain multichain communi-
ties (MCCs) that contain residues from multiple protein

chains (see fig. 2A and B for an example), whereas SBS homo-
mers mainly contain single-chain communities (SCCs, see
fig. 2C and D for an example). The fraction of residues in
MCCs is significantly different in MBS and SBS homomers
(fig. 2E), as is the fraction of critical residues in protein–pro-
tein interfaces (fig. 2F). The frequency of complexes without
MCCs is highest in SBS homomers, with no significant differ-
ence between MBS and SBS heteromers (fig. 2G).

These findings indicate a fundamental difference in the
allosteric pathways of MBS and SBS homomers: in MBS
homomers, there is much stronger communication between
the different subunits of the complex than in SBS homomers,
either through MCCs, or the higher frequency of critical res-
idues in the interface. Additionally, the fraction of residues in
MCCs of SBS homomers is probably overestimated, because
in the case of complexes that have both an MBS and SBS
structure in the PDB, the fraction of residues in MCCs is
similar (supplementary fig. S4, Supplementary Material on-
line); thus, some SBS complexes are likely to have an MBS
form that is missing from the PDB.

The affinity for interaction between proteins in protein com-
plexes form a continuum, from permanent complexes, that are
stable during the lifetime of the proteins that form them, to
transient complexes, which exist in an equilibrium between a
complex and its dissociated subunits (Nooren and Thornton
2003a, 2003b). Permanent complexes are usually obligatory,
that is, complex formation is necessary for their biological func-
tion, whereas transient complexes include various, typically
heteromeric, and frequently nonobligatory interactions, like an-
tibody–antigen, receptor–ligand, and enzyme–inhibitor inter-
actions (Nooren and Thornton 2003). However, recent work
indicates that in many, if not most homomeric complexes
where quaternary structure was assumed to be functional, it
may actually evolve neutrally, and not be related to function
(Lynch 2013; Abrus�an and Marsh 2018; Hagner et al. 2018);
thus it is possible that such complexes are also frequently
nonobligatory/transient. In a recent work that used primarily
heteromers, it has been shown that the dynamics of a protein,
and whether it has dynamic domains that cross interfaces, is a
good predictor of the obligatory or nonobligatory nature of a
protein complex (Soner et al. 2015). This suggests that among
SBS complexes, which are characterized by fewer and smaller
MCCs, the frequency of nonobligatory complexes is likely to be
higher. Since nonobligatory complexes have generally less con-
served interfaces (Mintseris and Weng 2005), we tested
whether the conservation of interface residues is different be-
tween MBS and SBS complexes. We found no clear differences
between the two complex types (supplementary fig. S5A and C,
Supplementary Material online), and when relative interface
area (interface area/surface area) is added as a covariate, even
the nonsignificant trends disappear (supplementary fig. S5B,
Supplementary Material online).

Functional Characteristics of Multi- and Single-Chain
Communities in Homomers
We tested whether MCCs are more likely to contribute to the
information transfer across protein–protein interfaces of
homomers than SCCs with two methods: by estimating the
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FIG. 2. The allosteric pathways of MBS and SBS complexes are different. (A) Community structure of NtcA dimer. Two of its six communities, indicated
with white, are MCCs, containing residues from both protein chains. (B) Localization of the NtcA MCCs in the homodimer (PDB ID: 3la3). (C) Community
structure of UDP-galactose 4 epimerase. None of its nine communities are MCCs. (D) Visualization of the communities on chain B of the dimer (PDB ID:
5gy7). (E) In homomers, the percent of residues in MCCs is significantly higher than in heteromers. (F) The fraction of critical residues in protein–protein
interfaces is significantly higher in MBS complexes than in SBS complexes, both in the case of homomers and heteromers. (G) In homomers, the fraction of
complexes without MCCs is significantly lower in ones with MBSs. (H) In both MBS and SBS homomers, the fraction of interface residues in MCCs is
significantly higher than in SCCs. (I) In MCCs, mutating individual interface residues to alanine results in significantly larger changes in the binding energy
of interfaces than in SCCs, irrespectively of the type of the homomer. Note that only residues that are part of an interface were used, both in MCCs and
SCCs. This indicates that in MCCs, the interactions of interface residues are much stronger than between interface residues of SCCs. (J) Conservation of
residues in MCCs is significantly higher than in SCCs, although this is mostly due to their higher fraction of interface residues. (Tests of proportions on panel
G, Wilcoxon tests on all other panels. Note that on all panels, P values are provided only for significant differences.)
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effect of mutations on interface binding, and conservation.
MCCs and SCCs that do have interface residues contain dif-
ferent amounts of them, because MCCs contain residues
from both chains of an interface (fig. 2H). To test whether
protein–protein interfaces in MCCs are characterized by
stronger binding energies, we mutated in silico each interface
residue in a community to alanine (except alanines), and
determined the effect of every mutation on the binding en-
ergy of the interface with FoldX (see supplementary fig. S6,
Supplementary Material online and Materials and Methods).
We found a highly significant difference between interface
residues of MCCs and SCCs, irrespectively whether they orig-
inate from an MBS or SBS homomer: mutations in MCCs
weaken the interface binding energy significantly more than
mutations in SCCs (i.e., their effect on binding energy is more
positive, fig. 2I and supplementary fig. S6, Supplementary
Material online). Since interface residues in MCCs and SCCs
might be characterized with different solvent accessibilities if
they occupy different regions of the protein–protein inter-
face, we also tested whether this pattern remains if we use the
average solvent accessibility as covariate in the statistical anal-
ysis. Our results show that the difference between MCCs and
SCCs remain highly significant in both in MBS and SBS homo-
mers (supplementary fig. S7, Supplementary Material online),
even if solvent accessibility is taken into account. This indi-
cates that the stronger binding between interface residues in
MCCs is not simply a by-product of their more buried loca-
tion in the interfaces.

We also calculated the conservation levels of residues in
MCCs and SCCs, which indicates that residues in MCCs are
significantly more conserved than residues in SCCs (fig. 2J).
However, the difference is primarily due to the higher con-
servation of interface residues; there is only a trend but no
significant difference between the two when they are ex-
cluded (not shown). These findings indicate that the binding
between interface residues of MCCs is stronger than of SCCs
(which, by necessity represent binding between residues of
more than one community), and therefore they are likely to
contribute more to the information transfer between two
protein chains than SCCs. Surprisingly, however, there is no
qualitative difference in these patterns between MBS and SBS
homomers that do have MCCs (fig. 2E–G).

The Community Structure of Allosteric Complexes
Scales with the Ratio of Interface and Surface Area
The lack of difference between the characteristics of MBS and
SBS MCCs is likely to be at least partly caused by incorrectly
classified SBS complexes (having no MBS form in the PDB, see
supplementary fig. S4, Supplementary Material online). An
alternative hypothesis is that the higher fraction of residues
in MCCs and critical residues in interfaces (fig. 2E–G) might
not be caused by a fundamental qualitative difference be-
tween the two complex types (i.e., MBS vs. SBS), but might
be the result of simple topological differences between SBS
and MBS complexes, for example, if different interface sizes
result in stronger binding between the chains of MBS com-
plexes. To test for this, we determined the interface and sur-
face areas of all allosteric complexes (see fig. 3A and B for an

illustration). We found that MBS complexes have significantly
higher interface-to-surface ratios, both in homomers and het-
eromers (fig. 3C and D). Additionally, when the interface/sur-
face ratio is used as a covariate, the fraction of residues in
MCCs, and fraction of critical residues in interfaces scales
similarly (fig. 3E–H), suggesting that this simple ratio—the
relative interface area—might be sufficient to explain the
observed differences.

The Frequency of Allostery Is Higher in MBS
Complexes with the Same Relative Interface Area
One prediction of the hypothesis that relative interface area is
the key factor determining the differences in allostery be-
tween MBS and SBS complexes is that the frequency of allo-
steric proteins will be similar when scaled with this parameter.
To test this, we determined the interface/surface ratio for
every protein complex in the PDB, and tested whether the
differences in the frequency of allostery between MBS and
SBS complexes (see fig. 1) are simply the result of a higher
ratio in MBS complexes. We found that this is not the case: in
homomers, except for complexes with the highest interface/
surface ratios, the fraction of allosteric complexes is signifi-
cantly (2–3-fold) higher in MBS compared with SBS com-
plexes (fig. 4A), but not in heteromers (fig. 4B). We also
observe a clear reduction in the frequency of allostery with
relative interface area (thus, the higher relative interface area
of MBS complexes actually reduces the magnitude of the
effect seen on fig. 1). However, this trend is likely to be
the consequence of the limitations of the methods used in
the investigation of allostery, rather than a real biological ef-
fect: for example, NMR spectroscopy and MD simulations of
large complexes both have size limitations (Frueh et al. 2013).
To test this, we examined how complex size and topological
complexity (number of protein chains) scales with relative
interface area. We found that both properties increase with
relative interface area (fig. 4C and D, supplementary fig. S8A
and B, Supplementary Material online). Thus, the difference in
relative surface area between SBS and MBS homomers is not
sufficient to explain the difference in the frequency of allo-
stery (e.g., below relative interface area 0.2, there is no differ-
ence in complex size and chain number, despite the very large
difference in the frequency of allostery, fig. 4A). Similarly,
subunit flexibility increases with relative interface area, but
we found no dramatic differences between MBS and SBS
homomers with the same relative interface area (supplemen-
tary fig. S8C and D, Supplementary Material online), although
MBS homomers have a tendency to be more flexible. Overall
these results contradict the hypothesis that the larger inter-
faces of MBS homomers cause their higher frequency of
allostery.

Communities of MBS and SBS Homomers Respond
Differently to Ligand Binding
Next, we tested whether the difference between MBS and SBS
homomers might be caused by differences in their dynamical
properties, that is, whether their community structures
change similarly upon ligand binding. We identified 45 pairs
of ligand-unbound (apo) and ligand-bound (holo) structures
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FIG. 3. Community structure scales with the relative interface size of complexes. (A and B) Interface to surface ratios of NtcA and UDP-galactose 4
epimerase. Interface is highlighted with red, whereas the surface (shown only on one chain) with blue. (C and D) MBS complexes have significantly
larger interface-to-surface ratios than SBS complexes, both in homomers and heteromers (Wilcoxon tests). (E–H) When interface-to-surface ratio
is used as covariate, the percent of residues in MCCs (E and F), and the percent of critical residues in interfaces (G and H) scale similarly in allosteric
MBS and SBS complexes (lines represent linear and logarithmic fit, with SE).
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(22 MBS and 23 SBS) that satisfy the following criteria: are
associated with the same study (PubMed ID), both have res-
olution better than 2.8 Å, and have similar size and number of
subunits (see Materials and Methods for more details and
supplementary table S2, Supplementary Material online, for
the list of structure and their ligands). In the few cases where
several holo structures were present with functionally differ-
ent ligands (i.e., orthosteric and allosteric), more than one
holo structure was used (see Materials and Methods). Using
a similar procedure as described earlier, we identified the
communities and critical residues of the pairs, and tested
whether there is a consistent difference between the apo-
holo structures of MBS and SBS complexes. Unlike in the
previous analyses (figs. 2 and 3) where there was essentially

no difference between the two methods, the residue c.o.m.
and C-a methods perform differently (see fig. 5A vs. B), with
the residue c.o.m. method showing a highly significant differ-
ence (P¼ 0.0012), whereas the C-a method is only at the
edge of significance (P¼ 0.058) (fig. 5). We found that, using
the residue c.o.m. method, the fraction of residues in MCCs in
MBS homomers is higher in the holo structures than in SBS
homomers (fig. 5) when the apo structure is used as a covar-
iate. The fact that for the residue c.o.m. method, the few
structures crystalized with their inhibitors (thus their holo
form is the inactive form) have small numbers of residues
in MCCs supports the conclusion of VanWart et al. (2012)
that the residue c.o.m. method performs better in the iden-
tification of functional residues in allosteric structures

A B

C D

FIG. 4. Allostery is more frequent in MBS homomers than in SBS homomers, irrespectively of their relative interface size. (A and B) The change of
frequency of allostery with the interface-to-surface ratio (**P< 0.005, *P< 0.05, test of proportions, whiskers are 95% CI). (C and D) With
increasing interface-to-surface ratio, the number of chains in protein complexes and also the size of complexes (supplementary fig. S4,
Supplementary Material online) increases, both in homomers and heteromers (**P< 0.005, *P< 0.05, Wilcoxon tests). The declining trend
seen on panels A and B is likely to be significantly influenced by experimental biases (and in consequence biases in the PDB): experimental
methods like NMR have size limitations, MD simulations of large complexes are extremely time intensive, or dynamical properties are in general
easier to determine for small complexes.
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(fig. 5A). These findings indicate that, despite the fact that the
size of MCCs scales similarly with complex topology (fig. 3),
the dynamical properties of MBS and SBS complexes are
different.

Human Complexes Having Homologs with Similar
Binding Sites Are More Likely to Be Allosteric
Next, we tested whether the higher structural similarity of
binding sites of MBS homomers (Abrus�an and Marsh 2018) is
the evolutionary driving force behind these differences, and
the evolution of allostery (see Introduction). This hypothesis
predicts that proteins/complexes that have homologs with
similar binding sites are more likely to be allosteric than
complexes that have no such homologs. Using the proteins
of the human genome that have structural entries in the PDB,
we identified the number of homologs for each protein in the
human proteome, and also whether they have a similar bind-
ing site, using ProBiS (see Materials and Methods). We found
that, with the exception of MBS homomers, allosteric pro-
teins have significantly more homologs with similar binding
sites than nonallosteric proteins of the same quaternary
structure type (fig. 6A–C). These findings suggest that binding
site similarity plays an important role in the evolution of
allostery for the vast majority of proteins. An alternative hy-
pothesis is that allostery contributes to the evolution of paral-
ogs in the genome, as the functions of allosteric paralogs are
less likely to overlap (due to regulation by allostery), or may
diverge very rapidly. We tested which of these two hypothe-
ses explain better the observations by examining whether:
1) proteins with homologs (having similar binding sites) are
more likely to be allosteric than ones having no homologs, or

2) allosteric proteins are more likely to have homologs than
nonallosteric ones.

We find that among proteins/complexes (except for MBS
homomers) having at least one homolog with similar binding
sites, the frequency of allostery is significantly, �100% higher
than in proteins that have no homologs, irrespectively of
quaternary structure (fig. 6D–F). This suggests that having
homologs with similar binding sites play an important role
in the evolution of allostery. The opposite pattern is much
less pronounced: allosteric proteins have only 20–30% higher
likelihood of having a homolog with a similar binding site
compared to nonallosteric proteins (fig. 6G–I) in all quater-
nary structure types, except in MBS homomers. Thus the
effect size is significantly weaker than of the previous hypoth-
esis. (Note that due to the nature of the statistical test, the
significances are identical.) These findings suggest that the
structural similarity of ligand-binding sites is an important
driving force behind the evolution of allostery, and that it is
likely to shape allostery in most, if not all quaternary structure
types, including monomers. Surprisingly, the only exceptions
are MBS homomers, although this may be caused by the
relatively low numbers of such proteins, and due to factors
specific to the human genome. The alternative hypothesis,
that allostery contributes to the emergence of paralogs in a
genome, is also supported by the data (and both processes
are likely to influence the frequency of allostery). However,
the much larger effect size of homology on frequency of al-
lostery (fig. 6D–F vs. G–I) suggests that primarily binding site
similarity drives allostery, and not vice versa. In addition, the
differences are not caused by consistent biases in metal or
cofactor binding, because excluding metal and cofactor

A B

FIG. 5. MBS and SBS homomers show different responses upon ligand binding. In SBS homomers, the number of residues in MCCs is reduced in the
holo (ligand binding) structures, whereas in MBS homomers, their number is unchanged or slightly increased (ANCOVA, excluding structures with
inhibitors. P indicates the significance of the categorical—binding site type—variable). Structures with inhibitors are indicated with “inh.” The
residue c.o.m. method (A) indicates a significant difference, but not the C-a method (B). Additionally, in the case of residue c.o.m. method,
structures crystallized with inhibitors (thus the ligand-binding form is their inactive form) are distinct from structures crystallized with their
orthosteric ligands or activators, supporting the conclusions of VanWart et al. (2012), that the residue c.o.m. method is better in identifying
biologically relevant residues in allosteric proteins.
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D E F

G H I

FIG. 6. The presence of homologs with similar binding sites is a driving force of the evolution of allostery. (A–C) Except MBS homomers, proteins of
allosteric complexes have many more homologs with similar BSs than nonallosteric proteins of the same complex type (P� 0.05, one-sided
Wilcoxon tests). (D–F) Except homomers, the frequency of allosteric proteins is�2� higher in proteins that have a homolog with a similar binding
site, irrespectively of quaternary structure (one-sided tests of proportions; whiskers are 95% CI). In MBS homomers, proteins without homologs
have a high frequency of allostery. (G–I) The opposite pattern, i.e. the frequency of homologs with similar binding sites in allosteric proteins shows a
much smaller effect size (although similar significance): the percent of proteins having a homolog with a similar binding site is only 20–30% higher
among allosteric proteins, irrespectively of their quaternary structure (one-sided tests of proportions, whiskers are 95% CI). These results indicate
that primarily the presence of homologs drives the evolution of allostery, and not that allostery drives the emergence of homologs, although both
processes are likely to contribute to the pattern.
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ligands does not change the pattern qualitatively (supple-
mentary fig. S9, Supplementary Material online).

Comparison of CA-COM Methods
Finally, we performed a comparison of the residue c.o.m. and
C-a methods for community and critical residue identifica-
tion. First, using the apo structure of the imidazole glycerol
phosphate synthase complex (HisH/HisF, PDB ID: 1gpw), we
tested whether the critical residues identified by STRESS sig-
nificantly overlap with the critical residues identified by
VanWart et al. (2012). We found that the critical residues
identified with the residue c.o.m. method (fig. 7A) have sig-
nificantly higher overlap than the critical residues identified
with the C-a method (fig. 7B and C). Approximately 40% of
critical residues are identical to the residues identified by
VanWart et al. (2012) when the residue c.o.m. method is
used, compared with only 12% when the C-a method is used.

Next, using all homomeric and heteromeric complexes
from our previous analyses, we tested whether there are
differences in the coevolution of critical and community res-
idues, using GREMLIN (Kamisetty et al. 2013). Coevolution
between residues has been used to detect allostery for many
years (Süel et al. 2003), although recent findings question
whether information on allostery can be detected in such
data (Anishchenko et al. 2017), and suggest that only residues
that are relevant in folding and protein–protein interactions
can be reliably detected with these methods. Our results
show that critical residues are much more likely to coevolve
than residues in communities (fig. 7D, residue c.o.m. method:
P¼ 4.56e-11, Wilcoxon test; C-a method: P¼ 1.75e-05,
Wilcoxon test). Moreover, the residue c.o.m. method detects
a significantly, although not dramatically higher (P¼ 0.016)
degree of coevolution between critical residues than the C-a
method, suggesting that the former performs better in iden-
tifying them. Although resolving the debate whether coevo-
lution between residues is suitable for identification of
allosteric residues is beyond the scope of this work, we note
that the high fraction of critical residues in protein–protein
interfaces (figs. 2 and 3) means that our findings are consis-
tent with both views. One likely cause of the discrepancy
between the two views is that function evolves much faster
than structure. This means that alignments that are suffi-
ciently large to detect coevolution reliably must contain pro-
teins with diverse functions, which results in weak
correlations between residues that are functional but have
no structural role. Alternatively, one could argue that align-
ments that can be used to reliably reconstruct the structure
of the protein must contain proteins with diverse functions,
in order to remove “noise” caused by functional, but struc-
turally not relevant correlations. Finally, we tested whether
the conservation of critical residues and communities identi-
fied by the two methods is different: aside from the highly
significant difference between critical and noncritical residues
(see also fig. 2), we found no significant differences between
the two methods (fig. 7E–F).

Overall, our results support the conclusions of VanWart
et al. (2012) that the use of residue c.o.m. should be preferred
over the C-a method, for a number of reasons. In the case of

HisH/HisF complex, it identifies significantly more residues
that are identical to critical residues identified by MD. In
the case of the analysis of apo-holo changes (fig. 5), the loca-
tion of the structures with inhibitors suggests that it can
identify biologically relevant patterns that the C-a method
cannot. Similarly, the difference in evolutionary couplings also
indicates that the residue c.o.m. method is more accurate,
although we did not find a clear difference in the conservation
scores of the two methods (fig. 7).

Discussion
Our results show that ligand-binding-site structure is of major
importance for allosteric signal transduction. First, MBS
homomers and metal-binding MBS heteromers are much
more likely to be allosteric than SBS complexes (figs. 1 and
4). Surprisingly, this does not seem to be associated with large
differences in symmetry, and in the case of cofactor-binding
heteromers, the frequency of allostery is significantly lower
(supplementary fig. S1, Supplementary Material online). The
lower frequency of allostery among cofactor-binding com-
plexes is probably caused by their rigidity: cofactors stabilize
the tertiary structure of proteins, and thus such proteins are
more likely to behave as rigid bodies and perform allosteric
motions that are a special case of allostery (see Motlagh et al.
2014 for review).

The comparison of communities and critical residues indi-
cates that allosteric pathways of MBS homomers are charac-
terized by a much higher percentage of residues in MCCs and
critical residues in interfaces than SBS homomers, due to their
higher relative interface area (figs. 2 and 3). This indicates that
in MBS homomers, allosteric communication typically
involves pathways that cross protein–protein interfaces,
whereas in SBS homomers, this is much less frequent and
the subunits of the complex behave largely independently.
Additionally, ligand binding in MBS homomers results in a
different degree of change in the percentage of residues in
MCCs compared with SBS homomers (fig. 5), suggesting qual-
itative differences in the dynamics of conformational changes
upon ligand binding. Although in this work we analyzed only
the community structure of allosteric complexes, the high
frequency of MCCs in most MBS homomers, which enable
efficient information transfer between the subunits of the
complex, might be one of the key properties that facilitates
the evolution of allostery. Taken together, these differences in
allosteric pathways suggest that in MBS and SBS homomers,
the allosteric changes are qualitatively different. In SBS homo-
mers, the evolution of quaternary structure is less likely to be
influenced by the biochemical function of the protein, but
more by neutral processes (Lynch 2013; Abrus�an and Marsh
2018; Hagner et al. 2018), and other factors like the regulation
of their degradation (McShane et al. 2016; Mallik and Kundu
2018). Our analysis of interface conservation does not suggest
that in SBS complexes nonobligatory or transient interactions
are more frequent (supplementary fig. S5, Supplementary
Material online), whereas their different community struc-
tures, smaller interfaces, and less conserved quaternary struc-
tures (Abrus�an and Marsh 2018) do support this. Since the
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currently available experimental data on the obligatory or
nonobligatory nature of homomers is much less abundant
than for heteromers, further studies are necessary to clarify
this. Finally, the comparison of the residue c.o.m. and C-a
atom-based methods for the identification of communities
and critical residues indicates that the former performs

somewhat better in the identification of biologically relevant
residues, supporting the conclusions of VanWart et al. (2012)
(fig. 7).

The modern view of allostery is based on the dynamic
ensemble properties of proteins (Kornev and Taylor 2015;
Dokholyan 2016). However, the classic MWC and KNF

A B

C

D E F

FIG. 7. Comparison of the residue c.o.m. and C-a methods. (A) Critical residues of the HisH/HisF complex (imidazole glycerol phosphate synthase,
PDB ID: 1gpw), identified with STRESS, using the residue c.o.m. method. Interior critical residues identified by STRESS are indicated by spheres. Red
indicates residues that are identical to known critical residues identified by MD simulations of VanWart et al. (2012). Pink indicates residues located
directly next to a known critical residue, and white indicates residues that are not in the direct proximity of a known critical residue. (B) Critical
residues, identified by the default C-a method of STRESS, with similar color coding. (C) Statistical summary of the accuracy of critical residue
identification in the HisH/HisF complex. The residue c.o.m. method performs better than the C-a method: a significantly higher fraction of STRESS
critical residues are identical to the ones identified with MD (39% vs. 12%) by VanWart et al. (2012), both when only the critical residues of the apo
structure (35 residues) or the combined set of apo þ holo residues (56 residues) were used (one-sided tests of proportions). (D) The analysis of
evolutionary couplings between critical and community residues indicate that critical residues are much more likely to coevolve than community
residues, and that the residue c.o.m. method detects stronger couplings than the C-a method (P¼ 0.016, Wilcoxon test). (E and F) Despite the
differences seen in HisH/HisF, the conservation of the critical residues and communities identified by the residue c.o.m. method is not higher than
with the C-a method (Wilcoxon tests).

Abrus�an and Marsh . doi:10.1093/molbev/msz093 MBE

1722



models continue to be used, particularly for symmetric
homomers, due to their simplicity (Cornish-Bowden 2013).
Our results suggest that in the case of SBS homomers, the
KNF model probably provides a better approximation of re-
ality, because, no particular symmetry type appears to be
highly enriched among such allosteric complexes (fig. 1 and
supplementary fig. S1, Supplementary Material online), al-
though the high frequency of cyclic symmetry in all homo-
mers makes it very likely that the MWC model also holds for
many cases. Additionally, in the case of SBS homomers, ligand
binding results in a reduction of residues in MCCs (fig. 5A),
suggesting that allosteric motions in these proteins are pri-
marily the result of structural changes in individual subunits,
and the classic hemoglobin like “tense”—“relaxed” transitions
apply primarily to these complexes (best seen with the resi-
due c.o.m. method, fig. 5A). The case of MBS homomers is
probably more complex. The enrichment of dihedral symme-
try (fig. 2G, see also Goodsell and Olson 2000; Bergendahl and
Marsh 2017) suggests that, for some of these complexes, the
MWC model might be a good approximation. However, the
high frequency of MCCs in such complexes (i.e., the fact that
their “quasi-rigid” communities involve residues from multi-
ple chains), both in their apo and holo structures suggest that,
for most of them, neither the MWC nor the KNF model is
adequate, and such complexes behave largely as a single mo-
nomeric unit.

Research on allostery has traditionally focused on the me-
chanics and structural characteristics of allosteric changes.
Surprisingly, the equally fundamental question “What are
the driving forces behind the evolution of allostery?” has re-
ceived much less attention. It has been suggested
(Gunasekaran et al. 2004) that allostery might be a property
of every dynamic protein. In our opinion, this is probably an
overly broad view of allostery. Although it cannot be excluded
that for most dynamic proteins, it is possible to design an
allosteric modulator of some sort, there is likely to be a sub-
stantial difference between such “ad hoc” allostery and pro-
teins whose allosteric motions have evolved for millions of
years, and are actively used by the cellular machinery. The
evolution of allostery has been studied more in proteins
where the “domino model” is the predominant mode of al-
losteric signal transduction. It has been suggested that allo-
steric pathways preexist in such proteins within so-called
“sectors” (Reynolds et al. 2011), and that fundamentally allo-
stery is related to the evolvability of proteins—thus it is a
consequence of residue coevolution, and is not the conse-
quence of the necessity to be regulated (Raman et al. 2016;
Pincus et al. 2017). The generality of these hypotheses remains
to be seen (and whether they are applicable to proteins where
the “violin model” of allostery is the predominant one), how-
ever, our analysis of binding-site similarity supports the idea
that the need to be regulated is a significant driving force in
the evolution of allostery (fig. 6 and supplementary fig. S9,
Supplementary Material online). Our results indicate that
having less specific binding sites (potentially resulting in off-
target activity) is an important factor facilitating the emer-
gence of allosteric regulation (fig. 6). Since allosteric proteins
of all quaternary structure types (except MBS homomers)

have either more homologs with similar binding site, or a
higher likelihood of having a homolog with a similar binding
site, it appears to be a general force shaping the evolution of
allostery. However, the current limitations of the PDB mean
that there is considerable uncertainty about the magnitude of
the effect. Although the human proteome has the best cov-
erage in the PDB, only 33.8% of human proteins have a struc-
tural entry (including homologs with >90% sequence
identity), and since structures frequently cover only frag-
ments or domains of proteins, the actual sequence coverage
of the human proteome is only 16.8%. (These numbers are
considerably higher when structures with reliable homology
models are included, though [Xie et al. 2011].)

Materials and Methods

Determination of Protein Complexes,
Ligand-Binding-Site Structure, and Ligand Type
Protein complexes were determined as follows. First, we
downloaded the uniprot-pdb mappings (cross-ref) from the
UniProt database. Allosteric proteins were defined as proteins
present in the Allosteric Database (ASD) v3 (Shen et al. 2016:
3). Using the first biological assembly of each PDB entry, we
determined the quaternary structure of the proteins. Proteins
in the PDB frequently have multiple entries, and the quater-
nary structure of these entries may differ, i.e., the same protein
can have a homomeric, monomeric, or part of heteromeric
structures. We used the following: hierarchical protocol to
determine the quaternary structure for every protein in the
Allosteric Database: if the protein is part of at least one het-
eromeric complex, it was classified as heteromer; else, if it has
at least one homomeric structure, it was classified as a homo-
mer; the remaining proteins were classified as monomers.
Proteins that have a hetromeric entry were not included in
the homomer or monomer data sets, even if they have homo-
meric or monomeric entries. In the case of heteromers, their
entries contain several different proteins, and the same pro-
tein may be part of different complexes. To account for re-
dundancies, if two or more proteins were part of the same
heteromeric entry, the structure was used only once.

Ligand-binding-site structure was determined as described
previously (Abrus�an and Marsh 2018), using the BioLiP data-
base (Yang et al. 2012). We focused on small-molecule ligands,
and excluded nucleic acid or peptide ligands from the anal-
ysis. Complexes having binding sites with residues originating
from several different chains were classified as MBS com-
plexes, and all others complexes were classified as SBS com-
plexes. We excluded several PDB entries from BioLiP that
cannot be seen as a “molecular machine,” that is, that are
part of a virus (mostly capsids), form protein fibrils, are helical,
contain ubiquitin, or chains without an interface. We also
excluded all entries where the biological assemblies contain
chains absent in the asymmetric unit, or the difference be-
tween the asymmetric unit and biological assembly affects
the classification of the binding site. This was necessary be-
cause BioLiP is based on the asymmetric units.

The type of each ligand in the PDB structures (allosteric vs.
orthosteric, allosteric inhibitor vs. activator) was determined

Ligand-Binding-Site Structure Shapes Allosteric Signal Transduction . doi:10.1093/molbev/msz093 MBE

1723

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz093#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz093#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz093#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz093#supplementary-data


using the classification of ASD. First, we determined the
InChiKey of every allosteric modulator of a given protein in
the ASD with OpenBabel (O’Boyle et al. 2011), using their 3D
(mol2) structure provided by ASD. Second, we downloaded
the SDF files of ligands from the PDB, extracted their
InChiKeys, and tested whether they are present among the
allosteric modulators of a given protein in ASD. Ligands that
were not present among the allosteric modulators were clas-
sified as orthosteric ligands, whereas the ones that are present
in ASD were assigned their ASD classification (i.e., activator,
inhibitor, or regulator).

The symmetry group of every PDB entry was taken directly
from the symmetry assignments of the first biological assem-
blies present in the PDB. In the case of heteromers,
“monomeric” symmetry represents complexes with 1: 1 stoi-
chiometry, that is, where every protein has only a single copy
in the complex. Asymmetric heteromers were those with at
least one repeated subunit that are also classified as asym-
metric by the PDB. Since a single complex or protein typically
has several entries in the PDB, the symmetry of complexes
was defined with the following protocol. First we determined
the symmetry of every PDB entry that is part of a given
complex (in the case of homomers this means every PDB
entry that maps to a given UniProt sequence). Next, we ap-
plied the following hierarchy in determining the symmetry
type: Dihedral -> Higher-order cyclic, i.e. cyclic with, for ex-
ample, 3 or more subunits (CyclicN)-> Two-fold symmetric
(Cyclic2) -> Monomeric -> Asymmetric. Thus, if the struc-
tures of a complex have at least one dihedral entry then it was
assigned dihedral (irrespectively whether, and how many
entries with different symmetry it has); if no dihedral struc-
ture exists but there is minimum one CyclicN structure, then
we assigned it as CyclicN, and so on.

Selection of Ligand-Binding Structures for Allosteric
Pathway Identification
For each allosteric complex identified above, a single repre-
sentative structure was chosen for the analysis with STRESS.
When multiple entries were present for the same complex we
selected the entry for analysis with a following decision tree:
resolution better than 2.8 Å -> (if there is more than one
such entry) entry has the largest number of proteins and
chains -> entry has the largest ligand -> entry has the best
resolution. In general we selected the largest structures, with
the largest possible ligand and with the best resolution. The
list of structures used in the analysis is available in supple-
mentary table S1, Supplementary Material online.

Homomeric structures used in the apo-holo comparisons
were selected as follows. First, we determined clusters of PDB
entries that are associated with the same PubMed ID with
their protein sequences present in the Allosteric Database.
Next we kept only those clusters that have at least one entry
that is absent in the BioLiP database (apo structures), and a
minimum of one that is present in the BioLip database (holo
structures). For both the apo and holo structures, we applied
the same selection procedure as described above to choose
the largest valid structure with the highest resolution and
largest ligand (for holo structures). Additionally, the apo–

holo pairs were required to have identical numbers of chains,
and we also excluded pairs where the length of sequence in
their actual structures differs more than 10%. Since holo
structures are sometimes crystallized with several different
ligand types (orthosteric ligands or allosteric modulators),
one apo structure is sometimes associated with more than
one holo structure (e.g., if structures with an orthosteric li-
gand and with an allosteric inhibitor are both present). Only a
single structure was allowed for each ligand type (if present).
The list of apo–holo pairs used in the analysis, and their ligand
types are available in supplementary table S2, Supplementary
Material online.

Identification of Communities and Critical Residues
with STRESS
Before running STRESS, the structures were preprocessed.
First, peptide ligands (as defined by BioLiP [Yang et al.
2012]) were removed from the structures; second, the struc-
tures were processed with the dock-prep tool of Chimera
(Pettersen et al. 2004) to complete incomplete side chains,
add hydrogens, and remove residues with low occupancy
when residues with alternative locations are present. Next,
we modified STRESS to use residue c.o.m. in the identification
of communities, instead of C-a atoms. Using the Bio3D R
package (Skjærven et al. 2014) and in house Perl scripts, we
calculated the residue c.o.m. for every residue in the structure,
and substituted the *_CA.pdb file produced by STRESS, con-
taining the coordinates of C-a atoms with a file with a similar
format, but containing the coordinates of the residue c.o.m. of
each residue. Finally, we ran STRESS with the “-interior” flag
using the preprocessed structure, to identify communities
and interior critical residues. We also processed every struc-
ture with the unmodified version of STRESS. A community
was defined as a MCC if its residues are distributed between
minimum two chains of the complex, and more than 10% of
its residues fall to each chain. (Thus, cases when 99 of a 100
residue community fall into one chain and a single residue
falls into another one were not classified as MCCs.)

Calculation of the Energetic Contribution of
Individual Residues to the Binding Energy of Interfaces
We used FoldX (Schymkowitz et al. 2005) to estimate the
independent energetic effects of residues. First, using the
structures preprocessed for STRESS, we ran the RepairPDB
FoldX module, to correct van der Waals clashes and torsion
angles in the structure. Next, we determined the binding en-
ergies of each interface pair in the complex with the
AnalyzeComplex module. Third, we mutated every residue
individually in protein–protein interfaces to alanine (except
alanines), and re-calculated the interface binding energies in
the mutant structures. The difference between the mutant
structures and the original structure gives an estimate of the
contribution of the residue to the binding energy between
different chains. Since binding energies are negative, a positive
effect means weakening of binding between the interfaces
due to a mutation.
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Calculation of Relative Solvent Accessibilities
Relative solvent accessibility (RSA) was calculated using the
entire protein complex (first biological assembly); thus, resi-
dues buried in interfaces can have RSA of zero. For each
complex, the solvent accessible surface of every residue was
determined using DSSP (Carter et al. 2003). Next the solvent
accessibilities were normalized with the solvent accessibility of
the amino acid in a three amino acid peptide that mimics the
solvent accessibility in an unfolded protein (Miller et al. 1987).
Finally, the average RSA was calculated using all interface
residues of a community.

Calculation of Conservation Scores
Conservation scores for each protein were calculated with a
pipeline that was conceptually similar to (and modeled on)
the conservation score calculations in the ConSurf Database
(Goldenberg et al. 2009). First, we identified homologs to the
sequences of the PDB entries in a filtered UniRef90 database
with CS Blast (Biegert and Söding 2009), using three iterations
and an e-value cutoff of 0.0001. During filtering, we removed
all entries from Uniref90 where the fasta header contains the
words “hypothetical,” “undetermined,” “whole genome shot-
gun sequence,” “fragment,” “mutant,” “mutation,” and
“variant.” This reduced the number of entries in UniRef90
from �70 million to �52 million. Next, the sequences of
the significant hits were clustered with UCLUST (Edgar
2010), with 90% identity cut-off. The cluster centroids with
the highest e-values were then aligned with MUSCLE (Edgar
2004), and the conservation scores of the alignments were
calculated with Rate4Site (Pupko et al. 2002), with the em-
pirical Bayesian method. A maximum of 250 sequences was
used, and a minimum of 50 sequences was required in the
evolutionary rate calculations. Since Rate4Site provides evo-
lutionary rates, we used the inverse of rate as the conservation
score; thus higher values indicate higher conservation. In the
final step of the pipeline, we mapped the sequence of the
actual PDB structure (that can differ at individual positions, or
can contain gaps) to the sequence in the PDB_seqres file by
making pairwise alignments with MUSCLE.

Interface and Surface Area Determination
The total solvent accessible surface area formed by each poly-
peptide chain was calculated using AREAIMOL from the
CCP4 suite (Winn et al. 2011). The interface area was calcu-
lated as the difference between the solvent accessible surface
area of each subunit in isolation and within the context of the
full complex. Subunit flexibility was calculated on the basis of
relative solvent accessible surface area (Arel), as described pre-
viously (Marsh and Teichmann 2011).

Identification of Homologs in the Human Genome
with Similar Binding Sites
We used a pipeline that was largely similar to the one used in
our previous study (Abrus�an and Marsh 2018), with some
modifications. First, we identified homologs of human pro-
teins in the PDB among the proteins present in PDB with
BlastP, with an e-value cut-off of 10�5, up to 10,000 hits. Next,
using the query sequences that have a ligand-binding

structure in the BioLiP database, we performed an exhaustive
search for similar binding pockets, using the ligand-binding
pockets of all structures of the query sequence against all
structures of all homologous target sequences, including
the structures that have no ligand, using ProBis (Konc and
Jane�zi�c 2010; 2017). Proteins with chimeric PDB entries were
excluded from the analysis. Binding sites were defined as the
residues within 3 Å of the ligand; hits with Z-score above 2
(calculated by ProBis) were accepted as significant if the hit
contains residues from a sequence that is homologous to the
query sequence (i.e., the target is homologous to the query; in
the case of hits to heteromer structures this is not always the
case). Homologous sequence pairs with a similar binding site
were defined as sequences that have at least one shared bind-
ing site, i.e., that either have a query or a target sequence with
a significant hit.

Calculation of Evolutionary Couplings
First, in every protein sequence of the allosteric structures, we
identified the nonoverlapping Pfam (Finn et al. 2016)
domains with hmmscan (Eddy 2011), with an e-value cut-
off 0.001. Next using the sequences of the identified Pfam
domains, we identified (and aligned) homologous sequences
in the UniRef100 database with jackhammer (Eddy 2011),
with an e-value cut-off 0.001, and five iterations. The homol-
ogous sequences were clustered at 90% sequence similarity
and 75% sequence coverage with usearch (Edgar 2010).
Additionally, we removed every sequence with less than
75% overlapping residues with the query, and trimmed the
alignments to the query sequence, so the final alignments
contained only columns from the query domain sequence.
If the final alignments contained more sequences than five
times the length of the query domain, we ran GREMLIN
(Kamisetty et al. 2013) (Cþþ version, provided by S.
Ovchinnikov), to identify evolutionary couplings between
the residues. Before calculating the strength of couplings be-
tween critical and community residues, the AP corrected
Frobenius scores reported by GREMLIN were standardized
with the standard deviation of the scores within each domain,
to correct for differences between domains. For every struc-
ture, the average coupling score was used, both for critical and
community residues.

Visualization and Statistics
All statistical tests were performed with in-house Perl scripts
and R. Protein structures were visualized with PyMol (v1.7.6.0,
open source version).

Data Availability
Additional supplementary dataset is available at https://data-
share.is.ed.ac.uk/handle/10283/3253.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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