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Background: Changes in microbial communities are a known characteristic

of various inflammatory diseases and have been linked to adverse pregnancy

outcomes, such as preterm birth. However, there is a paucity of information

regarding the taxonomic composition and/or diversity of microbial

communities in pre-eclampsia. The aim of this study was to determine

the diversity of the gut, vaginal and oral microbiome in a cohort of South

African pregnant women with and without pre-eclampsia. The diversity of the

gut, vaginal and oral microbiome was determined by targeted next generation

sequencing (NGS) of the V3 and V4 region of the 16S rRNA gene on the

Illumina MiSeq platform.

Results: In this study population, pre-eclampsia was associated with a

significantly higher alpha diversity (P = 0.0472; indicated by the Shannon

index) in the vaginal microbiome accompanied with a significant reduction

in Lactobacillus spp. (P = 0.0275), compared to normotensive pregnant

women. Lactobacillus iners was identified as the predominant species of the

vaginal microbiome in both cohorts. High inter-individual variation in alpha

diversity was observed in the gut and oral microbiome in both cohorts.

Although di�erences in the relative abundance of bacteria at all phylogenetic

levels were observed, overall microbial composition of the gut, oral and

vaginal microbiome was not significantly di�erent in the pre-eclampsia cohort

compared to the normotensive cohort.

Conclusion: Collectively, a reduction of Lactobacillus spp., and predominance

of L. iners in pregnant women with pre-eclampsia could suggest an unstable

vaginal microbiome that might predispose pregnant women to develop pre-

eclampsia. The lack of significant structural changes in the gut, oral and vaginal

microbiome does not suggest that the characterized communities play a

role in pre-eclampsia, but could indicate a characteristic unique to the study

population. The current study provided novel information on the diversity of
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the gut, oral and vaginal microbiome among pregnant women in South

Africa with and without pre-eclampsia. The current study provides a baseline

for further investigations on the potential role of microbial communities

in pre-eclampsia.

KEYWORDS

gut microbiome, vaginal microbiome, oral microbiome, pre-eclampsia, pregnancy,

16S rRNA sequence, diversity

Background

Pre-eclampsia is a multisystem and multifactorial disorder

unique to pregnancy, diagnosed by new-onset hypertension

during pregnancy and damage to one or more organ systems

featuring proteinuria, hemolysis, elevated liver enzymes and

low platelet count, neurological or visual symptoms, abnormal

Doppler ultrasound and fetal growth restriction (1–3). This

disorder is further characterized by two subtypes known

as the maternal subtype, with metabolic and immunological

involvement, and the placental subtype characterized by an

ischemic placenta followed by maternal systemic inflammation

(4, 5). Pre-eclampsia has a complex etiology for which diagnostic

biomarkers and approved therapies are not yet available. The

exact cause of this condition remains unknown; however, its

association with exaggerated systemic inflammation and certain

risk factors, such as diabetes and obesity, has suggested the

microbiome may play a role in disease pathogenesis (6–8).

The maternal microbiome is considered an important factor

that is affected by and which influences the physiological

processes in pregnancy including immune, metabolic and

hormonal changes (9). Microbial communities in the placenta,

vagina, the distal gut and the oral cavity have previously

been implicated in maternal health and potentially also in

the pathogenesis of pre-eclampsia (10–12). Since Amarasekara

et al. (13) described the placental microbiome in a group of

pregnant women with pre-eclampsia, conflicting information

on the presence and potential role of a placental microbiome

in pre-eclampsia have been reported (14–18). However, the

presence of commensal microorganisms originating from the

oral cavity, gut and vagina in the placenta of pre-eclampsia

and hypertensive pregnancies has refocused the role of the

placental microbiome by means of bacterial translocation (12,

13, 19).

Dysbiosis of the gut microbiome may contribute to the

pathogenesis of hypertension and affect maternal adaptation

in pregnancy including placental function (20, 21). The

contributing role of a disrupted gut microbiome in metabolic

disease, blood pressure (BP) regulation, chronic inflammatory

diseases and complicated pregnancies point to a possible

role in the development of pre-eclampsia (19, 22, 23).

Several studies investigated the composition and stability

of the vaginal microbiome in reproductive-age women,

uncomplicated pregnancy and in pregnant women with

spontaneous preterm delivery (24–26). The vaginal microbiome

in uncomplicated pregnancy is characterized by lower

richness and diversity with an increase in abundance of

the Lactobacillus species, to obtain stability and resilience

during pregnancy (27). However, there is uncertainty

on the composition and contributing role of the vaginal

microbiome in preterm birth. Although a reduction in

Lactobacillus species has been suggested as a risk factor for

preterm delivery, different findings have also been reported

(25, 26, 28–30).

The oral microbiome is known as one of the most

diverse microbiomes in the human body with a strong impact

on systemic health (31–33). Periodontal disease can cause

systemic illness including atherosclerotic cardiovascular disease,

rheumatoid arthritis, diabetes and adverse pregnancy outcomes

(34–39). Bacterial species associated with oral infections

have the ability to translocate and colonize extra-oral sites

such as the placenta, and this phenomenon has led to the

establishment of a link between oral infections and adverse

systemic conditions (40–42). In addition, maternal periodontal

disease has previously been found to be associated with

an increased risk of preterm birth and pre-eclampsia (43–

45).

Currently available next generation sequencing (NGS)

techniques, including 16S targeted rRNA sequencing and

metagenomics enable the characterization of microbial

communities associated with pregnancy and pregnancy

complications, such as pre-eclampsia. The characterization

of microbial communities in pre-eclampsia may reveal

whether structural changes in microbial communities are

associated with pre-eclampsia and may also provide indicative

biomarkers for the development of future preventative

and therapeutic strategies. The aim of this study was to

determine the diversity of the gut, vaginal and oral microbiome

in a cohort of pre-eclampsia and normotensive pregnant

women.
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Methods

Sample collection

All participants in this study were recruited from a

provincial hospital in Johannesburg, South Africa. Ten

primiparous pregnant women, ≥18 years and with a gestational

age ≥28 gestational weeks (3rd trimester), were included

in either one of two cohorts (N = normal/normotensive

and P = pre-eclampsia) following the rule of ten (46).

Participants were selected according to the study criteria after

a medical examination was done by a healthcare practitioner

or using hospital records when available. Participants who

had symptomatic vaginal infections including known viral

infections, such as human papilloma virus (HPV), antibiotic

usage in the 4 weeks prior to sample collection, previous

miscarriages and a gestational age ≤28 weeks were excluded

from the study. Informed consent was obtained prior to

sample collection.

Three samples were collected from each enrolled participant

to characterize the gut, vaginal and oral microbiome,

respectively. A rectal swab as an alternative to a stool

sample was collected by an obstetrician by inserting a flocked

dry swab (FLOQSwabs 552C, Copan, CA) into the anal canal

(±3 cm) beyond the anal verge (47). A midvaginal swab was

collected by the insertion of a dry flocked swab into the vaginal

canal (±2 cm) to absorb vaginal fluid. Saliva was obtained by

the use of a sterile flocked swab in a stable position under the

tongue for 2min. Fresh collected samples were labeled, kept

and transported on ice to the laboratory of the Department

of Medical Microbiology, University of Pretoria, Pretoria and

stored at −20◦C until processing. The sample labeling used in

this study refers to the site of collection, i.e., R= rectal/gut, V=

vaginal, O= oral sample in both cohorts.

Bacterial genomic DNA isolation

The extractionmethods used in this study were adapted with

the use of different enzymes for bacterial lysis and sufficient

isolation of all bacterial organisms present in the gut, oral cavity

and the vagina (24, 48, 49). The stored dry swabs (−20◦C; F700-

SAEV-TSC; Thermo Scientific, Waltham, MA) were thawed on

ice for 30min prior to genomicDNA isolation. A volume of 2mL

sterile 1X phosphate buffered saline (PBS) (Life Technologies

Corporation, Carlsbad, CA, USA) was added to thawed samples.

Rectal and vaginal swabs were incubated at room temperature

(25◦C ± 5◦C) for 2–3 h and mixed in a VX-100 vortex mixer

(Labnet International, Edison, NJ) at maximum speed for 5min

to efficiently suspend all cellular material (24). Oral swabs

were incubated overnight at 4◦C and ere mixed vigorously

at maximum speed for 5min to release all cellular material

into the PBS solution (24). Total bacterial genomic DNA

(gDNA) was isolated using the Bioline ISOLATE II Genomic

DNA kit (Bioline) following the manufacturer’s instructions

with minor modifications (see Supplementary material). The

concentration of the isolated gDNAwas determined by using the

NanoDropR ND-1000 Spectrophotometer (Thermo Scientific)

and the purity was determined by the ratio of absorbance at

260 and 280 nm (A260/280). The isolated DNA was normalized

to a final concentration of 10 ng/µL in a total volume of 25

µL. The normalized DNA was used for 16S rRNA amplification

and sequencing.

Targeted amplification of the 16S rRNA
variable domains (V3 and V4)

A genome sequence spanning the V3 and V4 regions of

the 16S rRNA gene were amplified using the Illumina ultramer

oligonucleotides (Integrated DNA Technologies, Coralville, IA)

that include Illumina adapter overhang nucleotide sequences

(50). Polymerase chain reaction (PCR) conditions and reagent

volumes are available as Supplementary Information. A negative

control from each gDNA isolation step was included in

amplification steps to determine the possibility of carry-

over contamination between samples and reagents during

these steps. Amplification products were purified using the

ISOLATE II PCR and Gel Kit (Bioline) according to the

manufacturer’s instructions with minor adjustments (see

Supplementary material).

Library preparation and 16S targeted NGS

The purified amplified products were submitted to the

ARC Biotechnology Platform, Onderstepoort, Pretoria, South

Africa for library preparation and NGS on the Illumina

MiSeq platform. Sequencing libraries were created according

to the Illumina 16S metagenomic library preparation protocol

available online (see Supplementary material). The 16S rRNA

gene was sequenced on a MiSeq sequencer creating 300 bp

paired-end reads with the V3 600 cycles kit (Illumina, San Diego,

CA). Raw paired-end FASTQ files of each sample were received

for subsequent analysis.

Sequence and statistical analysis

The targeted metagenomic sequence data were analyzed

using the Quantitative Insights Into Microbial Ecology (QIIME)

pipeline, version 9.1 (51). Matching paired-end sequences were

merged using the fastq-join command in the ea-utils software

package (52). Chimeric sequences were identified from merged

sequences and removed using the USEARCH database version

6.1 (53). The open reference method was used to assign
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the sequences to 97% identity (ID) operational taxonomic

units (OTUs). Taxonomy was assigned when the representative

sequence of each OTU was aligned against the GreenGenes

database 12_10, using the Basic Local Alignment Search Tool

(BLAST) program incorporated into the QIIME software (54).

The resulting unrarefied OTU table and phylogenetic tree

generated in QIIME were used for diversity and statistical

analysis done using Rstudio version 1.0.136 (55). Statistical

analysis and the generation of graphs using ggplots (integrated

in the package phyloseq version 1.19.1 and the package tidyverse

version 1.1.1) were used as implemented in Rstudio. These

packages were also used to generate stacked bar plots for

visualization of the taxonomic composition in each sample.

To select only sequences representing bacteria, sequences

representing mitochondria, Archaea and chloroplast were

removed from the OTU table and phylogenetic tree in Rstudio.

Samples that contained fewer than the rarefaction depth of 1,021

OTUs were removed for alpha and beta diversity analysis. The

resulting dataset included a total of fourteen samples in the gut

microbiome, ten samples in the vaginal microbiome and eleven

samples in the oral microbiome. The data of each microbiome

were extracted from the rarefied OTU table to infer statistical

analysis of each microbiome individually. Due to the small

sample size, it was assumed that the data do not follow a normal

distribution pattern. Therefore, the non-parametric Kruskal-

Wallis rank chi-squared test was used to evaluate differences

(P-value < 0.05) in alpha diversity and the relative percent

abundances of taxa between cohorts with a 95% confidence

interval (56). Alpha diversity was measured by the Chao1 index,

an indirect measure of richness and Shannon’s diversity index,

an indirect measure of evenness (56).

In beta diversity analysis, principal coordinate analysis

(PCoA) plots were generated with weighted and unweighted

unifrac distance matrices to vizualize the differences between

cohorts (57). The statistical significance in the differences in

microbial communities between the cohorts was calculated

using a permanova test, Adonis (Analysis of Dissimilarity),

as implemented in the R package vegan version 2.4–3.0 (58).

This method included 999 permutations and the weighted and

unweighted unifrac distance matrices.

Results

Samples were obtained from 21 participants who provided

informed consent and who met the inclusion criteria. Eleven

participants were recruited in the control group and ten

participants were recruited to the study group. All participants

were in an age group between 18 and 35 years with a gestational

age between 32 and 40 weeks. DNA extracted from each sample

was quantified, followed by amplification and then used for

subsequent analysis. In the sequence analysis, the selection of

OTUs in QIIME resulted in a dataset of 545,677 sequences and

TABLE 1 The average alpha diversity measures of the gut, vaginal and

oral microbiome as assessed by the Chao1 richness Index and the

Shannon Index.

Microbiome Cohort Chao1 richness Shannon diversity

Gut N 128.67 3.38

P 208.95 3.89

Vaginal N 24.5 0.64

P 30.68 1.61

Oral N 118.72 2.18

P 121.91 2.45

1,751 identified taxa between the 63 samples. An average of 9,094

OTUs were formed with a minimum of 73 and a maximum

of 64,247 OTUs between 63 samples. Rarefaction prior to

statistical analysis allowed normalization of sequencing data

and identification of samples with insufficient sequencing data;

insufficient sequencing data could affect subsequent analysis

due to inaccurate representation of microbial communities.

After rarefaction, the OTU table including the gut, vaginal

and oral microbiome consisted of 884 taxa and 35 samples in

total (reduced from an initial 63 samples). The rarefied cohort

consisted of a total of 14 samples (normotensive, N = 8; pre-

eclampsia, P= 6) for analysis of the gut microbiome, 10 samples

(N = 5; P = 5) of the vaginal microbiome and 11 samples (N =

5; P = 6) of the oral microbiome. The 35 samples on which all

analyses were carried out come from a pool of 14 participants in

the final cohort (i.e., three and four participants were excluded

from the normotensive and pre-eclampsia cohorts, respectively,

as none of their samples were included after rarefaction). All

participants were of black South African ethnicity except one of

the participants who was of white South African ethnicity.

Alpha and beta diversity analysis

A higher average alpha diversity was found in the gut, oral

and vaginal microbiome in pregnant women with pre-eclampsia

in comparison to normotensive pregnant women (Table 1). The

differences in alpha diversity observed between cohorts in the

gut microbiome was not significant for both the Chao1 index

(P = 0.1213) and Shannon index (P = 0.09329). Differences

were also not significant for both the Chao1 (P = 1) and the

Shannon index (P = 0.715) in the oral microbiome. In the

vaginal microbiome, a significant difference in diversity was

observed between the two groups (P = 0.0472) for the Shannon

index, but not the Chao1 index (P = 0.3472) (Figure 1).

Principal coordinate analysis based on the UniFrac

distances using phylogenetic information revealed no distinct

separation of microbial communities of the gut, vaginal and

oral microbiome amongst both cohorts (Figures 2A–F). The

dissimilarity test, Adonis, indicated that the gut microbiome
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FIGURE 1

Box-plot illustrating alpha diversity indices (Chao1 and Shannon diversity index) of the vaginal microbiome comparing the normotensive (n = 5)

and pre-eclampsia (p = 5) cohort.

in the pre-eclampsia group is not significantly different

compared to that of the normotensive cohort using both the

UniFrac weighted (R2 = 0.02266; P = 0.987) and unweighted

(R2 = 0.07072; P = 0.568) distance matrices. Similarly, the

oral microbiome of the pre-eclampsia group was also not

significantly different to that of the normotensive cohort

using the UniFrac weighted (R2 = 0.10288, P =0.354) and

unweighted (R2 = 0.12881, P = 0.185) distance matrices. In

the vaginal microbiome, a clear separation of the pre-eclampsia

and normotensive cohort was visible on the PCoA plot with

the UniFrac weighted distance matrix; however, the finding

was not statistically significant with both the weighted (R2

= 0.30017, P = 0.05) and unweighted distance matrix (R2 =

0.2344, P = 0.068) (Figure 2C).

Comparison of the gut microbiome
between cohorts

The gutmicrobiome of both groups was analyzed at different

taxonomic levels including at phylum, genus and species level.

Although the Firmicutes was the most abundant phylum, the

relative abundance did not differ significantly between cohorts

(Firmicutes; P= 0.6985, Bacteroidetes; P= 0.8973, Fusobacteria;

P = 0.08117, Proteobacteria; P = 0.7026, Actinobacteria; P

= 0.9485). Significant differences of relative abundance were

not observed on genus level (P values > 0.05) between

cohorts; however, changes in the relative abundance of several

genera were observed. The pre-eclampsia group had a higher

relative abundance of Bacteroides (6.41% as opposed to 4.73%),

Faecalibacterium (12.35% as opposed to 10.61%) and Blautia

(7.61% as opposed to 3.67%). In contrast, the normotensive

group had a higher relative abundance of Anaerococcus (7.56%

as opposed to 3.59%), Clostridioides (5.64% as opposed to

3.21%), Finegoldia (4.78% as opposed to 2.9%) and Prevotella

(15.17% as opposed to 12.30%).

On species level, a higher relative abundance of

Peptostreptococcus anaerobius (average relative abundance

of 23.36%) was observed in the pre-eclampsia group compared

to the normotensive group (7.8%), although the difference

was not significant (P = 0.1824). Faecalibacterium prausnitzii

(average relative abundance of 42.69 and 35.79%, respectively)
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FIGURE 2

(A–F) Principal coordinate analysis (PCoA) of the gut, vaginal, and oral microbiome displaying the dissimilarities among the gut microbiome in

the normotensive group compared to the pre-eclampsia group using the weighted (A,C,E) and the unweighted (B,D,F) UniFrac distance

metrices. Each point indicates the microbiome of each sample in the N = normotensive cohort and P = pre-eclampsia cohort.

and Lactobacillus iners (average relative abundance of 36.49 and

21.67%, respectively) were more abundant in the pre-eclampsia

group compared to the normotensive group.

Comparison of the vaginal microbiome
between cohorts

The Firmicutes was the predominant phylum in the vaginal

microbiome with an average relative abundance of 95.2 and

74.28% in normotensive and pre-eclampsia cohort, respectively.

Figure 3 indicates the overall microbial composition at genus

level. Only genera with a relative abundance of more than 30%

in each sample is indicated on the plot. The genus Lactobacillus

was significantly lower (P= 0.0275) in the pre-eclampsia cohort

(61.5%) compared to the normotensive cohort (92.6%). Higher

relative abundances of the genera Prevotella, Peptoniphilus and

Anaerococcus and an increase in Dialister were also observed

in the pre-eclampsia cohort. The genera Sneathia, Parvimonas,

Clostridium, Megasphaera and Peptostreptococcus were uniquely

detected in only the pre-eclampsia cohort (Figure 3).

Present in low levels of abundance, Atopobium spp. were

present in equal relative abundance in both groups (3.93

and 3.89%), whereas a slight increase in Aerococcus spp.

(average relative abundance of 2.94% compared to 1.92%)

and Gardnerella spp. (5.84% average relative abundance
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FIGURE 3

The overall microbial composition of the vaginal microbiome present at genus level showing the genera present in more than 30% of each

sample in both the normotensive cohort and the pre-eclampsia cohort.

compared to 4.83%) was detected in the normotensive group.

Lactobacillus iners was identified as the predominant species in

the vaginal microbiome of both the normotensive (97.71%) and

pre-eclampsia cohort (86.14%). A higher relative abundance

of Atopobium vaginae (average relative abundance of 6.56%

compared to 4.51%) was observed in the pre-eclampsia

cohort. The presence of Prevotella melaninogenica and

Peptostreptococcus anaerobius were also uniquely detected in

the pre-eclampsia cohort.

Comparison of the oral microbiome
between cohorts

The PCoA of the oral microbiome illustrated in Figures 2E,F

indicated no clear separation of the oral microbial communities

between normotensive pregnant women and women with pre-

eclampsia. However, this plot also displayed the similarity

and high variation within cohorts, which was confirmed

by the relative abundance of oral bacteria on genus and

species level. The Firmicutes was the predominant phylum

in the oral microbiome among the normotensive (70.98%)

and pre-eclampsia cohort (67.76%) respectively. On genus

level, Streptococcus was the predominant bacterial genus in

both cohorts followed by order of decreasing abundance

of Haemophilus, Neisseria, Prevotella and Veillonella. Higher

relative abundance values of Streptococcus, Granulicatella and

Veilonella were observed in the normotensive group. Neisseria

(4.46 and 4.27%) and Porphyromonas (2.49 and 2.68%) were

detected in similar relative abundance in both cohorts. Prevotella

(5.16 and 4.13%) and Haemophilus (13.29% compared to 8.4%)

were more abundant in the pre-eclampsia cohort. Genera

such as Rothia, Sneathia, Treponema, Parvimonas, Prevotella,

Pseudomonas and Gemella were detected in low abundance.

The pre-eclampsia cohort had higher average relative

abundance of the species Prevotella melaninogenica (23.57%)

and Neisseria subflava (6.96%) compared to the normotensive

cohort (17.84%, 3.93% respectively). Neisseria cinerea and N.

Oralis were detected in both cohorts. The relative abundance

of the species Rothia dentocariosa was significantly higher

(P = 0.02535) in the normotensive cohort compared to the

pre-eclampsia cohort.

Discussion

To our knowledge, this is the first study characterizing

and determining the diversity of the gut, vaginal and oral

microbiomes among pregnant women in South Africa with

pre-eclampsia. Pre-eclampsia is a complication of hypertension

in pregnancy and is one of the main contributions to the

high maternal/fetal morbidity and mortality rates globally as

well as in South Africa (59, 60). Research to uncover the

complicated pathology involved in pre-eclampsia is ongoing

in order to develop preventative and therapeutic strategies.

In the current study, pregnant women with pre-eclampsia

displayed a greater phylogenetic diversity in terms of richness

(the number of taxa present) and evenness (abundance of many

microbial constituents) compared to normotensive pregnant

women. High inter-individual variation was evident in the

characterization of the gut and oral microbiome and with a
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lesser extent in the vaginal microbiome and significant structural

changes of microbial communities were not found. The high

inter-individual variation in this study is supported by the

observations of the Human Microbiome Project Consortium,

which reported that individuals differ with the carriage of

specific microbes and that inter-individual variation in the

microbiome is specific, functionally relevant and personalized

(61). Regardless of inter-individual variation and small sample

size, a significant increase in alpha diversity accompanied with

a reduction in Lactobacillus species was found in the vaginal

microbiome of this cohort of pregnant women with pre-

eclampsia, in comparison to normotensive pregnant women.

A decrease in gut microbial diversity is a known suggestive

indicator of microbial imbalance associated with human disease

(62). In contrast to the findings of the current study (19),

found a decrease in alpha diversity in pregnant women with

pre-eclampsia. Another study found no differences in diversity

between pregnant women with and without pre-eclampsia (63).

Alpha diversity analysis of the current study is therefore not

suggestive of an imbalanced or disrupted gut microbiome. As

indicated by Frost et al. (62), an increase in alpha diversity could

rather contribute to greater stability and resilience of the gut

microbiome. Taxonomic characterization of the gut microbiome

revealed a mixed species microbiome with the exception of a few

samples having a single dominant bacterial species, including

Bifidobacterium longum, Moryella indoligenes and Lactobacillus

iners. Diversity and composition of gut microbiome is versatile

and is influenced by various external and internal factors such as

diet and host genetics. Species dominance could be specific to an

individual at a specific time with presence relating to a species

specific function (64). Several species with anti-inflammatory

properties such as Faecalibacterium prausnitzii was detected in

the pre-eclampsia cohort, indicated a balanced gut microbiome

with no significant structural changes to play a possible role in

the development of pre-eclampsia (65–69).

Similarly to the gut microbiome, a diverse oral microbiome

was characterized in women with and without pre-eclampsia.

Diversity of the oral microbiome has been found to be stable

during pregnancy and has also not been found to change

in oral disease (70). Changes in alpha diversity is therefore

not suspected to play a role in pre-eclampsia. Microbial

characterization indicated dominance of Streptococcus spp., that

has been reported in healthy oral microbiomes (71, 72). Other

species, such as Rothia, Haemophilus and Neisseria spp., have

been observed in healthy individual and therefore it is unknown

whether these species could have contributed to pre-eclampsia

in the current study (73–75). The presence of these species

indicates a diverse oral microbiome present in pregnant women

with and without pre-eclampsia. In addition, no pathogenic

species associated with periodontitis were detected in the current

study to hypothesize any link with pre-eclampsia (76).

Characterization of the vaginal microbiome in both cohorts

has provided more information on the structure of vaginal

microbial communities of South African pregnant women.

Racial variation has a strong influence on community structure;

for example, Aerococcus spp., Peptoniphilus spp., Dialister spp.,

Atopobium spp., Sneathia spp. and Gardnerella spp., have been

detected more among healthy African American and African

women (77, 78). In addition, a less acidic vaginal environment

described in black and Hispanic women could also influence

microbial diversity (24). Results within the South African

population have similarly reported dominance of L. iners in

black South Africa women (79). Lactobacillus iners has also been

reported to co-exist with other BV-related bacteria (24, 78, 80–

83).

Taxonomic observations in the pre-eclampsia cohort

showed similarities to a BV-associated vaginal microbiome,

which is characterized by higher bacterial diversity, lower

abundances of Lactobacillus spp. and higher abundances of

Atopobium spp., Dialister spp., Gardnerella spp., Prevotella spp.

and Sneathia spp. (84). Low abundances of Lactobacillus spp.,

may have significant health consequences such as increase

vaginal inflammation and susceptibility to pathogenic infection

(79). A decrease in relative abundance of Lactobacillus spp.,

together with dominance of L. iners could further contribute to

an unstable vaginal microbiome in women with pre-eclampsia.

Petricevic et al. (85) described a vaginal microbiome dominated

by a single vaginal Lactobacillus species, specifically L. iners

in the late first trimester of pregnancy that might have been

associated with preterm birth. Another study by Kindlinger et al.

(86) identified the predominance of L. iners as a risk factor

for preterm birth, while the predominance of L. crispatus was

highly predictive of a term birth. Other studies found L. iners

to represent a transitional phase of the vaginal microbiome

between healthy and dysbiotic states that may promote the

recurrence of BV (80, 87–89).

Regardless of low sample numbers, the results of the

current study align with previous studies that found an

increase in bacterial diversity accompanied by a reduction in

Lactobacillus spp., in complicated pregnancies (11, 86, 90–92).

Diversity analysis by the weighted UniFrac distance matrix

suggested that the relative abundance of bacterial taxa may

play a more important role in comparative analysis than the

absence or presence of taxa between the two groups. The

co-existence of L. iners and anaerobic taxa in both cohorts

could indicate an unstable and transitional vaginal microbiome

in South African pregnant women (78, 93–95). However,

these findings concurrently with a significant reduction of

Lactobacillus spp., found in pregnant womenwith pre-eclampsia

could discriminate a vaginal microbiome unique to a study

population to a vaginal microbiome that could increase the risk

of developing pre-eclampsia.

The strengths of this study were the identification of

microbial taxa on all phylogenetic levels, especially on species

level in low percentage abundances, which is needed to unlock

the functional complexity of a microbiome in health and disease.
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Analysis at species level is critical as different species may have

different functional capacities, which is needed to link changes

in the human microbiome to health or disease. The sample

collection strategy used in this study accounted for as much

variability as possible by including a homogenous group of

pregnant women in their third trimester of pregnancy, of the

same ethnic group, age and HIV status. Other strengths of the

study are the inclusion of the normotensive group to draw

comparisons to a matched control cohort and simultaneous

characterization of microbiomes in three distinct body sites.

A limitation of this study includes the small sample

size used for statistical analysis due to the exclusion of

samples with insufficient sequencing data. To control for inter-

individual variability, samples needed to be as homogenous

as possible. However, by excluding for women who presented

with symptomatic infection (vaginal and oral infection), it could

possibly have excluded some species that could be implicated in

the pathogenesis of pre-eclampsia. The absence of asymptomatic

BV in the participants of both cohorts was not confirmed using

laboratory methods and should be taken into account with

the results reported in this study. A limitation of the study

is therefore that the exclusion or diagnosis of BV was not

confirmed amongst participants of both cohorts and therefore

it is not known whether BV had a contributing role to the

observed vaginal microbiome in the pre-eclampsia cohort and

weather BV could have increased the risk of these women to

develop pre-eclampsia. Another limitation was the lack of the

captured medical information of the enlisted participants, such

as body mass index (BMI), white blood cell (WBC) counts and

birth outcomes.

Conclusion

The current study provided a diversity analysis of the gut,

vaginal and oral microbiomes in a cohort of South African

pregnant women with and without pre-eclampsia. Pregnant

women with a vaginal microbiome characterized by a significant

reduction in Lactobacillus spp., and dominance by L. iners

could have an instable vaginal microbiome and that may

increase the risk of developing pre-eclampsia. Diversity and

compositional analysis have revealed important data that are

otherwise scanty on the gut, oral and vaginal microbiomes

in pregnant women (predominantly black African) with pre-

eclampsia in South Africa. In future research, larger cohorts

with functional and longitudinal analysis of the gut, vaginal and

oral microbiomes may reveal additional changes across these

microbial communities in pregnant women with pre-eclampsia.
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