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Major histocompatibility complex class two (MHC-II) molecules are trans-membrane
proteins and key components of the cellular immune system. Upon recognition of
foreign peptides expressed on the MHC-II binding groove, CD4+ T cells mount an
immune response against invading pathogens. Therefore, mechanistic identification and
knowledge of physicochemical features that govern interactions between peptides and
MHC-II molecules is useful for the design of effective epitope-based vaccines, as well as
for understanding of immune responses. In this article, we present a comprehensive trans-
allelic prediction model, a generalized version of our previous biophysical model, that can
predict peptide interactions for all three human MHC-II loci (HLA-DR, HLA-DP, and HLA-
DQ), using both peptide sequence data and structural information of MHC-II molecules.
The advantage of this approach over other machine learning models is that it offers a
simple and plausible physical explanation for peptide–MHC-II interactions. We train the
model using a benchmark experimental dataset and measure its predictive performance
using novel data. Despite its relative simplicity, we find that the model has comparable
performance to the state-of-the-art method, the NetMHCIIpan method. Focusing on
the physical basis of peptide–MHC binding, we find support for previous theoretical
predictions about the contributions of certain binding pockets to the binding energy. In
addition, we find that binding pocket P5 of HLA-DP, which was not previously considered
as a primary anchor, does make strong contribution to the binding energy. Together,
the results indicate that our model can serve as a useful complement to alternative
approaches to predicting peptide–MHC interactions.

Keywords: major histocompatibility complex (MHC), modeling peptide–MHC-II interactions, antigen presentation,
machine learning, inverse statistical mechanics

1. INTRODUCTION

Major histocompatibility complex class two (MHC-II) molecules are surface proteins that exist on
the membrane of antigen presenting cells (APCs) such as macrophages, dendritic cells, and B cells.
They bind short peptide fragments derived from exogenous proteins and present them to CD4+
helper-T cells. Upon the recognition of foreign peptides presented byMHC-IImolecules, the helper-
T cells (precisely speaking, CD4+ effector T cells) will initiate proper adaptive immune responses,
including enabling sufficient maturation of B cells and cytotoxic CD8+ T cells (1). Therefore, the
binding of peptide to MHC-II molecules is considered to be a fundamental and pre-requisite
step in the initiation of adaptive immunity (2, 3). As such, mechanistic identification of the basic
determinants of peptide–MHC-II interactions presents potential for understanding the immune
system’s mechanisms and improving the process of designing peptide- and protein-based vaccines.

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 14101

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.01410
https://creativecommons.org/licenses/by/4.0/
mailto:degoot@aims.ac.za
mailto:wndifon@aims.ac.za
https://doi.org/10.3389/fimmu.2018.01410
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01410&domain=pdf&date_stamp=2018-06-20
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01410/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01410/full
https://loop.frontiersin.org/people/524698
https://loop.frontiersin.org/people/104568
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


Degoot et al. Trans-Allelic Model for Prediction of Peptide:MHC-II Interactions

MHCgenes for humans, referred to as human leukocyte antigen
(HLA), are among the most polymorphic genetic elements found
within a long continuous stretch of DNA on chromosome 6 (4).
Such high polymorphism reflects the immense contribution of
MHC molecules to the adaptive immune system and underpins
their capacity to recognize a wide range of pathogens. Nonethe-
less, some viruses, such as hepatitis C, avian/swine influenza,
and human immunodeficiency virus (HIV), undergo extensive
mutations that allow them to partially escape recognition by the
MHC molecules (5). MHC genes can be divided into HLA class
I, II, and III. Loci corresponding to HLA class I are A, B, and C;
HLA class II loci are DP, DQ, and DR; HLA class III genes encode
for several other immune-related proteins and provide support for
the former two classes (1, 4).

MHC-II molecules account for the likelihood of success of
organ transplantation, and there are well-established associa-
tions between many disorders and particular classes of MHC-II
molecules. These include the contribution of HLA-DQ genes to
insulin-dependent diabetes (6); HLA-DR genes to multiple scle-
rosis; and narcolepsy (7) along with other autoimmune diseases
resulting from degeneracy and misregulation in the process of
peptide presentation (8). Moreover, genetic and epidemiologi-
cal data have implicated MHC-II molecules in susceptibility to
many infectious diseases such as HIV/AIDS, malaria (9), and
cancer (10).

Experimental assays for prediction of peptide–MHC-II interac-
tions are often faced with important obstacles, including substan-
tial resources needed for laboratory work, high time, and labor
demands. This is the case in particular, for experimental work
aimed at finding out which promiscuous epitopes bind to specific
MHC molecules, a necessary step in the design of peptide-based
vaccines which protect against a broad range of pathogen variants.
Computational methods, which are more efficient and less costly
than biological assays, have been employed to complement these
assays. Due to advances in sequencing technologies, immuno-
logical data have grown at an unprecedented pace and continue
to accrue. This has been exploited in systematic computational
analyses of genomes of multiple pathogens to determine which
subunits might induce a potent immune response. The results
have been the design and development of new vaccine candidates
against HIV, influenza, and other hyper-variable viruses (11). Use
of computational methods has significantly reduced experimental
effort and costs by up to 85% (12).

Many immunoinformatics methods for prediction of
peptide–MHC interactions, for both class I and II, have been
developed based on machine learning approaches such as simple
pattern motif (13), support vector machine (SVM) (14), hidden
Markov model (HMM) (15), neural network (NN) models
(16–18), quantitative structure–activity relationship (QSAR)
analysis (19), structure-based methods, and biophysical methods
(2, 20, 21; Degoot et al., unpublished). These methods can be
divided into two categories, namely, intra-allele (allele-specific)
and trans-allele (pan-specific) methods. Intra-allelic methods
are trained for a specific MHC molecule on a limited set of
experimental peptide-binding data and applied for prediction
of peptides binding to that molecule. Because of the extreme
polymorphism of MHC molecules, the existence of thousands of

allele variants, combined with the lack of sufficient experimental
binding data, it is impossible to build a prediction model for
each allele. Thus, trans-allele and general purpose (22) methods
such as MULTIRTA (2), NetMHCIIpan (18), and TEPITOPEpan
(23) have been developed using richer peptide-binding data
expanding over many alleles or across species (18). Similar
methods for MHC-I are also available such as NetMHCpan (24,
25) and KISS (26).

The trans-allelicmodels are often designed to extrapolate either
structural similarities or shared physicochemical binding deter-
minants among HLA genes, to predict affinities for alleles that
are not part of the training dataset. These models generally have
better predictive performance for new alleles and a wide range of
potential applications compared with the intra-allelic models.

Most of the existing trans-allelic models for MHC-II are
extended versions of their earlier intra-allelic counterparts: TEPI-
TOPEpan (23) was extended from TEPITOPE (27); MULTIRTA
(2) evolved from RTA (20); and the series of NetMHCIIpans (1.0,
2.0, 3.0, and 3.1) (17, 18, 28, 29) were generalized from the NN
align (30) method. In the same vein, in this article, we present a
trans-allelemethod, an extension of our previousmethod (Degoot
et al., unpublished), for prediction of peptide-HLA class II inter-
actions based on biophysical ideas.

The remarkable strength of the method presented here over
other existing advanced data-driven approaches is its physical
basis. We formulate the process of binding affinity between pep-
tide and MHC-II molecule as an inverse problem of statistical
physics. From the observable macroscopic (bound and unbound)
states of experimental data, we compute the microscopic parame-
ters (Hamiltonians for amino acid residues involved in the inter-
action) that govern the system. In fact, many problems in com-
putational biology can be solved in such a way (31, 32), taking
advantage of the availability of vast amount of genomic data and
high resolution structural information. Solutions obtained using
this approach are more plausible and physically interpretable than
those obtained using mere sequence-based methods (2; Degoot
et al., unpublished). In addition, because sparsity is a hallmark
feature of biological processes, we adjust the model’s parameters
via incorporating an L1 regularization term into the model. The
L1 constraint, commonly named Lasso, encourages sparsity and
improves the predictive performance of the model on novel data.

The rest of this article is organized as follows: in Section 2.1, we
describe the idea ofMHC-II polymorphic residue groups, which is
employed to capture structure similarity amongMHC-II alleles. In
Section 2.2, we define our methodology and formulate the learn-
ing function. After that we briefly describe the benchmark dataset
used to test the predictive performance of the model in Section
2.3 and present the results in Section 3. Finally, in Section 3.3, we
summarize and discuss our results and compare our method with
the state-of-the art method.

2. MATERIALS AND METHODS

2.1. MHC-II Polymorphic Residue Groups
Crystal structures revealed that an MHC molecule is a combina-
tion of two domains, an α helix and a β sheet, linked together to
form a Y-shaped groove which is used to locate peptides, and both
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domains equally contribute to the binding affinity. For HLA-I
molecules, theβ domain is largely conserved, and variation occurs
mostly in theα domain. On the other hand, polymorphism occurs
in both domains of HLA-II molecules; except for HLA-DR alleles,
where the variation takes place in the β domain. In addition, the
peptide-binding groove of the HLA-II is open at both ends, which
allows binding peptides of variable lengths (33), ranging from 9 to
30 amino acid residues, or even an entire protein (29, 34). This is in
contrast to the peptide-binding groove of the HLA-I alleles, which
accommodate only short peptides of lengths ranging from 8 to 11
amino acids. This flexible constraint on peptide lengths together
with its immense polymorphism, contribute to a lower predic-
tive performance of computational methods for peptide–MHC-II
interactions compared with MHC-I methods (2, 22).

The notion of MHC polymorphic residue groups, introduced
by Bordner and Mittelmann (2), is based on a simple observation
of an intrinsic (independent of peptide) feature of the MHC-II
binding groove. Although a peptide could bind to an MHC-II
molecule in various registers, due to the open-ended nature of
the MHC-II binding groove, the strength of the binding affinity is
primarily determined by 9 residues occupying the binding groove
pockets. Interestingly, most of polymorphism in MHC-II genes
occurs at these binding pockets (see the discussion in Section 3.3).

From the limited available crystallographic structural data of
peptide–MHC-II complexes for a few MHC-II molecules from
the Protein Data Bank (PDB) (35) (summarized in Table S1
in Supplementary Material), sets of important positions for the
polymorphic residues in the binding groove that contact one or
more peptide-binding cores and are within a distance of not more
than 4Å (2, 18, 36) in one or more of the MHC-II complex
structures can be extracted. Then, by extrapolating the similarities
amongMHCmolecules, their corresponding residues in different
genes are determined using multiple sequence analysis (MSA)
(37). Exploiting the fact thatHLA-DRalleles are polymorphic only
in the β domain and have the same α domain, the polymorphic
residue groups for HLA-DR are extracted from its β domain
sequences. Similarly, assuming sufficiency of the β domains for
predicting MHC–peptide binding preferences (2) and for the
sake of simplicity of the model, residue groups for HLA-DP and
HLA-DQ were also extracted from the β domain.

Next, the set of polymorphic residues that always co-occur at
the specified positions are clustered into the same group. The
rationale of clustering polymorphic residue groups, rather than
individual residues, is to avoid over-parametrization of themodel.
Table S2 in Supplementary Material shows such polymorphic
residue groups for HLA-DRB, HLA-DP, and HLA-DQ alleles,
assembled by the procedures described earlier.

2.2. Trans-Allele Model
In our previous intra-allele model (Degoot et al., unpublished) the
probability of peptide P(k) to bind an MHC molecule M(T(k)) was
computed as follows:

π
(

P(k), M(T(k))
)

=
1

1 + eδE(k) , (1)

where δE(k) is the change in binding energy in terms of the sum of
the differences of first- and second-order Hamiltonians between

the bound and unbound states. Specifically, δE(k) is given by the
following equation:

δE(k) =
|P(k)|∑
i=1

δH(1) (ai) +
9∑

i=1
δH(1) (bi) + δS︸ ︷︷ ︸

first-order Hamiltonians

+

per residue-residue interactions︷ ︸︸ ︷
|P(k)|∑
i=1

9∑
j=1

R∑
r=1

δH(2)
(

a(k)
ir , bj

)
︸ ︷︷ ︸

second-order Hamiltonians

, (2)

in which |P(k)| is the length of peptide k, R is the number of all
possible configurations (registers) in which the peptide binds to
the particular MHCmolecule, and δS is the difference in entropy
between the bound and unbound states.

For the trans-allele model, two changes were introduced into
the second term of equation (2). First, instead of residue-residue
interaction, δH(2)(a(k)

ir , bj), with a(k)
ir on the peptide sequence

and bj on the MHC binding pocket, we rather focus on residue-
polymorphic group interaction, δH(2)(a(k)

ir , gjn), where gjn is
residue group number n of position j as defined in Section 2.1.
Next, we introduce a binary operator T(k, j, n) that equals 1 if
the MHC molecule type, M(T(k)), corresponding to peptide P(k)

contains polymorphic residue group n at the set of pre-determined
positions of pocket j, and equals 0 otherwise. Hence, δE(k) is given
by the following equation:

δE(k) =
|P(k)|∑
i=1

+ δH(1) (ai) +
9∑

i=1
δH(1) (bi) + δs︸ ︷︷ ︸

first-order Hamiltonians

+

per residue-group interactions︷ ︸︸ ︷
|P(k)|∑
i=1

9∑
j=1

R∑
r=1

G(j)∑
n=1

δH(2)
(

a(k)
ir , gjn

)
T (k, j, n)

︸ ︷︷ ︸
second-order Hamiltonians

, (3)

whereG(j) is the number of polymorphic residue groups for bind-
ing pocket j. Column two of Table S2 in Supplementary Material
shows G(j), j= 1, 2, . . ., 9, for HLA-DR, HLA-DP, and HLA-DQ
alleles.

Let ∆ denote the model’s parameters. Using equations (1) and
(3), we formulate, through themaximum likelihood approach, the
following cost function:

L(P, M|∆) = argmin
{∆}

( K∑
k=1

Gk
(
∆k
)

+ λP (∆)

)
, (4)

where Gk(∆) is the empirical loss function given by the following
equation:

Gk (∆) = yk log(πk (∆)) +
(
1 − yk

)
log(1 − πk (∆)), (5)
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and yk ∈ {0, 1} is the experimental value; y= 1 for binding pep-
tides and y= 0 for non-binding ones. λP(∆) is a regularization
term with the following form:

λP (∆) = λ||∆||1 = λ
d∑

i=1
|∆| , (6)

whereλ > 0 is a hyper-parameter and d is the dimension of param-
eter vector ∆, which varies depending on the type of MHC-II
molecule. The L1 constraint penalty term P(∆), also known as
Lasso (38), has an important role in the model. As the model
is defined on a large number of parameters (d= 2,321, 561, and
401 for HLA-DR, HLA-DP, andDQmolecules, respectively) a few
parameters are expected to contribute to the binding affinity while
the rest are expected to be noisy. Lasso has the capability to filter
out the noisy parameters by inducing sparsity in the model, as it
shrinks most of the parameter values to 0, and avoids data over-
fitting. The hyper-parameter λ controls the degree of sparsity of
the model; the larger the value of λ the more sparse the model.
Equation (4) is a non-linear and non-smooth function; due to
the L1 constraint. But it is a convex function and we solved it,
after quadratic approximation, by means of an iterative, cyclic
coordinate descent approach using a soft-thresholding operator.
This learning function takes the formof a generalized linearmodel
and the algorithm we used to solve it is both fast and efficient.
Details of this optimization method are found in Friedman et al.
(39) and are summarized in the supplementary material.

2.3. Binding Affinity Dataset
Themodel has been developed by using both quantitative peptide-
binding data and MHC-II molecule sequences. We obtained a
total of 51,023 peptide-binding data for 24 HLA-DR, 5 HLA-DP,
and 6 HLA-DQ from the IEDB database (40). This is a well-
curated dataset and was used to develop NetMHCIIpan (18), the
state-of-the-art method. The binding affinities data were given
in the form of log-transformed measurements of the IC50 (half
maximum inhibition concentration) according to the formula
1− log(IC50)/log(50,000) (16). We dichotomized these data using
a moderate threshold of IC50 500 nM (≡0.426 of log-transformed
data). Peptides with IC50 less than or equal 500 nM (≥0.426 of log-
transformed value) were considered as binders, and non-binders
otherwise. This moderate threshold, which has been used in other
previous methods including the state-of-the art method (20, 29,
30, 41), allows us to make direct comparisons.

Amino acid sequences for theMHC-II alleles used in this study
were obtained from the EMBL-EBI online-database (42). Table 1
gives a summary of the peptide-binding dataset used to develop
the method.

3. RESULTS

This section presents prediction results of the model obtained
from the dataset of threeMHC-II allotypes as described in Section
2.3. We applied a fivefold cross validation analysis to the model
and compared it against its intra-allelic version (Table S3 in Sup-
plementaryMaterial).We also examine its predictive performance
on data which were previously unseen by the model.

3.1. Performance of the Trans-Allele Model
We tested the predictive performance of the model by using
fivefold cross validation. The partitioning of the data used in
fivefold cross validation was previously done by Andreatta et al.
(29), by clustering together peptides in a way that minimizes
over-estimation of predictive performance, using the technique
described by Nielsen et al. (30). Figure 1 shows results of the test
done using alleles belonging to the three MHC-II loci considered
in this study. The performance was measured in terms of area
under the curve (AUC) (43) values, which range between 0 and 1.
The higher the AUC value the better the predictive performance
of model. Values below 0.5 reflect a worse performance than a
random test. The model has an excellent performance for HLA-
DPmolecules (average AUC value= 0.930), and a good predictive
power for both HLA-DQ and HLA-DR molecules (average AUC
values= 0.830 and 0.802, respectively). The surprisingly excellent
performance for HLA-DP could be the result of both a higher
structural similarity (see Section 3.3) and a higher number of
peptides per allele for HLA-DP. Indeed, for all HLA-DP alleles,
the number of available peptides exceeds the empirically required
number of peptide-binding measurements (≈200 peptides (22)),
but this is not the case for all HLA-DR alleles. HLA-DQ alleles
have sufficient number of peptide measurements but these have
a lower structural similarity compared with the corresponding
peptides for HLA-DP alleles (see Section 3.3).

3.2. Comparing the Intra-Allele vs
Trans-Allele Methods
Table S3 in Supplementary Material shows AUC values obtained
with the intra-allele and trans-allele versions of the model. For the
intra-alleles version, the model was evaluated on peptide-binding
data corresponding to an individual allele only. On average, the
performance of the trans-allele model is comparable to that of the
intra-allele model for HLA-DP (0.930 vs 0.928), it is worse for
HLA-DQ (0.830 vs 0.857) and it is better for HLA-DR (0.780 vs
0.771) (Figure 2).

These results demonstrate two important observations. First,
there is a common binding preference amongMHC-II loci, which
is the basis of all trans-allelic models, and that has been success-
fully captured by the definition of MHC-II polymorphic groups
forHLA-DP loci, and to a lesser extent forHLA-DQandHLA-DR.
Second, the trans-allelic model is able to extrapolate similarities
among the MHC-II allotypes and achieve good predictive per-
formance. As a result, the overall performance of the trans-allelic
model is comparable to that of intra-allele model, even though
the former model is applied on a much diverse set of MHC-II
sequences.

A decreased performance of the trans-allelic model when com-
pared with the intra-allelic method for HLA-DQ molecules is
consistent with results reported in NetMHCIIpan (18). Here we
suggest that this is probably because of the limited structural
information available for HLA-DQ alleles. In fact, because of
this limited structural information there are only 17 polymorphic
residue groups for all the 9 binding pockets defined for HLA-
DQ alleles. By contrast, there are 25 and 115 polymorphic residue
groups defined forHLA-DP andHLA-DRmolecules, respectively.
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TABLE 1 | Overview of the MHC-II peptide-binding data utilized in this study.

Allele name HLA-index # of Peptides # of Binders % of Binders

HLA-DR molecules
DRB1*01:01 HLA00664 7,685 4,382 57.02
DRB1*03:01 HLA00671 2,505 649 25.91
DRB1*03:02 HLA00673 148 44 29.73
DRB1*04:01 HLA00685 3,116 1,039 33.31
DRB1*04:04 HLA00689 577 336 58.23
DRB1*04:05 HLA00690 1,582 627 39.63
DRB1*07:01 HLA00719 1,745 849 48.65
DRB1*08:02 HLA00724 1,520 431 28.36
DRB1*08:06 HLA00732 118 91 77.12
DRB1*08:13 HLA00739 1,370 455 33.21
DRB1*08:19 HLA00745 116 54 46.55
DRB1*09:01 HLA00749 1,520 621 40.86
DRB1*11:01 HLA00751 1,794 778 43.37
DRB1*12:01 HLA00789 117 81 69.23
DRB1*12:02 HLA00790 117 79 67.52
DRB1*13:02 HLA00798 1,580 493 31.20
DRB1*14:02 HLA00834 118 78 66.20
DRB1*14:04 HLA00836 30 16 53.33
DRB1*14:12 HLA00844 116 63 54.31
DRB1*15:01 HLA00865 1,769 709 40.08
DRB3*01:01 HLA00887 1,501 281 18.72
DRB3*03:01 HLA00902 160 70 43.75
DRB4*01:01 HLA00905 1,521 485 31.89
DRB5*01:01 HLA00915 3,106 1,280 41.21

HLA-DP molecules
DPA1*01:03–DPB1*02:01 HLA00517 1,404 538 38.32
DPA1*01:03–DPB1*04:01 HLA00521 1,337 471 35.23
DPA1*02:01–DPB1*01:01 HLA00514 1,399 597 42.67
DPA1*02:01–DPB1*05:01 HLA00523 1,410 443 31.42
DPA1*03:01–DPB1*04:02 HLA00522 1,407 523 37.17

HLA-DQ molecules
DQA1*01:01–DQB1*05:01 HLA00638 1,739 522 30.02
DQA1*01:02–DQB1*06:02 HLA00646 1,629 813 49.91
DQA1*03:01–DQB1*03:02 HLA00627 1,719 386 22.46
DQA1*04:01–DQB1*04:02 HLA00637 1,701 559 32.86
DQA1*05:01–DQB1*02:01 HLA00622 1,658 549 33.11
DQA1*05:01–DQB1*03:01 HLA00625 1,689 863 51.10
Total 51,023 20,255 39.70

The first column gives the names of the 34 genes used to develop the method, distributed as 24, 5, and 6 for HLA-DR, HLA-DP, and HLA-DQ genes, respectively. The second column
represents the index for each allele in the EMBL-EBI database (42). The third and fourth columns give the total number of peptide and the number of binder peptides, receptively, per
allele. The last column shows the percentage of binder peptides. Binder peptides were identified using an IC50 binding cutoff of 500 nM, as in previous studies (2, 17, 18, 30). The last
row presents the overall statistics for the last three columns.

Another reason for the reduction of the trans-allelic model’s
performance for HLA-DQ alleles is that there is a large
sequence diversity of MHC-II molecules belonging to this locus.
We will examine the empirical support for this assertion in
Section 3.3.

3.3. Prediction on a Novel Dataset
We examined the predictive power of the model on a blind
dataset- i.e., a dataset which was not used in the training phase.
More precisely, to make peptide-binding predictions for a par-
ticular allele, we train the model on an entirely different allele.
The allele used for training was chosen based on its similarity
to the focal allele as quantified using three different metrics:
nearest-neighbor, Hamming distance, and Leave-One-Out (LOO)
approach.

In the nearest-neighbor approach the distance between two
MHCmolecules is defined (17) as follows:

d (A,B) = 1 − S (A,B)√
S (A,A) S (B,B)

(7)

in which S(A, B) is the score of the BLOSUM50 (44) metric
between amino acid sequences ofA andB. TheBLOSUM50metric
measures genetic distance between two sequences by quantifying
the likelihood that one amino acid will be substituted by another
amino acid on evolutionary time scales.Hamming distance simply
counts the different occurrences of corresponding amino acid
residues between two sequences. In both nearest-neighbor and
Hamming metrics, we train the model on peptide data belonging
to the corresponding nearest allele to parameterize themodel, and
then we assess its accuracy in terms of AUC values calculated
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FIGURE 1 | Shows fivefold cross validation results of the model using the benchmark dataset described in Section 2.3. Three ROC curves representing the three
MHC-II loci covered in this study. The red curve for HLA-DP with AUC value= 0.930, the blue curve for HLA-DQ with AUC value=0.830, and the green curve for
HLA-DR with AUC= 0.802.

based on peptide data belonging to the focal allele using those
parameters.

However, unlike the TEPITOPE and the series of NetMHCI-
Ipan methods which defined nearest neighbor at pocket level,
we derive both the nearest-neighbor metric and the Hamming
distance at residue level. Our choice is based on the fact that
accounting for the entire MHC-II sequence provides a broader
allele coverage (2) and hence extend the model’s applicability.
Computing sequence similarity at residue level is an intuitive and
natural approach to perform comparative analysis of sequences
rather than other artificial ways thatmay bemore computationally
efficient. We found that 71% (for HLA-DR), 60% (HLA-DP),
and 67% (HLA-DQ) of alleles used for training were consistent
between the residue-level and pocket-level approaches. These
statistics indicate that, as mentioned before, most of MHC-II
polymorphisms occur at the binding pockets.

The LOO approach involved partitioning data into two parts;
the peptide-binding data not belonging to the allele under consid-
eration are used to learn themodel’s parameters and the remaining
data, the peptide-binding data belonging to the focal allele, are
used as test data. Figure 3 shows a comparison of results from
these three approaches (details are in Table S4 in Supplementary
Material). The results show that, regardless of the metric we

used, the trans-allele method has a high predictive power for
HLA-DP allele and a moderate predictive power for the other
alleles.

Themuch higher predictive power for HLA-DP compared with
the other alleles is likely due to the comparatively lower sequence
diversity of HLA-DP alleles. To make this assertion more precise
we carried out a regression analysis by defining the AUC values
from LOO approach as functions of both NN and Hamming
metric distances. Figure 4 gives results of our analysis. As seen in
Figure 4, all HLA-DQ alleles fall below the least squares lines for
bothmetrics (blue points).We also found thatmodel performance
for HLA-DP allele (red points) increases as the distance between
alleles decreases. The authors of NetMHCIIpan also arrived at the
same conclusion (18), but only for the NN metric.

3.4. Analysis of the Model’s Parameters
To determine the key factors that contribute to the binding affini-
ties for the three MHC-II alleles considered in this study, we
calculated the Hamiltonians corresponding to each amino acid
residue and the 9 binding pockets of the MHC-II binding groove.
These values were then averaged over only the polymorphic
residue groups defined for each pocket containing the particular
amino acid.
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FIGURE 2 | Comparing results between the intra-alleles (gray bars) and the trans-alleles (red bars) methods in terms of AUC values. These bars show that there is a
significant increase in performance of the trans-allele method for HLA-DR molecules and decrease for HLA-DQ molecules compared with the intra-allele method. The
difference in the HLA-DP loci is limited.

FIGURE 3 | Average performance results of the model in terms of AUC values for the three metrics: NN approach (gray bars), Hamming metric (blue bars), and the
LOO method (red bars). Except for HLA-DQ loci, the LOO approach significantly out performs the other two metrics. Such results indicate that this method performs
better than a random test even for un-characterized MHC-II molecules.
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Analysis of HLA-DR parameters revealed that pocket P1 has
moderate attractive interactions with peptide (negative energies
indicated by blue color in Figure 5), via hydrophobic (I, L,W, Y)
side chains and, to lesser extent, via the aromatic (F, W) amino
acids and a single hydrophilic residue (K). Remarkably, previous
studies (2, 46) arrived at a similar conclusion of a large tendency
of position P1 toward interactions involving the hydrophobic

side chains. The repulsive interactions (positive energies indicated
by red color in Figure 5) of pocket P1 mostly occur with the
hydrophilic side chains (D, E, N, S, T) and the aliphatic residue
(A). Generally, most of the primary anchor pockets (P1, P4, P6,
P7, P9) confer attractive interactions, but the pocket P1 makes
the largest contribution. This is consistent with results obtained
using theMULTIRTAmethod (2). Among the secondary anchors,

FIGURE 4 | Regression analysis of AUC values from the LOO approach as function of: (A) nearest-neighbor and (B) Hamming distances. Negative slope lines in both
graphs obtained by the least square fit method, with p-values 0.185 and 0.0.033 for both metrics, respectively. These lines and p-values associated with were
produced using glm2 package in R (45).

FIGURE 5 | Interaction maps for: (A) HLA-DR, (B) HLA-DP, and (C) HLA-DQ molecules. The rows give the 9 anchor positions of MHC-II binding groove and the
columns give the peptide residues. The red entries marking for repulsive interactions (positive energy), whereas the blue entries marking for attractive interactions
(negative energy). Note that most of the entries are zeros (white color), an indication for the degree of the sparsity of the model.
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we found that pocket P2 has attractive interactions with aromatic
(F, Y) and the hydrophobic (I, M, Y) side chains. The most
repulsive interactions come from the pocketP8,which has a strong
unfavorable interactions involving the side chains of residuesC,D,
E, F, G, I, L,W, and Y (see Figure 5A).

For HLA-DP, we found that pocket P9 has significantly attrac-
tive interactions involving the hydrophobic residue (L). This is
consistent with the previous results of Ref. (47) (see Figure 5B).
Also, we found that pockets P4 and P5 have important attractive
interactions with peptide via hydrophobic (Y) and aromatic (F)
side chains, respectively. The contribution of the pocket P4 is
concordant with other studies such as (41), but the contribution
of the pocket P5 was not reported in the study of Andreatta
and Nielsen (47), which was specifically dedicated to HLA-DQ
and HLA-DP alleles. Furthermore, we found that the other two
pocketsP1 andP6,whichwere reported as primary anchors in that
study, have a moderate contribution to calculated bind energies
(see Figure 5B).

The pattern of energetic contributions for HLA-DQ alleles is
less ordered. There is no common pattern except the observation
of significant attractive interaction of pocket P1 via the hydropho-
bic residue (W) and the repulsive interaction of pocket P4 via the
side chainsC,E, andD (see Figure 5C). This finding is in line with
the observations of Morten et al. (47).

3.5. Discussion
Interactions between peptides and MHC-II molecules are cen-
tral to the adaptive immune system. Precise prediction and

knowledge of the physicochemical determinants that govern
such interaction is useful in designing effective and afford-
able epitope-based vaccines, and in providing insights about the
immune system’s mechanism as well as in understanding the
pathogenesis of diseases. In this study, we have developed a
trans-allelic model that can predict peptide interactions to the
three human MHC-II loci. It can be readily applied to MHC-
II molecules of other species provided that relative structural
information are available. This method is based on biophys-
ical ideas, an alternative to the dominant machine learning
approaches.

The model presented here is, in addition to NetMHCIIpan,
only the second trans-allelic method that allows comprehensive
prediction analysis of peptide binding to all three humanMHC-II
loci. Most trans-allelic models for MHC-II peptides are restricted
to HLA-DR and HLA-DP alleles. The TEPITOPEpan method
(23), which is popular among immunologists and is the suc-
cessor of a pioneer method in this field, is limited to HLA-DR
alleles.

In this work we employed the definition of MHC polymor-
phic residue groups of the MULTIRTA method (2), which is
more intuitive and inclusive than the MHC pseudo sequences
of NetMHCIIpan (18), in developing our trans-allelic model.
Utilizing new structural data for MHC-II complexes, which
were not present when MULTIRTA was being developed, we
extended that idea to cover all three human MHC-II loci. There
exist similar exercises for capturing structural similarity among
MHC molecules. The earlier works of Murthy and Stern (48)

FIGURE 6 | Performance comparison between our model and NetMHCIIpan. Each model was used to predict the probability of peptide binding to query alleles
belonging to each of three HLA loci (i.e., HLA-DP, HLA-DQ, and HLA-DR) after training it using peptide-binding data for a different allele. The allele that was most
similar to the query allele was used for training. As in previous work (18), similarity between HLA alleles was defined based on two metrics: nearest neighbor (NN) and
leave-one-out (LOO). See the text for definitions of these metrics. For each query allele, we measured each model’s predictive performance (accounting for both
sensitivity and specificity) by calculating an AUC value. The higher the AUC value the better the predictive performance. The plot shows the average difference
between the AUC values for alleles belonging to the same locus obtained using our model vs. the corresponding values obtained using NetMHCIIpan, when similarity
is defined based on either (A) the NN or (B) the LOO metric. Error bars denote SDs. Strikingly, our model performs better than NetMHCIIpan when predicting peptide
binding to HLA-DQ using the NN metric (p-value= 0.015). For all other cases, both models have equivalent performance.
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and Sinigaglia and Hammer (49) were mostly limited to HLA-
DR molecules. But in a previous study (2), the “polymorphic
residue groups” were shown to be useful for inferring the inter-
action energy. This physical way of capturing structural sim-
ilarity among MHC molecules works well in our biophysical
approach.

We compared how well our model predicts the MHC-II
allele binding preferences of a novel peptide dataset vs. how
well the state-of-the-art NetMHCIIpan method performs the
same task. In this comparison we applied both our model and
NetMHCIIpan to predict binding preferences for peptides known
to either bind or not bind a reference allele after training both
models using peptide-binding data for a second allele. For a
given MHC-II locus, the second allele was the one that was
most similar to the reference allele. Similarity was quantified
based on either a leave-one-out approach or a nearest-neighbor
approach (see Section 3.3). When using the nearest-neighbor
approach, we found that our model performs significantly better
than NetMHCIIpan in predicting peptide-binding preferences
for HLA-DQ alleles (P-value= 0.015; Figure 6A). Furthermore,
at the 95% confidence level, for all other cases, we found no
significant difference between the performances of the twomodels
(Figure 6).

These results are reassuring and indicate that our inverse-
physics approach constitutes a promising complement to the
widely used pattern-based approach to peptide–MHC-II bind-
ing predictions. The outstanding predictive accuracy of the
NetMHCIIpan is not the result of its theoretical basis. Rather it
derives from the use of sophisticated ensembles of neural net-
works, which are very powerful. However, our method has a
distinguishing advantage over all the advanced machine learning
models in that it is more physically meaningful. It is worth noting
that our prediction results of peptide–MHC-II interaction were
based on in silico analysis of real data. Additional, in vivo and
in vitro investigations are needed to further validate the reported
predictive performance.
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