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Abstract

Improved understanding of how depot-specific adipose tissue mass predisposes to obesity-related 

comorbidities could yield new insights into the pathogenesis and treatment of obesity as well as 

metabolic benefits of weight loss. We hypothesized that three-dimensional contiguous “fat-water” 

MR imaging (FWMRI) covering the majority of a whole-body field of view (FOV) acquired at 3 

Tesla (3T) and coupled with automated segmentation and quantification of amount, type and 

distribution of adipose and lean soft tissue would show great promise in body composition 

methodology. Precision of adipose and lean soft tissue measurements in body and trunk regions 

were assessed for 3T FWMRI and compared to DEXA. Anthropometric, FWMRI and DEXA 

measurements were obtained in twelve women with BMI 30–39.9 kg/m2. Test-retest results found 

coefficients of variation for FWMRI that were all under 3%: gross body adipose tissue (GBAT) 

0.80%, total trunk adipose tissue (TTAT) 2.08%, visceral adipose tissue (VAT) 2.62%, 

subcutaneous adipose tissue (SAT) 2.11%, gross body lean soft tissue (GBLST) 0.60%, and total 

trunk lean soft tissue (TTLST) 2.43%. Concordance correlation coefficients between FWMRI and 

DEXA were 0.978, 0.802, 0.629, and 0.400 for GBAT, TTAT, GBLST and TTLST, respectively. 

While Bland Altman plots demonstrated agreement between FWMRI and DEXA for GBAT and 
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TTAT, a negative bias existed for GBLST and TTLST measurements. Differences may be 

explained by the FWMRI FOV length and potential for DEXA to overestimate lean soft tissue. 

While more development is necessary, the described 3T FWMRI method combined with fully-

automated segmentation is fast (<30 minutes total scan and post-processing time), noninvasive, 

repeatable and cost effective.
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Introduction

Quantifying the amount, type and distribution of adipose and lean soft tissue is critical to 

understanding not only the pathological roles of these tissues in the metabolic consequences 

of obesity but also the metabolic benefits of dietary, pharmacological and surgical weight 

loss interventions (1, 2). While more sophisticated methods for body composition analysis 

would be applicable to numerous research questions, our research interests are focused on 

obesity in women as adipose tissue distribution and its metabolic consequences are quite 

different between women and men. Moreover, as women age, the percentage of body fat and 

amount of visceral adipose tissue (VAT) increases significantly (3). The increasing adiposity 

observed over the life cycle in women is an important factor in the lack of achievement of 

the same successes that have occurred in men with regard to reduced cardiovascular risk 

over the past few decades. It is conceivable that the gaps in the evidence to explain the 

biological underpinnings of cardiometabolic risk may be due to the relative strengths and 

weaknesses of information available from current body composition assessment techniques.

Imaging methods such as dual energy x-ray absorptiometry (DEXA), magnetic resonance 

imaging (MRI) and computed tomography (CT) are considered the most accurate for 

quantifying body composition (4). Because DEXA scanners are widely available, they are 

used most frequently to estimate body composition. However, since DEXA acquires data as 

a two-dimensional coronal projection it does not distinguish type of fat, e.g., VAT versus 

subcutaneous adipose tissue (SAT), and it is not able to discern ectopic fat. Further, it has 

been demonstrated that the error in DEXA derived estimation of total and regional fat mass 

(typically overestimation) increases in proportion to the amount of body fat mass (adiposity) 

and abdominal sagittal thickness (5). In addition, the trunk region typically determined using 

DEXA includes chest, abdomen, pelvis and some gluteal fat, which confounds measures in 

obese women (6). Even with manipulation of the region of interest, DEXA tends to estimate 

intra-abdominal adipose tissue best in nonobese persons (7). With regard to lean soft tissue 

estimation, DEXA has been shown to overestimate skeletal muscle mass, partly due to the 

effects of hydration status (8, 9).

While both CT and MRI provide quantification of tissue volume, MRI is preferred because, 

unlike CT, it does not expose individuals to ionizing radiation. In fact, the potential of MRI 

for assessment of amount, type and distribution of adipose tissue has long been recognized 

(10), although low sensitivity and long scan times have limited widespread usage. In more 
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recent investigations, multi-gradient-echo MRI acquisitions have been used with 1.5 Tesla 

(1.5T) scanners to acquire body composition data sets more quickly than standard MR 

anatomical imaging protocols (11). However, the use of multi-slice MRI methods with large 

inter-slice gaps requires interpolation and geometric assumptions to calculate tissue volumes 

(12). We suggest that such MRI methods could be optimized to sample contiguously almost 

the entire body with no gap between slices, thus, eliminating the necessity to interpolate 

data.

In fact, conventional T1-weighted MRI has been validated for quantification of adipose 

tissue in cadaver studies (13) and used successfully in vivo (10, 12, 14). However, T1-

weighted spin-echo or T1-weighted spoiled gradient-echo scans attempt to discriminate 

adipose tissue versus non-adipose tissues based on signal intensity because the relatively 

short T1 (longitudinal magnetization relaxation rate time constant) of adipose tissue causes 

it to be bright on T1-weighted scans. As other tissues such as blood vessels and bowel 

contents may also appear bright on T1-weighted images, semi-automatic segmentation may 

be necessary to eliminate segmentation errors. In contrast to T1-weighted imaging, MRI-

based chemical shift imaging, termed “fat-water MRI,” is molecule-specific and takes 

advantage of the small but measurable differences in the resonance frequencies of water and 

lipid protons. With this method, high fat content is more specific to adipose tissue than 

obtained with short T1. Fat-water MRI can be used to assess body tissues with a three-

dimensional (no gap between slices) multi-gradient-echo MRI pulse sequence. Notably, 

such a contiguous acquisition can be combined with fully automated segmentation of 

adipose and lean soft tissue as well as quantification of abdominal visceral and subcutaneous 

depots (15, 16). Moreover, the ability to use higher magnetic field strength 3 Tesla (3T) 

scanners offers the potential for improved signal-to-noise ratio (SNR) and contrast-to-noise 

ratio (CNR), which can increase spatial resolution and/or reduce scan time (17).

Our overarching hypothesis is that utilization of fat-water MRI (FWMRI) to identify and 

quantify adipose and lean soft tissue will provide superior body composition information 

beyond what can be acquired from current imaging methods. As a critical first step, in this 

study we determined the precision of FWMRI in a manner similar to that recently reported 

for other novel magnetic resonance approaches (18). Thus, we rigorously compared repeated 

measurements of adipose and lean soft tissue in obese women acquired by FWMRI to 

comparable regions acquired by DEXA, the most frequently used imaging tool for 

assessment of body composition.

Methods

Subjects

Twelve women with BMI 30–39.9 kg/m2 who were newly enrolled in a clinical trial for 

weight loss were recruited to have FWMRI and DEXA scans prior to initiation of a 

calorically restricted diet. All subjects provided written informed consent and the study was 

approved by the Vanderbilt University Institutional Review Board. Subjects had no history 

of cancer, diabetes, cardiovascular, liver or kidney disease; no weight change of greater than 

2.3 kg within 3 months; no metal implants or other contraindications for MRI; and tested 

negative for pregnancy immediately prior to scanning. Acquisition of anthropometry, DEXA 
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and FWMRI data from each subject was obtained at the Vanderbilt Clinical Research Center 

(CRC) and the Vanderbilt University Institute of Imaging Science (VUIIS) within a four-

hour interval in the morning. Subjects had been instructed to avoid alcohol, excessive 

caffeine intake, and physical activity for 24 hours prior to study visits, and to fast from 

9:00pm until arrival at 7:00am. Subjects remained in the fasted state and emptied their 

bladders prior to all scans.

Anthropometry

Subjects’ height was obtained without shoes to the nearest 0.1 cm on a wall-mounted 

stadiometer, and weight was measured while wearing medical scrubs on a digital platform 

scale to the nearest 0.1 kg. Waist and hip circumferences (± 0.1 cm) were measured by 

positioning a flexible measuring tape above the right iliac crest and at the full extension of 

the buttocks, respectively. Two derivative indices of adiposity, body mass index (BMI) from 

dividing weight by height squared and body adiposity index (BAI) from dividing hip 

circumference by height squared (19) were calculated from the anthropometric data.

Dual Energy X-Ray Absorptiometry

DEXA measurements were acquired by a certified densitometrist using a Lunar iDXA 

whole-body scanner (GE Healthcare, Madison WI). Analysis of DEXA images was 

performed using enCORE 2007 software version 11.40.004. Prior to image acquisitions, 

total body phantom calibration was performed according to manufacturer procedures. 

Subjects removed all extraneous personal items that would interfere with the accuracy of 

DEXA results. No subjects had body width that exceeded the dimensions of the scanner 

window. Scan time ranged from 6.5 – 12.5 minutes depending on DEXA-calculated 

abdominal sagittal thickness (20).

Fat-Water Magnetic Resonance Imaging

Subjects were scanned on a Philips Achieva 3T scanner (Philips Healthcare, Best, 

Netherlands) equipped with a dual gradient set capable of 40 mT/m peak strength and 200 

mT/m/ms peak slew rate in the serial operation mode. A table-top extender was used to 

extend the stroke of the patient couch in the head-to-foot direction to enable an increased 

FOV length to 1.632 meters (approximately 5 feet 4 inches) in the superior-inferior 

direction. Subjects entered the MRI scanner feet first in the supine position with arms bent 

above the head using pillow and table supports. To monitor respiratory activity and breath-

hold compliance, an air-filled bellows was placed on the subject’s abdomen with a Velcro® 

strap. Breath-holds were performed for 15 seconds each at table positions from the shoulders 

to the waist.

The integrated quadrature body coil (QBC) was used for transmit and receive of MRI 

sequences. The multi-station protocol included 17 table positions. Each of the 17 stacks 

comprised a multi-slice, multi-gradient-echo (known as multiple fast field echo or mFFE) 

acquisition with twelve 8 mm slices with slice gap set to zero. Other acquisition details 

included repetition time (TR) = 75 ms; echo times (TE) of TE1/TE2/TE3 (ms) = 

1.34/2.87/4.40; flip angle (FA) = 20°; water fat shift (WFS) = 0.325 pixels; readout 

sampling bandwidth (BW) = 1335.5 Hz/pixel; axial in-plane field of view (FOV) = 500 mm 
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× 390 mm; acquired in-plane matrix size = 252 × 195; and acquired voxel size = 2 mm × 2 

mm× 8 mm. Automated linear shimming was performed for each slice stack. Flyback 

gradients were employed between echoes so that the chemical shift direction for all echo 

readouts was the same. Data acquisition time averaged 4 minutes and 16 seconds with 

approximately 5 additional minutes for table movement, preparation phases at each table 

position, and breath-holding pauses. Subjects’ total time in the scanner including subject 

positioning, scout imaging and image planning was 20–25 minutes.

Regions of Interest

From DEXA and FWMRI acquisitions, we report four tissue compartments: gross body 

adipose tissue (GBAT), total trunk adipose tissue (TTAT), gross body lean soft tissue 

(TLST) and total trunk lean soft tissue (TTLT). With FWMRI, GBAT and GBLST included 

all tissue visible in the scanner FOV. We also report SAT and VAT from FWMRI. We 

manually customized the DEXA trunk region of interest (ROI) to match the upper and lower 

anatomical boundaries of the visceral region delineated by the automated MR image 

segmentation algorithm, which defined the abdominal subvolume as extending from the 

base of the lungs to the femoral heads. Figure 1 displays the coronal DEXA image (on the 

left) and 1st echo maximum intensity projection from the FWMRI acquisition (on the right) 

for subject #1. The DEXA ROI in the head-to-foot direction was manually set to match the 

abdominal subvolume identified by the FWMRI segmentation algorithm by placing a rostral 

horizontal line at the lower base of the lung and a caudal horizontal line at the top of the 

femoral head. The left-to-right boundaries of the ROI were adjusted to exclude as much of 

the arms as possible.

Fat-Water Magnetic Resonance Imaging Processing

Complex (real and imaginary) images for each of the acquired three echo times were 

reconstructed and exported in Digital Imaging and Communications in Medicine (DICOM) 

standard format for off-line processing. Separation of water and fat signal requires 

knowledge of the main magnetic field map, and essentially all water/fat separation 

algorithms rely on an assumption of spatial smoothness of the main magnetic field. Water 

and fat images were reconstructed using a recently published algorithm by Berglund et al. 

(21) in which fat and water signal components were found by least squares fitting (22) after 

resolving the magnetic field map using a 3D multiple seed-point region growing algorithm 

with a dynamic path sensitive to field inhomogeneity, solving regions of homogeneous 

magnetic field before inhomogeneous or noisy regions. Berglund’s 3-point Dixon algorithm, 

which directly finds two analytical solutions for the background static field phasor term, is 

valid as long as the echo spacing between the 1st and 2nd echoes matches the spacing 

between the 2nd and 3rd echo. When applied to whole-body 3D data sets acquired at 1.5T, 

the method was found by two blinded radiologists to have the best image quality (in terms of 

fat water “swaps”) compared to two reference methods: an advanced version of the 

“iterative decomposition of water and fat with echo asymmetric and least-squares 

estimation” IDEAL approach (23) as well as a multi-resolution golden section search 

(MRGS) method (24). The employed fat-water separation algorithm used a multi-peak 

model with nine peaks set with fixed spectral locations and relative amplitudes. Values of 

the chemical shifts and of the relative amplitudes were taken from a liver spectroscopy study 
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of 121 human subjects (25). The reconstructed fat and water image volumes were input into 

a fully automated segmentation algorithm (16) that first localized the abdominal subvolume 

and then separated VAT from SAT within the identified abdominal subvolume. Lean soft 

tissue was quantified by measuring the total volume of the voxels with fat signal fractions 

below 50%. Adipose and lean soft tissue volumes were multiplied by published density 

values of 0.923 kg/L and 1.05 kg/L, respectively, to convert volume to mass (kg) (13, 26). 

Typical post-processing times for the fat-water separation and automated segmentation 

algorithms were two and three minutes respectively for the size of image files in this study. 

Figure 2 presents a single coronal slice (top left), single sagittal slice (top middle), a 

montage of 20 axial slices (top right), and a histogram of fat signal percentage for all voxels 

in the 3D MRI fat volume of subject #5. As seen in these images, VAT is displayed in red. 

Across the axial slices, the identified VAT voxels are spatially consistent and are not 

contaminated by SAT or other voxels. Importantly, the algorithm is designed to 

automatically exclude bone marrow and intramuscular adipose tissue in the area of the 

spine, which would confound adipose tissue measures. On the scale of fat signal percentage 

in the displayed histogram, two distinct populations of voxels are discernable. The 

populations are widely separated with long tails. Applying the well-known Otsu method (27) 

to determine an optimal threshold that simultaneously minimizes intraclass variance and 

maximizes interclass variance yields an optimal threshold of 49.8% for this example data to 

distinguish the fatty and lean voxels which is very close to the employed threshold of 50%.

Statistical Analysis

Statistical analyses were conducted using SPSS version 19.0 (IBM Corp., Armonk, NY) and 

MATLAB version 7.10.0.499 R2010a (MathWorks Inc., Natick, MA) with the level of 

significance set at α = 0.05. Data are presented as mean ± standard deviation (sd). As values 

were not normally distributed, Wilcoxon signed-rank tests were performed to assess the 

significance of the observed differences between DEXA and FWMRI for TAT, TTAT, 

TLST, and TTLST. Percent differences were calculated as (FWMRI − DEXA)/DEXA × 

100%.

Coefficient of Variation

To determine the precision of DEXA and FWMRI methods, we performed test-retest 

measurements and then calculated coefficients of variation (CV) for the tissue masses 

estimated by each modality. CV was determined from the square root of the mean within-

group variance of a one-way ANOVA (with each subject as a group) divided by the grand 

mean (28), and multiplied by 100 to express CV as a percentage. Thereafter, all analyses 

were performed using the averaged value of the test-retest data. As complete retest FWMRI 

scans were not available for subjects #5 and #7, FWMRI values for these subjects represent 

one measurement only and they were excluded in CV analysis.

Correlation Coefficients

The concordance correlation coefficient (ρc), often used in comparing quantitative methods, 

measures accuracy by determining how much the linear relationship between two variables 

deviates from the line of concordance and precision by how far each observation deviates 
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from the fitted line (29). The more commonly known Pearson correlation coefficient (ρr) is 

related to ρc via the bias correction factor (Cb), which is a ratio of the two coefficients (ρc/ρr) 

(30). The value of Cb is within the range of 0 to 1, and thus, measures how far the best-fit 

line deviates from the 45° line (accuracy). Only using the Pearson correlation coefficient 

would measure how far each observation deviates from the best-fit line (precision) but not 

accuracy. Here we report ρc, bias correction factors and asymptotic 95% confidence 

intervals for ρc. Spearman’s Rho correlation coefficients (ρs) were also calculated to identify 

any monotonic relationships between adipose and lean soft tissue discrepancies (difference 

between DEXA and FWMRI) with anthropometric measures.

Bland-Altman Analysis

The Bland–Altman method (31) was used to assess the limits of agreement (mean difference 

± 1.96 sd of the difference) between DEXA and FWMRI measures. As such the difference 

between the methods (y-axis) was plotted against the mean of the methods (x-axis). Linear 

dependence trends in the Bland-Altman plots were calculated using a least squares fit to a 

first order polynomial. The coefficient of determination (r2) and significance level of each 

linear fit were also calculated.

Results

Descriptive characteristics of the twelve female subjects are presented in Table 1. Five of the 

women self-identified as Caucasian and seven as African American, but no significant 

differences were detected by ethnicity. Subjects had an average BMI of 34.3 ± 2.8 kg/m2 

and an average BAI 39.5 ± 4.8 % indicating Class I obesity.

Average adipose and lean soft tissue masses measured by DEXA and FWMRI are presented 

in Table 2 for each subject. For adipose tissue, mean GBAT was 39.9 ± 7.5 kg by FWMRI 

and 39.8 ± 6.9 kg by DEXA, and mean TTAT was 14.0 ± 3.4 kg by FWMRI and 15.7 ± 3.5 

kg by DEXA. The mean FWMRI measurements for SAT and VAT were 11.6 ± 2.6 kg and 

2.1 ± 1.0 kg, respectively. For lean soft tissue, mean GBLST was 39.8 ± 5.4 kg by FWMRI 

and 45.8 ± 7.3 kg by DEXA, and mean TTLST was 11.9 ± 1.7 kg by FWMRI and 15.1 ± 2.7 

kg by DEXA.

Coefficient of Variation

CVs for GBAT, TTAT, GBLST and TTLST are presented and show that reproducibility 

measurements were < 3% for DEXA and FWMRI (Table 2). For DEXA, CVs were 0.58%, 

1.35%, 0.42% and 1.02%, for GBAT, TTAT, GBLST and TTLST, respectively. For 

FWMRI, CVs were 0.80%, 2.08%, 0.60% and 2.43%, respectively. The CVs for FWMRI 

quantification of SAT and VAT were 2.11% and 2.62%, respectively.

Comparison of Tissue Masses

Concordance correlation coefficients, coefficients of bias, and mean differences between 

FWMRI and DEXA are presented in Table 3. None of the 95% confidence intervals include 

zero, indicating statistically significant correlations between FWMRI and DEXA for GBAT, 

TTAT, GBLST and TTLST. The strength of the concordance correlation was highest for 
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GBAT with ρc=0.978 (0.923, 0.994) and Cb=0.996 (ρr=0.982, p < 0.0001). A Wilcoxon 

signed-rank test also showed no significant difference (0.1 ± 1.5 kg, p = 0.75) between 

FWMRI and DEXA measures for GBAT. However, concordance correlations for TTAT, 

GBLST and TTLST showed negative biases toward FWMRI. Correlation between FWMRI 

and DEXA for TTAT was ρc=0.802 (0.468, 0.935) and Cb=0.884 (ρr=0.907, p < 0.0001), 

but a Wilcoxon signed-rank test revealed a significant bias of −1.7 ± 1.5 kg (−10.4 ± 9.1%, p 

= 0.008).

Concordance correlation of GBLST was ρc=0.629 (0.324, 0.816) and Cb=0.646 (ρr=0.974, p 

< 0.0001), and a Wilcoxon signed-rank test showed a significant bias of −6.0 ± 2.4 kg 

(−12.8 ± 3.8%, p = 0.003). Concordance correlation of TTLST was the lowest of the 

compared tissue masses with ρc=0.400 (0.120, 0.620) and Cb=0.423 (ρr=0.944, p < 0.0001). 

A Wilcoxon signed-rank test confirmed a significant bias of −3.2 ± 1.2 kg (−20.9 ± 5.2%, p 

= 0.003).

Bland-Altman Analysis

Bland-Altman plots for GBAT and TTAT (Figure 3) show good agreement between 

FWMRI and DEXA with the limits of agreement for GBAT from −2.8 kg to +3.1 kg and for 

TTAT from −4.6 kg to +1.2 kg. These ranges include zero and linear regression of the 

method difference against method average showed no statistically significant trend with r2 = 

0.17 (p = 0.18) for GBAT and r2 = 0.00 (p = 0.92) for TTAT.

Bland-Altman plots for GBLST and TTLST (Figure 4) indicate there is less agreement 

between FWMRI and DEXA for lean soft tissue than for adipose tissue. Neither the limits of 

agreement for GBLST (−10.8 kg to −1.3 kg) or TTLST (−5.6 kg to −0.9 kg) include zero. 

The lean soft tissue plots reveal an increasing negative bias in the FWMRI minus DEXA 

difference with increasing lean soft tissue mass. Linear regression of the method difference 

against method average confirmed that this trend was statistically significant for GBLST (r2 

= 0.66, p = 0.0013) and TTLST (r2 = 0.67, p = 0.0011).

FWMRI versus DEXA Differences

No anthropometric measures or derived values (BMI and BAI) were significantly correlated 

with the difference between FWMRI and DEXA for TTAT. Waist circumference, hip 

circumference and BMI were also not significantly correlated with the differences observed 

in GBLST or TTLST. However, as presented in Figure 5, the differences between FWMRI 

and DEXA for GBLST and TTLST were significantly correlated with subject height (ρs = 

−0.811 and ρs = −0.790), weight (ρs = −0.895 and ρs = −0.832) and abdominal sagittal 

thickness (ρs = −0.804 and ρs = −0.601). Additionally, BAI was correlated with TTLST 

difference (ρs = 0.608, p = 0.004).

Discussion

The key finding from this study is demonstration that the precision of the implemented 

contiguous 3D fat-water MR imaging technique at 3 Tesla makes it a compelling alternative 

to DEXA for quantifying body composition in obesity primarily because this method offers 

the important advantage of quantifying VAT and SAT. As recent MR imaging body 
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composition studies have reported findings from adipose tissue mass only (16, 32), the 

present study further extends the evidence by presenting data on lean soft tissue mass which 

is an important determinant of insulin sensitivity and has a critical role in the 

pathophysiology of many disease processes including obesity-associated sarcopenia and 

cachectic syndromes.

The coefficient of variation for repeated measurements using FWMRI in obese women was 

less than 1% for GBAT and GBLST. Confirming the excellent precision of the FWMRI 

method, the CVs for GBAT and GBLST were comparable to those of DEXA (less than 

0.6%). Additionally, FWMRI CVs for trunk adipose tissue (TTAT) and trunk lean soft 

tissue (TTLST) were less than 2.5%, and CVs for SAT and VAT were less than 2.7%. Our 

findings demonstrate greater precision for FWMRI at 3T than those previously reported at 

1.5T where GBAT CV was 2.32% and TTAT CV was 2.25% (16). We observed slightly 

less precision in the CVs for FWMRI trunk tissues compared to DEXA where TTAT and 

TTLST CVs were less than 1.4%. We found no published reports comparing the 

reproducibility of FWMRI for GBLST or TTLST.

Consistent with the overall precision, we found that FWMRI measures of GBAT in these 

obese women correlated strongly with DEXA (ρc=0.978). However, it appeared that 

FWMRI underestimated TTAT. Kullberg et al (32) have previously reported that FWMRI at 

1.5T underestimated VAT when compared to computed tomography and suggest that 

abdominal soft tissue motion and partial volume effects may contribute to VAT signal loss. 

Similar effects may explain the lower TTAT measured by FWMRI in this study. Partial 

volume effects are a potential confounding factor in general for the thresholded adipose 

tissue segmentation approach applied in this study while being less of a concern for fat 

signal fraction integration approaches. However, a number of known confounding factors 

(RF transmit and receive inhomogeneity, T1 relaxation, T2* relaxation, eddy currents, noise 

bias, multiple fat resonances) must be addressed for the signal fat fraction to accurately 

reflect the true proton density fat fraction. Another confounding factor arises from 

intramuscular adipose tissue included in the VAT volume. The automated segmentation 

algorithm (16) excludes bone marrow and intramuscular adipose tissue in the abdominal 

subvolume in the region of the spine and back. However, the exclusion of intramuscular 

tissue throughout the abdomen is not perfect, as is visible in some axial sections displayed in 

Figure 2, and is a focus of ongoing development.

Though correlations between FWMRI and DEXA estimates of lean soft tissue were strong 

for GBLST and TTLST regions, our findings indicate a significant difference between the 

two methods that increased in magnitude with taller, heavier and thicker subjects. As the 

women in the present study ranged in height from 149.9 to 177.8 cm, some extremity tissue 

was excluded from the FWMRI field of view, which was limited to a maximum of 163.2 

cm.. Thus, the discrepancy in GBLST is accounted for by missing the most distal portions of 

the head, feet, hands and forearms (which were bent directly overhead) We recognize that 

tissue not captured within the FWMRI FOV is a primary source of error in the FWMRI 

quantification. However, future studies can address this shortcoming by matching overhead 

arm position for DEXA and FWMRI prior to comparison and by software modifications to 

increase scanning coverage in the head-to-foot direction. Another limitation of the current 
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quantification method is the use of a binary, all-or-none, classification of FWMRI voxels as 

either water (lean soft tissue) or fat (adipose tissue). Once confounding factors such as 

transmit and receive RF field inhomogeneity and T1 bias are better-compensated, more 

accurate estimates of fat volume (and mass) could be obtained using the fractional fat signal 

percentage in each FWMRI voxel.

However, incomplete coverage of the extremities does not explain the difference in TTLST 

observed between FWMRI and DEXA because the entire trunk region was well sampled in 

the FWMRI FOV. The bias between FWMRI and DEXA in TTLST, may be explained by 

overestimation of lean soft tissue by DEXA. Such overestimation has been observed in 

several prior studies and attributed to assumptions in DEXA algorithms for estimating 

appendicular skeletal muscle (8, 9). It must also be recognized that direct comparison of soft 

tissue measured by FWMRI and DEXA methods is limited by the fact that FWMRI 

measures tissue volume, which must be converted to mass by using assumed densities for 

soft tissue (33). Unfortunately, comparison between FWMRI and CT was contraindicated in 

the present study because of the need for performing repeated measures to determine 

repeatability and the substantial concern with CT-associated radiation exposure.

Although MRI scanning time has been perceived to be an impediment to widespread use of 

MRI in the past, the FWMRI scan time in this study was comparable to that of DEXA 

acquisition. Other faster variations of multi-echo DIXON methods different from the three-

echo method employed in this study are available. For example, a two-echo method has the 

advantage of shorter acquisition time, but acquiring three echoes improves identification of 

the water and fat components, which simplifies signal separation. Acquiring more than three 

echoes enables additional unknowns such as T2* to be numerically fit, but the acquisition of 

more echoes increases scan time or requires a reduction in spatial resolution. The FWMRI 

scan time can be further accelerated using parallel imaging methods such as sensitivity 

encoding (SENSE) which requires an array of multiple receive-only radio frequency (RF) 

surface coils (34). Scan time could also be reduced with a continuously moving table 

strategy (16) or by using a data sampling acceleration strategy combined with an advanced 

image reconstruction approach such as compressive sampling (35).

In the present study, the absence of surface RF coils maximized subject comfort, 

compatibility with larger subjects, and simplified the multiple table-station scanning 

approach. Importantly, the current speed of FWMRI acquisition makes it as affordable as 

DEXA in research and clinical settings. For example, at our institution the charge for the 30-

minute time slot required to complete a FWMRI scan on the research 3T MR scanner is 

equivalent to the charge for a 30-minute DEXA time slot. It is also noteworthy that FWMRI 

in the present study was performed on a clinical scanner, which clearly increases the 

potential for widespread utilization of this method. Yet, we acknowledge that MRI scanning 

at 3T presents increased challenges related to static magnetic field (B0) and RF transmit 

field (B1) inhomogeneity (17) which can cause geometric distortion, signal loss and signal 

intensity inhomogeneity that can confound accurate fat and water separation as well as 

increase error in volume measurements. In cases where static magnetic field (B0) 

homogeneity becomes problematic, alternative shimming strategies such as slice-wise 
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dynamic shimming can be pursued (36). Challenges related to RF transmit field (B1) 

inhomogeneity that may arise could be addressed by a parallel RF transmit 3T scanner (37).

In conclusion, we have demonstrated that gross body FWMRI imaging performed at 3T is 

rapid, precise, repeatable and potentially cost effective. In the obese women studied, 

FWMRI had excellent concordance with DEXA for the measurement of gross body adipose 

tissue. Moreover, because FWMRI data is three-dimensional and reliably divides the MR 

signal into separate fat and water components, this method is able to go advance the study of 

body composition and distinguish adipose tissue topography to quantify visceral and 

subcutaneous abdominal tissue depots. While recent reports on quantifying body 

composition using magnetic resonance spectroscopy (quantitative magnetic resonance) also 

show great promise with regard to sensitivity and specificity for certain applications (18, 

38), such spectroscopy-based approaches provide little or no information about the spatial 

distribution of adipose and lean soft tissue. In addition, the chemical-shift-based separation 

of fat and water signals employed in the FWMRI approach described is more advanced than 

MRI fat quantification approaches that are based on standard relaxation contrast 

mechanisms, which are not amenable to automated segmentation and quantification 

algorithms (39). Importantly, future applications of the FWMRI method described will also 

allow quantification of ectopic fat (ie, intermuscular adipose tissue and lipid burden within 

organs such as the liver, pancreas and heart) (40). Finally, when compared to DEXA and 

other non-MR methods (ie, computed tomography), FWMRI is prudent because it requires 

no exposure to ionizing radiation. Thus, it can be used safely in children and in longitudinal 

studies that require serial measurements to capture changes in body composition. Hence, the 

implementation of a 3T multi-station multi-gradient-echo based fat-water imaging method 

described in this work combined with a fully-automated post-processing algorithm is 

currently being applied to investigate physiological and metabolic mechanisms that lead to 

the development of obesity and its metabolic consequences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Coronal DEXA image (left) and 1st echo maximum intensity projection from the FWMRI 

acquisition (right) for subject #1. The blue trapezoidal region of interest on the DEXA image 

was drawn to exclude as much of the arms as possible and is used for reporting the DEXA 

trunk (abdominal) adipose and lean soft tissue masses to compare to the FWMRI trunk 

measurements. The identified VAT output from the automated FWMRI segmentation 

algorithm is displayed in red.
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Figure 2. 
Coronal cross section (top left), sagittal cross section (top middle) and axial 20-slice 

montage (top right) from the FWMRI acquisition showing the visceral adipose tissue 

segmentation (red) superimposed on the fat image for subject #5. The images show how the 

VAT segmentation algorithm successfully excludes subcutaneous fat as well as the bone 

marrow and intramuscular adipose tissue around the spine. The histogram of fat signal 

percentage in the entire 3D image volume (bottom) shows two distinct populations of fatty 

and lean soft tissue. For the automated segmentation algorithm, any voxel with a fat signal 

percentage greater than 50% was considered to be fat. After excluding background voxels, 

applying Otsu’s method (27) yields an optimal threshold level of 49.8% to separate the two 

voxel populations.
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Figure 3. 
Bland-Altman plots and fitted linear trends of mean versus difference between FWMRI and 

DEXA measurements for GBAT (left) and TTAT (right). The GBAT difference shows 

negligible bias and an insignificant linear trend. The agreement for total trunk adipose tissue 

demonstrates a small negative bias toward FWMRI underestimation. However, the zero 

difference line for TTAT is still within the displayed 95% confidence interval boundaries, 

and the TTAT differences show no significant linear trend.
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Figure 4. 
Bland-Altman plots and fitted linear trends of mean versus difference between FWMRI and 

DEXA measurements for GBLST (left) and TTLST (right). Differences between the 

methods reveal a significant negative bias for FWMRI and a significant linear trend for 

GBLST and TTLST. Thus, the discordance increases as GBLST and TTLST increases.
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Figure 5. 
Scatter plots and fitted linear trends of anthropometric variables (height, weight and DEXA-

derived abdominal sagittal thickness), which correlated significantly with the observed 

difference between FWMRI and DEXA for GBLST and TTLST.
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Table 1

Demographic characteristics of female subjects (N = 12).

Mean ± 33 Range

Age (years) 36.7 ± 9.0 21.7 – 48.0

Height (cm) 160.2 ± 7.9 149.9 – 177.8

Weight (kg) 88.4 ± 12.1 65.1 – 110.2

Waist circumference (cm) 98.1 ± 7.6 80.0 – 107.5

Hip circumference (cm) 116.2 ± 8.4 104.0 – 135.5

Abdominal sagittal thickness (cm)a 14.3 ± 1.0 12.0 – 15.9

BMI (kg/m2)b 34.3 ± 2.8 30.0 – 38.2

BAI (%)c 39.5 ± 4.8 29.0 – 46.7

a
DEXA-derived measure defined as anterior-posterior soft tissue thickness

b
BMI = (weight [kg])/(height [m])2

c
BAI = ((hip circumference [cm])/(height [m])1.5) − 18
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Table 3

Correlations and differences between FWMRI and DEXA adipose and lean soft tissue masses.

Tissue Depota
Concordance Correlation Coefficient (95% 

CI) Coefficient of Biasb Differencec (kg)d Percentage Difference

GBAT 0.978 (0.923, 0.994) 0.996 0.1 ± 1.5 (P = 0.75) 0.2% ± 4.0%

TTAT 0.802 (0.468, 0.935) 0.884 −1.7 ± 1.5 (P = 0.008) −10.4% ± 9.1%

GBLST 0.629 (0.324, 0.816) 0.646 −6.0 ± 2.4 (P = 0.003) −12.8% ± 3.8%

TTLST 0.400 (0.120, 0.620) 0.423 −3.2 ± 1.2 (P = 0.003) −20.9% ± 5.2%

a
GBAT = gross body adipose tissue, TTAT = total trunk adipose tissue, GBLST = gross body lean soft tissue, TTLST = total trunk lean soft tissue.

b
Cb = ρc/ρr (ratio of concordance correlation coefficient to Pearson correlation coefficient)

c
FWMRI – DEXA

d
Wilcoxon signed-rank test was used to assess significance of the differences.
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