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Abstract

Recent researches revealed object detection networks using the simple “classification loss

+ localization loss” training objective are not effectively optimized in many cases, while pro-

viding additional constraints on network features could effectively improve object detection

quality. Specifically, some works used constraints on training sample relations to success-

fully learn discriminative network features. Based on these observations, we propose Struc-

tural Constraint for improving object detection quality. Structural constraint supervises

feature learning in classification and localization network branches with Fisher Loss and

Equi-proportion Loss respectively, by requiring feature similarities of training sample pairs to

be consistent with corresponding ground truth label similarities. Structural constraint could

be applied to all object detection network architectures with the assist of our Proxy Feature

design. Our experiment results showed that structural constraint mechanism is able to opti-

mize object class instances’ distribution in network feature space, and consequently detec-

tion results. Evaluations on MSCOCO2017 and KITTI datasets showed that our structural

constraint mechanism is able to assist baseline networks to outperform modern counterpart

detectors in terms of object detection quality.

1 Introduction

Object detection is a fundamental computer vision technology with a broad range of applica-

tion scenarios, such as autonomous driving. It’s a compound task of object classification and

localization. Modern object detectors are trained by matching their detection results with

ground truth labels, and then minimizing the loss measuring the differences of these label-pre-

diction matches. Each match’s loss is constituted with two terms, measuring classification

error and localization error respectively. The complete loss is the sum of the two terms of all

matches. In such a loss, each detection result is evaluated independently and only required to

fit to the matched ground truth label. Though this loss form is simple, recent researches

revealed that object detection networks could not be effectively trained by directly minimizing

such a loss in many cases [1], while some researches showed that object detection quality could

be effectively improved with additional constraints on intermediate network features [2]. Spe-

cifically, recent researches on network-based clustering [3] showed that feature learning could
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be effectively guided for the benefit of the main task, under constraints on mutual relations

between training samples. This indicates it’s possible to optimize object class distributions in

network feature space for the benefit of object recognition. Thus, it’s reasonable to expect

object detection quality improvement by complementing the basic loss form of modern detec-

tors with additional constraints on training sample relations in intermediate feature space.

This work presents a training-sample-relation-based constraint on object detection net-

work training for improving detection quality. We name these Structural Constraints, because

these constraints exert influence on the structure of training sample distribution in object

detection network feature space (as is shown later in Fig 3). Structural constraints append two

terms to the basic loss, Fisher Loss and Equi-proportion Loss, for constraining the relations of

training samples in classification branch space and localization branch space respectively. For

an arbitrary pair of training samples, Fisher loss measures the difference between pairwise

sample feature similarity and pairwise classification target similarity, while equi-proportion

loss measures the difference between pairwise sample feature similarity and pairwise localiza-

tion target similarity. Thus, under the constraint of these two terms, training sample feature

distributions in classification branch and localization branch more resemble ground truth

label distributions. As a result, features of these network branches could be more easily trans-

formed to accurate detection results. Structural constraints could be applied to object detection

networks of various architectures, like single-stage, two-stage and multi-stage networks, with-

out changing the original network structures or influencing detection rates. In our experi-

ments, we evaluated structural constraints’ effect on representative object detection networks

of various architectures on different image datasets. These experiment results demonstrated

that structural constraints could improve object detection quality noticeably on a broad range

of detectors.

To summarize, novel contributions of this work are:

• proposing Fisher loss function as part of structural constraints to constrain training sample

feature relations for improving classification performance of object detection networks;

• proposing equi-proportion loss function as part of structural constraints to constrain train-

ing sample feature relations for improving localization performance;

• a mechanism for applying structural constraints to various object detection network

architectures.

The rest of this paper is organized as follows: Section 2 reviews related works, Section 3

describes in detail structural constraint and the mechanism of applying it to networks, Section

4 presents our experiment results and analysis, and finally Section 5 concludes this work.

2 Related works

In this section, we review some previous works closely related to structural constraints pro-

posed in this work, and we confine the scope to works based on neural networks. At first, we

review some deep learning models for image recognition with feature learning constraints;

then, we review representative object detection networks of various architectures.

2.1 Feature learning constraints

Feature learning constraints are widely adopted in deep-learning-based image recognition

domain. Some works on object detection use feature learning constraints to improve object

detection quality. RIFD-CNN [2] used two types of constraints on its network’s intermediate

layer features, one for rotation invariance and one for Fisher discrimination. Its rotation

PLOS ONE Improving object detection quality with structural constraints

PLOS ONE | https://doi.org/10.1371/journal.pone.0267863 May 18, 2022 2 / 17

https://www.kaggle.com/zihaorong/kitti-in-voc-

format.

Funding: This study was funded by the National

Natural Science Foundation of China (https://www.

nsfc.gov.cn) in the form of a grant [62172022] and

by the Beijing Natural Science Foundation in the

form of funds to DK. This study was also funded by

the National Natural Science Foundation of China in

the form of grants to BY [U1811463, U19B2039].

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0267863
https://www.kaggle.com/zihaorong/kitti-in-voc-format
https://www.kaggle.com/zihaorong/kitti-in-voc-format
https://www.nsfc.gov.cn
https://www.nsfc.gov.cn


invariance constraint requires the intermediate feature representation of each training sample

image to be similar to the average intermediate feature representation of the rotated versions

of the image, so the subsequent classification based on this type of features will be robust

against influence of object rotation. Its Fisher discrimination constraint requires each class’s

training sample intermediate features to lie close to the mean of the class, and each class’s

mean feature to lie distant from the global mean of all classes, so the subsequent classification

layer could easily and accurately separate the classes from each other. Using these two con-

straints, RIFD-CNN achieved significant object detection accuracy improvement.

DETR [4] is another object detection network using feature learning constraints. DETR uses

transformer to process feature maps from its backbone into detection results. Its transformer’s

encoder consists of multiple layers of attention mechanism, and the detection results are pro-

duced by the last attention mechanism layer. However, other attention mechanism layers’ inter-

mediate features are also required to be transformed into accurate detection results through the

same detection head shared with the last layer. This deep supervision is in essence a type of fea-

ture learning constraint: the supervision on the intermediate attention mechanism layers con-

strains their output features to facilitate the subsequent inference for better detection accuracy.

Feature learning constraints have also been used to solve image clustering problems. Deep

Self-evolution Clustering (DSEC) [3] network and Deep Adaptive Clustering (DAC) [5] net-

work constrain their output features’ pairwise relationships to make these features directly

express cluster identities. These clustering networks’ constraints require the dot products of

aribitrary pairs of output features to be close to corresponding pseudo labels. These pseudo

labels reflect cosine similarities of the feature pairs. As a result, the training of these networks

under this type of constraints gradually makes the output features to be one-hot vectors which

express cluster identities directly. Factually, this type of constraints on pairwise feature rela-

tionships are the only content in these two clustering networks’ training objective functions.

Compared with the feature learning constraints in the works described above, structural

constraints in this work exhibit both similarity and difference. Like RIFD-CNN, structural

constraints are applied over intermediate layer features of object detection networks; like

DSEC and DAC, structural constraints are based on pairwise training sample feature relations.

However, the combination of these two characteristics is absent in all these works. Besides, as

constraints for object detection networks, RIFD-CNN’s constraints are applied for classifica-

tion merely, while structural constraints are applied for both classification and localization.

Furthermore, RIFD-CNN did not constrain inter-class training sample relations, while our

structural constraints’ Fisher loss constrains both inter- and intra-class relations over all train-

ing sample pairs.

2.2 Object detection network architectures

Until now, object detection networks exhibited two types of architectures: networks generating

detections in a single stage, and networks generating detections through several stages of

refinements. We review these architectures below.

2.2.1 Single-stage object detection networks. Single-stage object detection networks

transform input images’ backbone feature maps into detection results directly, through a single

detection head. SSD [6] is the forerunner of this architecture. It scatters boxes of various sizes

and aspect ratios over input images’ feature maps and infers classes and adjustments for these

boxes to form detection results. Detection results across feature map pyramid levels are synthe-

sized to infer final detection results. The boxes initially scattered are then known as anchors.
YOLO [7] is another single-stage detection network that is fast at inference. It additionally

infers a confidence value for each bounding box, which represents probability of existence of
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objects within the bounding box, and these confidence values participate in the decision of

final detection results. However, YOLO’s detection quality is not satisfying.

RetinaNet [1] is a high-detection-quality single-stage object detection network. It focuses

on dealing with imbalance between foreground and background training samples, which is a

crucial cause of poor detection quality of many other single-stage networks. It proposes Focal

Loss to replace the widely adopted cross entropy loss for classification task. By using focal loss,

RetinaNet is able to allocate more weights on poorly classified hard samples during training,

and make the trained network better generalize to test data.

2.2.2 Object detection networks with several stages. Another kind of object detection

networks are constituted with more than one stage. These networks could be further divided

into two groups according to number of network stages: two-stage networks and multi-stage

(more than two) networks. The first network stage of all these object detection networks are

responsible for generating region proposals, also known as RoIs (regions of interest). Two-

stage networks then refine the region proposals with a detection head to produce final detec-

tion results, while multi-stage networks refine the region proposals with several detection

heads in sequence. We review representatives of these architectures below.

Two-stage object detection networks. Two-stage object detection networks appeared early

among all architectures, and usually produce better detection quality than single-stage net-

works. Faster RCNN [8] is the forerunner of this architecture. Faster RCNN introduced RPN

(Region Proposal Network) upon the basis of Fast RCNN [9]. RPN takes backbone feature

maps as input and inferences RoIs and corresponding confidence values. These RoIs are then

used to extract features from backbone feature maps through RoI pooling operation, and these

features are passed into a fully connected detection head to inference detection results.

R-FCN [10] focuses on accelerating inference rate of Faster RCNN by reducing redundant

computation of detection head. R-FCN’s detection head is constituted with convolutional lay-

ers, and is able to generate a special feature map of which different channels are sensitive to dif-

ferent parts of target objects. Then, RoI pooling over this feature map could easily decide

whether an RoI accurately localizes an object and corresponding class, by filling RoI parts with

features from corresponding channels. Since most necessary computation is done by the con-

volutional detection head and the remaining RoI pooling operations cost only subtle computa-

tion, R-FCN’s inference is time-efficient.

Double-head RCNN [11] is another two-stage network whose second stage is composed of

two detection heads in parallel, one fully connected head and one convolutional head. This

design is based on the observation that fully connected layers are sensitive to spatial complete-

ness of objects, while convolutional layers are robust against occlusion and deformation. Thus

Double-head RCNN uses its fully connected head to infer classification scores which should

reflect localization quality, and uses its convolutional head to infer bounding boxes to better

generalize to various object appearances and influencing contents.

Multi-stage object detection networks. Multi-stage object detection networks extend two-

stage architecture by appending additional detection heads, refining RoIs with more stages of

inferences. Cascade RCNN [12] is a typical multi-stage object detection network. During Cas-

cade RCNN training, each stage’s detection head is trained from detection results of its previ-

ous stage. At inference, each stage’s detection head takes features from RoI pooling based on

its previous stage’s detection boxes, and generates new detection results. The final detection

results take the last stage’s detection head’s output boxes as localization results, and take the

averages of all detection heads’ class scores as classification results. The increased network

stages improved detection quality noticeably, making Cascade RCNN one of the most accurate

object detectors by then.
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Hybrid Task Cascade [13] is a multi-stage network capable of both object detection and

instance segmentation. Hybrid Task Cascade inherited the network structure of Cascade

RCNN, and introduced additional components and links. It introduced a semantic segmenta-

tion convolutional branch to provide helpful inputs to its detection heads and mask heads.

The detection quality of Hybrid Task Cascade is outstanding in multi-stage group, but the

whole of its network is cumbersome.

All representative object detection networks mentioned above and many others lack con-

straints on relationships between training samples in feature spaces, so structural constraints

proposed in this work are able to complement them in this respect. We will show that struc-

tural constraints are applicable to all these architectures through a unified mechanism in next

section.

3 Structural constraint mechanism

In this section, we describe sturctural constraint mechanism for object detection in detail.

Firstly, we explain the motivation of structural constraints. Then, we present the definition of

structural constraints. After these, we describe the mechanism of combining structural con-

straints with object detection networks.

3.1 Motivation

The reason of we proposing structural constraints is based on two observations: first, the lack

of constraints on training sample relationships in modern object detection networks; second,

the importance of feature learning exhibited in many other image recognition tasks. As

described in Section 1, it could be observed that most modern object detection networks’ loss

functions usually have a form like this:
X

i

Lclsðpi; p
gt
i Þ þ Llocðbi; b

gt
i Þ ð1Þ

where Lcls and Lloc are two loss terms for measuring classification error and localization error

respectively. For each match, the difference between the estimated class probability vector pi
and the corresponding ground truth vector pgt

i is calculated by Lcls, and the difference between

the estimated bounding box bi and the corresponding ground truth box bgt
i is measured by

Lloc. Loss functions like this only force each detection result to fit to its matched ground truth.

They are simple in form, but could not be effectively minimized in many cases, since the super-

vision on object classification could be severely influenced by large amount of background

training samples [1]. We observed that additional supervision on one training sample could

come from the other training samples, since one training sample could be represented by its

relative differences from the others. This could be understood by looking at some works on

image clustering, such as DSEC [3], where the clustering network was effectively trained under

the supervision on similarity of each pair of training samples. Thus, structural constraints are

designed to supervise the differences between each pair of sample detections. Because of that

object detection consists of classification and localization, structural constraints use two types

of loss functions to measure sample pairs’ classification differences and localization differ-

ences, namely Fisher loss and equi-proportion loss.

We also observed that proper supervision on object detection networks’ intermediate fea-

tures could effectively improve detection quality. Examples are RIFD-CNN [2]’s rotation

invariance constraint and Fisher discrimination constraint on its backbone’s intermediate lay-

ers, and DETR [4]’s auxiliary supervisions on multiple levels of transformer decoders. Apart

from this, we try to avoid disrupting optimization of the main objective in Eq (1). Thus,
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instead of being applied over object detection networks’ final outputs, structural constraints

are applied over the networks’ intermediate features to guide the feature learning.

3.2 Definition

Structural constraints take training samples’ intermediate features as input. To supervise train-

ing samples’ relations during classification and localization, structural constraints use Fisher

loss and equi-proportion loss to constrain pairwise feature differences respectively. These

losses in structural constraints and the basic object detection objective in Eq (1) altogether

form the new training objective.

Fisher loss in structural constraints calculates the similarity between an arbitrary pair of

intermediate features of training samples, and supervises this with the corresponding pair of

class labels’ similarity. It’s expressed as:

LFisherðfi; fj; p
gt
i ; p

gt
j Þ ¼ ½sðfiÞ � sðfjÞ � pgti � p

gt
j �

2
ð2Þ

where σ(�) is sigmoid function, fi is a transformed intermediate feature vector of training sam-

ple i, and pgt
i 2 ½0; 1�

C
is the corresponding one-hot class label, with C being the number of

object classes. Fisher loss LFisher calculates the similarity between fi and fj, and the similarity

between pgt
i and pgt

j , both in terms of dot production. The squared difference between these

two similarities is used as the loss value. To make the comparison between these similarities

fair, fi is obtained by linearly transforming the intermediate feature into the same dimensional-

ity as pgti . Since fi acts as a proxy of the intermediate feature, we name it Proxy Feature. Before

calculating the similarity, the proxy feature vectors’ elements are transformed by σ(�) into the

same range [0, 1] as pgti . By supervising the similarity between proxy feature vectors, Fisher loss

drives the similarity between the underlying intermediate features to be consistent with the

similarity of the corresponding class labels. As a result, Fisher loss produces the effect of reduc-

ing intra-class variance and increasing inter-class separation of training sample distribution,

which benefits object classification.

Equi-proportion loss is another loss term in structural constraints. It also measures the sim-

ilarity between an arbitrary pair of intermediate features, but supervises this with the corre-

sponding pair of localization labels. It’s expressed as:

Lequipðf 0i ; f
0
j ; b

gt
i ; b

gt
j Þ ¼ ksð

sðf 0i Þ
sðf 0j Þ
Þ � sð

sðbgt
i Þ

sðbgt
j Þ
Þk

2
ð3Þ

where f 0i is proxy feature of training sample i, and bgt
i 2 R4

is the corresponding localization

label. f 0i is linearly transformed from the intermediate feature into same dimensionality as bgti ,

to facilitate the comparison between training sample difference and localization label differ-

ence. Since bgt
i ; b

gt
j are not bounded, we measure their relative difference in terms of element-

wise ratios, and so is the difference between f 0i and f 0j measured. The squared magnitude of the

difference between these two sets of ratios is used as the value of Lequip. Under the guidance of

equi-proportion loss, the intermediate features of training samples tend to be sensitive enough

to reflect the differences between their localization labels, and benefit bounding

box regression.
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After applying structural constraint constituted with Fisher loss and equi-proportion loss,

the object detection network training objective is rewritten as:
X

i

½Lclsðpi; p
gt
i Þ þ Llocðbi; b

gt
i Þ�

þ
X

i;j

½LFisherðfi; fj; p
gt
i ; p

gt
j Þ þ Lequipðf

0

i ; f
0

j ; b
gt
i ; b

gt
j Þ�

ð4Þ

where Fisher loss and equi-proportion loss are evaluated for all pairs of training samples. This

sum of original loss and structural constraint terms is used to calculate back-propagations dur-

ing end-to-end object detection network training processes. Thus, training with this new

objective not only optimizes the main objective of object detection, but also optimizes the

structure of training sample distribution in intermediate feature space which benefits the main

objective in return.

3.3 Combination with various object detection architectures

Structural constraints supervise intermediate features of object detection networks, that is,

applied over intermediate network layers, so how they are combined with networks depends

on the forms of these layers, which differ among object detection architectures. We describe

how structural constraints are combined with single-stage, two-stage and multi-stage object

detection networks respectively below.

Single-stage case. Single-stage object detection networks’ detection heads transform

backbone feature maps with two-dimensional convolution (Conv2D) to generate classification

outputs and localization outputs. Because that the dimensionality of proxy features used in

Fisher loss and equi-proportion loss calculation must be unified with the dimensionality of

classification outputs and localization outputs respectively, structural constraints in single-

stage networks use Conv2D layers to transform intermediate features of training samples into

the needed proxy features. This could be expressed as:

ffigi ¼ Conv2DFisherðFÞ

ff 0i gi ¼ Conv2DequipðFÞ
ð5Þ

where Conv2DFisher and Conv2Dequip are convolution layers generating proxy features for

Fisher loss and equi-proportion loss respectively, and F is intermediate feature collection. Con-

v2DFisher and Conv2Dequip take F as input and generate proxy feature collections ffigi; ff 0i gi. It

should be noticed that F, {fi}i and ff 0i gi take the form of feature tensors in this case. With proxy

features obtained, the rest of structural constraint evaluation is exactly same as the description

in Section 3.2. The complete mechanism in single-stage case is illustrated in Fig 1a.

Two-stage case. Two-stage object detection networks firstly generate RoIs with their

RPNs, and then their detection heads infer detection results from these RoIs. Their detection

heads usually consist of fully-connected (FC) layers. Thus, for the same reason as in single-

stage case, we set up special FC layers for transforming intermediate features into proxy fea-

tures whose dimensionality is unified with detection head outputs. This could be expressed as:

ffigi ¼ FCFisherðFÞ

ff 0i gi ¼ FCequipðFÞ
ð6Þ

where FCFisher and FCequip are the FC layers that generate proxy features for Fisher loss and

equi-proportion loss respectively. In this case, the intermediate feature collection F comes
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from RoI pooling. The rest of structural constraint evaluation is still same as the description in

Section 3.2. Apart from the detection heads, structural constraints could also be applied to

RPNs of two-stage networks, because these RPNs are identical to single-stage networks’ detec-

tion heads. This means the aforementioned mechanism for single-stage case could be directly

applied to these RPNs. The complete structural constraint mechanism for two-stage case is

illustrated in Fig 1b.

Multi-stage case. Multi-stage object detection networks extend two-stage architecture by

using multiple detection heads to refine detection results sequentially. Thus, compared with

two-stage networks, the constituting modules of multi-stage networks remain unchanged.

This means how structural constraints are applied to detection heads and RPNs in multi-stage

networks is exactly same as the two-stage case. For structural constraints on detection heads,

the proxy features are generated in the same manner as Eq (6); on RPNs, they are generated in

the same manner as Eq (5). All the rest of structural constraint evaluation still obey Section 3.2.

The complete mechanism for multi-stage case is illustrated in Fig 1c.

In all cases above, structural constraint mechanisms exist during the training period of

these object detection networks, and guide the intermediate feature learning by handling

proxy features. At inference time, all calculations related to structural constraints are absent, as

well as all exclusive network layers (Conv2DFisher/equip, FCFisher/equip), so detection rates and

deployment sizes of these networks are not influenced.

Fig 1. Illustration of structural constraint mechanisms in object detection networks of various architectures. (a) single-stage, (b) two-stage,

and (c) multi-stage.

https://doi.org/10.1371/journal.pone.0267863.g001
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4 Experiments

To verify the effectiveness of structural constraints, we experimented with multiple object

detection networks over several image datasets, and examined the training processes and net-

work behaviors. In this section, we present these experiment results.

4.1 Experiment settings

We describe settings of the experiments firstly. These include settings of networks, training

and testing. All hyper-parameters listed below are set to default values of MMDetection [14]

configuration files.

Networks. The default settings of object detection networks used in the experiments are:

ResNet-101 [15] as backbone, FPN [16] as neck, and Greedy NMS [17] for post-processing.

All multi-stage networks use 3 stages of detection heads. All object detection networks are

implemented with MMDetection toolbox [14] and PyTorch deep learning library [18].

Training and testing. All networks’ optimizers are SGD (Stochastic Gradient Descent).

The default length of training is 12 epochs. For single-stage networks, their detection head

training samples’ positive and negative IoU thresholds are 0.5 and 0.4 respectively. For two-

stage networks, their detection head training samples’ positive and negative IoU thresholds are

both 0.5, and positive training samples cover 25%. For multi-stage networks, 3 stages of detec-

tion heads’ positive and negative IoU thresholds are 0.5, 0.6 and 0.7 respectively. Besides, for

two- and multi-stage networks, their RPN training samples’ positive and negative IoU thresh-

olds are 0.7 and 0.3 respectively, and positive samples cover 50%. All training samples are ran-

domly obtained. At test time, the default NMS IoU threshold is 0.5 for detection heads, and 0.7

for RPNs. All networks are trained and tested on GPU servers.

4.2 Experiment results

We present experiment results on structural constraint mechanism in this subsection. Firstly,

we present ablation evaluation results to show influences of different factors in the mechanism.

Then, we compare object detection quality of our structural-constraint-applied networks with

other modern detectors. Finally, we analyze behaviors of structural constraint mechanism

through visualization.

4.2.1 Ablation evaluation. We performed ablation evaluations on structural constraint

mechanism to investigate different factors’ influences on object detection quality, including

the constituting loss terms LFisher and Lequip as well as different combination manners. We

report our evaluation results on two widely used image datasets, MSCOCO2017 [19] and

KITTI [20], respectively.

Evaluations on MSCOCO2017. For ablation on MSCOCO2017, all object detection net-

works are trained over the train2017 subset, and tested over the val2017 subset. We

choose RetinaNet as the evaluation subject for single-stage architecture, Faster RCNN for two-

stage, and Cascade RCNN for multi-stage. The ablation evaluation results are shown in

Table 1. The network names containing “+LFisher/equip” indicate that Fisher loss or equi-pro-

portion loss is applied to the detection heads of those networks, and names with

“þLFisher=equip
2” indicate Fisher loss or equi-proportion loss is applied to both the detection

heads and RPNs of those networks (in two- or multi-stage case). It could be observed that

structural constraint mechanism is able to improve object detection qualities of all network

subjects on this general object detection task. Specifically, the complete structural constraint

mechanism that includes both Fisher loss and equi-proportion loss produced the most obvious

improvement in some cases, like Faster RCNNþ L2

Fisher þ L2

equip. We also evaluated the
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influence of batch size, and the networks marked with “�” are trained with smaller batch sizes

(half). It could be observed that structural constraint mechanism is robust against batch size

changes.

Evaluations on KITTI. We use the 2D object detection subset in KITTI to perform abla-

tion evaluations, which contains 7481 labeled driver-view images. For all evaluated network

subjects, the first 6000 images are used for training and the rest 1481 images for testing. We

adopted Pascal-VOC-styled metrics which evaluate class-wise average precisions and the

global mean average precision (MAP). We choose RetinaNet and SSD as evaluation subjects

for single-stage architecture, Faster RCNN for two-stage, and Cascade RCNN for multi-stage.

The evaluation results are shown in Table 2. It could be observed that structural constraint

mechanism is able to produce object detection quality improvement for all these network

architectures. It’s also observable that the improvement happened on multiple classes simulta-

neously, such as the case of Faster RCNNþ L2

Fisher. Besides, structural constraint mechanism

still exhibits robustness against batch size settings, which could be observed from the evalua-

tions on Cascade RCNN.

4.2.2 Comparison with other object detectors. We present object detection quality com-

parisons between modern object detectors and our networks with structural constraints in this

subsection. These comparisons were carried out over MSCOCO2017 and KITTI. We give

descriptions respectively in the following.

Comparison on MSCOCO2017. The training set and testing set for this comparison are

same as the settings in last subsection. The evaluation results are presented in Table 3.

SCM-Two and SCM-Multi are our two-stage and multi-stage object detection networks with

structural constraint mechanisms. SCM-Two is configured as Faster RCNNþ L2

Fisher þ L2

equip,

and SCM-Multi as Cascade RCNNþ L2

Fisher. SSD300 and SSD512 are SSD networks with input

image sizes as 300 × 300 and 512 × 512 respectively. It could be observed that our SCM-Two

Table 1. Ablation evaluations of structural constraint mechanism on MSCOCO2017.

detector AP AP0.5 AP0.75 APsmall APmed APlarge ARMD=1 ARMD=10 AR ARsmall ARmed ARlarge

RetinaNet 0.379 0.572 0.409 0.203 0.420 0.498 0.321 0.513 0.544 0.335 0.591 0.699

RetinaNet+LFisher 0.370 0.559 0.398 0.194 0.410 0.502 0.317 0.504 0.535 0.321 0.581 0.701

Faster RCNN 0.376 0.589 0.412 0.213 0.419 0.481 0.315 0.502 0.526 0.337 0.569 0.669

Faster RCNN+LFisher 0.377 0.589 0.413 0.213 0.414 0.485 0.315 0.500 0.524 0.329 0.571 0.657

Faster RCNNþ L2

Fisher 0.378 0.588 0.410 0.217 0.419 0.488 0.317 0.505 0.530 0.335 0.575 0.673

Faster RCNN� 0.383 0.606 0.414 0.223 0.427 0.496 0.314 0.496 0.521 0.332 0.564 0.662

Faster RCNN+Lequip
� 0.384 0.607 0.417 0.224 0.427 0.501 0.317 0.501 0.524 0.336 0.568 0.664

Faster RCNNþ L2

equip
� 0.383 0.607 0.412 0.224 0.429 0.496 0.314 0.495 0.519 0.332 0.569 0.656

Faster RCNN+LFisher+Lequip
� 0.384 0.607 0.415 0.227 0.426 0.500 0.314 0.498 0.522 0.335 0.567 0.661

Faster RCNNþ L2

Fisher þ L2

equip
� 0.385 0.607 0.418 0.225 0.427 0.505 0.318 0.501 0.525 0.330 0.567 0.671

Cascade RCNN 0.412 0.590 0.447 0.227 0.447 0.550 0.337 0.530 0.554 0.337 0.595 0.718

Cascade RCNN+LFisher 0.412 0.592 0.451 0.231 0.448 0.552 0.337 0.529 0.554 0.346 0.596 0.719

Cascade RCNNþ L2

Fisher 0.412 0.592 0.449 0.233 0.449 0.545 0.337 0.531 0.554 0.341 0.599 0.706

Cascade RCNN� 0.396 0.570 0.433 0.218 0.428 0.524 0.332 0.523 0.546 0.334 0.585 0.700

Cascade RCNN+Lequip
� 0.395 0.567 0.432 0.214 0.426 0.522 0.332 0.521 0.544 0.321 0.586 0.702

Cascade RCNNþ L2

equip
� 0.396 0.568 0.433 0.224 0.427 0.520 0.334 0.525 0.548 0.336 0.586 0.711

Note: the values where improvements happen are in bold face.

“�” indicates that the network is trained using smaller batch size.

https://doi.org/10.1371/journal.pone.0267863.t001

PLOS ONE Improving object detection quality with structural constraints

PLOS ONE | https://doi.org/10.1371/journal.pone.0267863 May 18, 2022 10 / 17

https://doi.org/10.1371/journal.pone.0267863.t001
https://doi.org/10.1371/journal.pone.0267863


network produced identical object detection quality with many other detectors, and our

SCM-Multi network achieved top values under most metrics.

Comparison on KITTI. In this comparison, the training setting of our network SCM-Multi
is same as the last subsection, and it’s configured as Cascade RCNNþ L2

Fisher þ L2

equip. Other

detectors’ evaluation results are obtained from KITTI’s official website. The comparison is

shown in Table 4. Since KITTI’s leaderboard publishes detection precisions on car, pedes-
trian and cyclist, we compare performances on these three classes and the global mean

Table 2. Ablation evaluations of structural constraint mechanism on KITTI.

detector car pedestrian van truck person sitting cyclist tram misc don’t care MAP

RetinaNet 0.977 0.925 0.989 1.00 0.927 0.985 0.997 0.966 0.828 0.955

RetinaNet+LFisher 0.977 0.902 0.987 1.00 0.942 0.976 0.997 0.969 0.805 0.950

SSD 0.856 0.395 0.685 0.826 0.231 0.408 0.806 0.509 0.123 0.538

SSD+Lequip 0.853 0.409 0.704 0.827 0.219 0.417 0.835 0.499 0.118 0.542

SSD+LFisher+Lequip 0.856 0.388 0.715 0.805 0.207 0.396 0.820 0.506 0.129 0.536

Faster RCNN 0.978 0.932 0.994 1.00 0.816 0.979 1.00 0.990 0.845 0.948

Faster RCNN+LFisher 0.979 0.928 0.996 1.00 0.874 0.995 1.00 0.990 0.844 0.956

Faster RCNNþ L2

Fisher 0.979 0.932 0.996 1.00 0.884 0.986 1.00 0.985 0.849 0.957

Cascade RCNN 0.976 0.928 0.993 1.00 0.853 0.983 1.00 0.990 0.871 0.955

Cascade RCNN+LFisher 0.976 0.922 0.994 1.00 0.836 0.986 1.00 0.995 0.878 0.954

Cascade RCNNþ L2

Fisher 0.976 0.917 0.994 1.00 0.873 0.982 0.991 0.995 0.882 0.957

Cascade RCNN� 0.943 0.792 0.943 0.971 0.599 0.904 0.977 0.920 0.354 0.822

Cascade RCNN+LFisher+Lequip
� 0.939 0.789 0.936 0.979 0.646 0.898 0.946 0.925 0.343 0.822

Cascade RCNNþ L2

Fisher þ L2

equip

�

0.939 0.804 0.934 0.987 0.608 0.900 0.918 0.885 0.354 0.814

Note: the values where improvements happen are in bold face;

“�” indicates that the network is trained using smaller batch size.

https://doi.org/10.1371/journal.pone.0267863.t002

Table 3. Object detection quality comparison between structural-constraint-applied networks and other detectors on MSCOCO2017.

detector AP AP0.5 AP0.75 APsmall APmed APlarge ARMD=1 ARMD=10 AR ARsmall ARmed ARlarge

FCOS [21] 0.391 0.585 0.418 0.220 0.435 0.511 - - - - - -

Mask Scoring RCNN [22] 0.400 0.614 0.437 0.232 0.442 0.523 - - - - - -

GA-RetinaNet [23] 0.389 0.591 0.418 0.220 0.426 0.519 - - - - - -

RetinaNet-GHM [24] 0.390 0.577 0.413 0.218 0.432 0.518 - - - - - -

Libra Faster RCNN [25] 0.403 0.612 0.439 0.233 0.443 0.522 - - - - - -

SSD300 [6] 0.254 0.428 0.264 0.059 0.279 0.428 0.238 0.348 0.368 0.094 0.413 0.588

SSD512 [6] 0.292 0.481 0.307 0.105 0.347 0.456 0.262 0.392 0.415 0.138 0.492 0.614

Mask RCNN [26] 0.387 0.597 0.424 0.226 0.427 0.501 0.322 0.512 0.537 0.349 0.582 0.674

Double-head RCNN [11] 0.386 0.583 0.420 0.225 0.422 0.496 0.326 0.522 0.549 0.350 0.590 0.700

DETR [4] 0.401 0.606 0.420 0.183 0.433 0.595 - - - - - -

YOLOX [27] 0.403 0.591 0.434 0.235 0.445 0.531 - - - - - -

Dynamic R-CNN [28] 0.389 0.576 0.427 0.221 0.419 0.517 - - - - - -

SCM-Two (ours) 0.385 0.607 0.418 0.225 0.427 0.505 0.318 0.501 0.525 0.330 0.567 0.671

SCM-Multi (ours) 0.412 0.592 0.449 0.233 0.449 0.545 0.337 0.531 0.554 0.341 0.599 0.706

Note: the top value under each metric is in bold face.

https://doi.org/10.1371/journal.pone.0267863.t003
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average precisions (MAP). It could be observed that our SCM-Multi network achieved top val-

ues on all these metrics.

According to these ablation evaluations and comparisons with other modern detectors on

different datasets, it’s shown that structural constraint mechanism is able to improve object

detection quality on various network architectures, and is able to assist some prototype net-

works to achieve advanced performances.

4.3 Visualization analysis

We analyze behaviors of structural constraint mechanism during training and testing in this

subsection. For this purpose, we visualized changing of the loss terms in structural constraint,

their influences on feature space and some final detection results.

Changing of loss values. We plotted curves of Fisher loss and equi-proportion loss during

training of object detection networks of different architectures. The observation subjects

include RetinaNet, SSD, Faster RCNN and Cascade RCNN, all with structural constraints

applied. These loss curves are shown in Fig 2. Both losses were obviously dropping during all

these training processes. This observation indicates that the loss terms in structural constraints

are effectively minimized, so they are indeed guiding networks’ training.

Influence on network feature space. To observe the influences of structural constraint

mechanism on object detection networks’ feature spaces, we adopted t-SNE [44] to project

high-dimensional backbone features to 2D space for visualization. These backbone features

were obtained by feeding the networks with images of object classes. These images are sampled

from KITTI according to its bounding box labels and are of class Car or Pedestrian
(Ped). The extracted backbone features are then resized to a uniform size for the convenience

of t-SNE transform. The visualization results are shown in Fig 3. The network subjects are

Faster RCNN and Cascade RCNN. It could be observed that with greater extent of structural

constraint application, the distributions of Car and Ped are less mixed and easier to separate.

Table 4. Object detection quality comparison of our structural-constraint-applied networks and other detectors on KITTI.

detector car pedestrian cyclist MAP

TuSimple [29] 0.908 0.770 0.814 0.831

RRC [30] 0.906 0.753 0.850 0.836

UberATG-MMF [31] 0.918 - - -

PC-CNN-V2 [32] 0.908 - - -

SJTU-HW [33] 0.908 0.742 - -

SenseKITTI [34] 0.908 0.673 0.818 0.800

F-PointNet [35] 0.908 0.773 0.849 0.843

HRI-VoxelFPN [36] 0.907 - - -

F-ConvNet [37] 0.904 0.724 0.848 0.825

Regionlet [38] 0.848 0.612 0.704 0.721

DPM-VOC+VP [39] 0.750 0.449 0.424 0.541

3DVP [40] 0.875 - - -

SubCat [41] 0.841 - - -

CompACT-Deep [42] - 0.587 - -

DeepParts [43] - 0.587 - -

Fast RCNN+VGG16 [9] 0.860 0.625 0.688 0.724

SCM-Multi (ours) 0.939 0.804 0.900 0.881

Note: the top value under each metric is in bold face.

https://doi.org/10.1371/journal.pone.0267863.t004
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This is a beneficial behavior to object classification, and is consistent with the intention of

structural constraints.

Detection result visualization. In Fig 4, we visualized some detection results on

MSCOCO2017 images (val2017). We compared detection results of Faster RCNNs with

Fig 2. The curves of Fisher and equi-proportion losses (LFisher and Lequip) during the training of object detection networks of

different architectures. Upper row: Fisher losses; lower row: equi-proportion losses. “s#” in legends indicates the loss corresponds to

stage # in the case of multi-stage networks.

https://doi.org/10.1371/journal.pone.0267863.g002

Fig 3. t-SNE visualization of Car and Pedestrian (Ped) instance distributions in feature spaces of object detection

networks with and without structural constraints applied.

https://doi.org/10.1371/journal.pone.0267863.g003
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and without structural constraints applied. It could be observed that the application of struc-

tural constraints made the detector more accurate at localization and give less false positives.

5 Conclusion

In this work, we introduced our structural constraint mechanism for improving object detec-

tion quality. Structural constraint mechanism supervises object detection networks’ intermedi-

ate feature spaces, and guides the training processes to optimize object class instances’

distributions within the spaces. It constrains feature similarities of training sample pairs to be

consistent with corresponding ground truth label similarities. With the aid of proxy feature

design, structural constraint could be applied to all types of object detection network architec-

tures. Experiment results indicate our structural constraint mechanism is able to optimize net-

works’ intermediate features and consequently final detection results. It should be pointed out

that calculation of structural constraint is done for all possible pairs of training samples, which

has high GPU memory demand. We will address this issue in our future work.
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