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Abstract

Next-generation RNA sequencing (RNA-seq) maps and analyzes transcriptomes and generates data on sequence variation in
expressed genes. There are few reported studies on analysis strategies to maximize the yield of quality RNA-seq SNP data.
We evaluated the performance of different SNP-calling methods following alignment to both genome and transcriptome by
applying them to RNA-seq data from a HapMap lymphoblastoid cell line sample and comparing results with sequence
variation data from 1000 Genomes. We determined that the best method to achieve high specificity and sensitivity, and
greatest number of SNP calls, is to remove duplicate sequence reads after alignment to the genome and to call SNPs using
SAMtools. The accuracy of SNP calls is dependent on sequence coverage available. In terms of specificity, 89% of RNA-seq
SNPs calls were true variants where coverage is .10X. In terms of sensitivity, at .10X coverage 92% of all expected SNPs in
expressed exons could be detected. Overall, the results indicate that RNA-seq SNP data are a very useful by-product of
sequence-based transcriptome analysis. If RNA-seq is applied to disease tissue samples and assuming that genes carrying
mutations relevant to disease biology are being expressed, a very high proportion of these mutations can be detected.
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Introduction

The transcriptome consists of all RNA transcripts, coding or

non-coding, expressed within a given cell or tissue. Its annotation

and quantification has been the subject of extensive investigation

for several decades. Studying the transcriptome in disease tissue

can give important insights into the functional properties of

specific RNA transcripts and thereby provide a clearer under-

standing of the underlying disease processes.

Until very recently the predominant means of studying the

transcriptome was using hybridisation based methods such as

microarrays [1]. These however are not without limitations;

difficulties in monitoring the efficiency of probe hybridisation,

cross hybridisation as a result of repetitive regions and issues

relating to the normalisation of transcript levels in relation to

transcript abundance are common. Probe design is inherently

based on known sequences therefore limiting the extent of novel

gene/transcript and splice discovery that is possible, although

tiling microarrays are now available [2].

Next generation sequencing technologies have rapidly changed

transcriptome analysis as researchers acknowledge the benefits of

RNA sequencing (RNA-seq). This methodology, which allows the

direct sequencing of cDNA libraries, allows for more accurate

quantification of RNA transcripts in a given cell or tissue [3] but

importantly requires no prior sequence knowledge thereby

allowing the discovery of new genes, transcripts, alternative splice

junctions, fused sequences and novel RNAs [4]. RNA-seq has

been used to examine differential gene expression for different

genes and tissues [5] but has also been applied to the study of

allelic differences in expression [6,7] transcriptome characterisa-

tion [8,9] analysis of RNA-protein interactions [10] and analysis of

alternative splicing [11].

RNA-seq can be performed on RNA extracted from disease

tissue or blood directly obtained from an individual. For a large

number of disease studies it has become increasingly common to

generate lymphoblastoid cell lines (LCLs) for patient samples using

EBV transformation of blood lymphocytes. This not only provides

an unlimited source of patient DNA but gives researchers a

valuable source of RNA to use for gene expression/functional

studies [12] and many large-scale LCL repositories now exist.

LCLs have been shown to be a reliable source material for SNP

genotyping in genomic DNA [13] and studies of genetic variation

in gene expression [14]. The Welcome Trust Case Control

Consortium have successfully performed genome-wide association

studies (GWAS) using SNPs and copy number variation (CNVs)

for eight diseases using a common control panel where half of the

3,000 control DNA samples were derived from LCLs [15,16].

Whilst expression results generated in cell lines should be
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interpreted with caution, some recent studies have supported the

use of human lymphocytes as a good cellular model for gene

expression in other tissues [17–19] and there is evidence that

expression quantitative trait loci detected in LCLs can overlap

with those found in relevant tissues [20].

As with transcriptome analysis, array-based genome-wide

analysis of DNA sequence variation is being superseded by next-

generation sequencing, which offers the opportunity to detect all

variants present and not just assay the variants targeted by pre-

designed arrays. Whole-genome sequencing is being applied in the

1000 Genomes (http://www.1000genomes.org/) project to ex-

pand on resources such as HapMap to include rare variation [21].

This is particularly important for researchers studying complex

diseases as, for many disorders, a substantial proportion of their

heritability may be a result of rare variants in the form of SNPs,

indels or CNVs [22].

While whole genome sequencing remains costly for disease

genetics, an intermediate option is exome sequencing [23] on the

premise that the majority of disease related mutations are located

within coding sequences (approximately 1–2% of the genome).

From Mendelian disease we know that mutations causing amino

acid changes account for ,60% of disease mutations [24]. While

RNA-seq is primarily considered a method of gene expression

analysis, it is also a form of exome sequencing with the capacity to

detect sequence variation in those genes that are expressed in the

sample. Therefore, a major advantage of RNA-seq is to offer a

convergent approach to disease research by providing information

for gene expression/characterisation and also coding sequence

variation plus potential insight into post translational processes

such as RNA editing.

A number of studies have reported on the viability of SNP

detection using RNA-seq[7,25–31] but the purpose of this study is

to determine the best approach for RNA-seq SNP analysis by

evaluating the performance of different alignment strategies and

SNP-calling methods in comparison to extensive available online

sequence variation data such as 1000 Genomes data. To do this

we calculate the specificity and sensitivity of RNA-seq SNP

detection. Specificity addresses the question: how likely is a SNP

detected by RNA-seq to be a true variant in the DNA sequence?

Sensitivity addresses the question: how likely is RNA-seq to detect

an expressed SNP if it is present in a transcribed gene? Overall the

results indicate that RNA-seq is a very accurate method of SNP

detection. Where genes are strongly expressed, a high proportion

of coding SNPs will be correctly identified.

Materials and Methods

Sample Preparation and RNA Sequencing
Total RNA was extracted from the HapMap CEU lympho-

blastoid cell line sample (Coriell Institute for Medical Research) for

individual NA12878 using Qiagen’s RNeasy mini kit. Illumina

sequencing libraries were prepared according to the Illumina

mRNA Sequencing Sample Prep Guide (1004898 Rev. D). Briefly,

poly-A-containing molecules were purified and fragmented,

followed by double-stranded cDNA synthesis. The resulting

double-stranded cDNA was end-repaired before ligation of

Illumina-specific adaptors and finally was PCR enriched. Se-

quencing was carried out on an Illumina Genome Analyzer II to

produce three lanes (A–C) of 40 bp single-end reads (lane

A = 11,683,367, lane B = 13,980,330 and lane C = 15,120,659

reads) see table S1). Data from lanes A, B and C combined to

create the test sample dataset (40,784,356 reads). This RNA-seq

data for sample NA12878 has been deposited in the Short Read

Archive (http://www.ncbi.nlm.nih.gov/sra; SRA065878). In ad-

dition to generating data in-house on NA12878, we accessed

RNA-seq data for HapMap samples NA12891 (80,062,322 reads)

and NA12892 (80,023,135 reads) from the Short Read Archive

(SRR074943, SRR074953). In order to compare these data to our

in-house data, we trimmed the reads for these two samples to a

length of 40 bp.

Analysis Strategy and Methods
Figure 1 gives an overview of the 8 analysis strategies and

methods that we employed to identify the best performing

methods of RNA-seq SNP detection. Strategies are outlined in

detail below but in brief this involved removing duplicate reads

pre- and post-alignment to either the genome or transcriptome

and the use of two different SNP callers.

Duplicate Reads
The first decision was if and when to remove identical

duplicate reads from analysis. Duplicate reads in sequence data

can occur during the PCR/library preparation steps, from

sequencing artefacts such as poly-A and poly-N reads, noise in

cluster detection and from cDNA fragmentation at the same

location in different molecules [32]. This can lead to an

exaggeration of coverage levels and impact the accuracy of

variant calls. To avoid this, where duplicate reads are detected,

only one copy of the read is kept and duplicates are generally

removed either pre- or post-alignment. The difference between

pre- and post-alignment strategies is as follows: Duplicate reads

dropped pre-alignment have exact identical sequence whereas

those dropped post-alignment are reads that map to the same

position in the genome or transcriptome, i.e. have the same

start and end coordinates, but can contain sequence differences

internally. There is no gold standard method to deal with

duplicates. Removal of duplicates pre-alignment will miss

duplicate reads that are derived from the same cDNA fragment

but contain sequencing errors, therefore resulting in an

underestimation of duplicate reads. Removal of duplicates

post-alignment could exclude a read containing the second

allele of a SNP and thus will result in loss of valuable

information. To determine the best method of dealing with

duplicates we analyzed our data by removing duplicates pre-

alignment (strategy A) and post-alignment (strategy B) and

studied the impact on the number and quality of SNP calls.

Table S1 details the number of duplicate reads detected for

each sample.

Alignment and SNP Calling
Tophat version 1.4.1 was selected for alignment of the

generated RNA-seq reads with two mismatches allowed per

uniquely aligned read. We wanted to compare SNP calls

generated when aligning reads to the reference genome compared

to a transcriptome-only approach and therefore each sample was

aligned using both duplicate read methods to the reference

genome (NCBI build 36.1) and to the associated refFlat gene list

from UCSC, which represents the transcriptome (see figure 1). In

addition, two different publically available SNP calling softwares

were used; SAMtools v-1.18 [33] and GATK (Genome analysis

toolkit (v-1.0.5506) [34], both of which used in the analyses of data

from the 1000 Genomes project(21).

To summarize, eight different variant calling strategies were

carried out. In strategy A, identical sequences were removed pre-

alignment and the remaining reads were aligned to both a

transcriptome reference and a whole genome reference. Two SNP

callers were then applied to the alignment files generated, resulting

in four different variant call sets for strategy A: pre_trans_sam and

Mutation Detection in RNA Sequencing Data
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pre_trans_gatk are the call sets generated following alignment to

the transcriptome alone and pre_genome_sam and pre_genome_-

gatk are the corresponding files generated following whole genome

alignment. Strategy B follows an identical protocol except the

removal of duplicate reads post-alignment to the relevant

reference. Similarly four variant call sets were generated for this

strategy: post_trans_sam and post_trans_gatk following transcrip-

tome alignment and post_genome_sam and post_genome_gatk

from the genome alignments. The sensitivity and specificity of

each SNP was assessed by the number of reads aligned at each

individual base (providing this was greater than 36 coverage).

SAMtools derived SNP calls were generated with default pileup

settings and standard SNP filters. GATK derived SNP calls were

filtered using standard GATK SNP filters. All calls were

subsequently filtered to remove sites overlapping regions where

no variant calls were attempted in the 1000 Genomes pilot study 2

[21]. SNP calls generated by SAMtools and GATK were finally

filtered to remove SNP clusters, where two or more variants

occurred in a three base-pair window. SNP calls passing filtering

were examined for concordance with the 1000 Genomes release

from March 2010 (http://browser.1000genomes.org/index.html),

and dbSNP build 132.

RNA-seq reads are sampled from a gene in a manner

proportional to its expression level in a given tissue. As a result,

the coverage of variants varies greatly from gene to gene. In

addition, mapping efficiency of individual nucleotide sites is

dependent on a number of variables including regional GC

content and uniqueness, and means that non-uniform base

coverage across a gene or exon can occur, which will influence

SNP discovery. As a consequence the definition of each gene in the

transcriptome as expressed or not expressed based on median or

mean base coverage per exon [26] is a poor proxy for defining the

ability to call SNPs at any individual base in a gene. In this study

we estimated the coverage in our sample at each site of the

published 1000 Genomes variants and calculated our ability to

correctly call these sites as variant in RNA-seq data at different

sequencing depths. For individual NA12878, the 1000 Genomes

pilot 2 study predicted a total of 2,766,610 SNPs of which 45,371

occurred within boundaries of the 23,147 genes defined as the

transcriptome in this study. For NA12891, there were 2,720,364

SNPs of which 44,462 were genic and for NA12892, there were

2,736,863 SNPs of which 45,437 were genic.

Calculation of Specificity and Sensitivity
The different metrics of RNA-seq SNP detection that we

wanted to measure were the number of SNPs called per sample

and the specificity and sensitivity of those SNP calls. The 1000

Genomes pilot study 2 SNP calls were used to determine the

accuracy of calls made using RNA-seq data. All 1000 Genomes

variant sites with . = 3X coverage in our data were treated as

expected calls for this individual and used to define both the

specificity and sensitivity of cDNA derived variant calls. Specificity

was calculated as the number of true positives divided by the

number of true positives plus the number of false positives. A true

positive was any SNP present in our sample data and the

corresponding 1000 Genomes and/or dbSNP data that had the

correct genotype or in the case of dbSNP had the expected alleles

at that position. A false positive SNP call is where the genotype in

our data did not match 1000 Genomes data or the variant was not

present in dbSNP. As we were dealing with transcriptome data as

opposed to full genome data this meant that we will only be able to

detect SNPs at sites expressed in our samples. To perform

sensitivity analysis we calculated the number of true positives

divided by the number of true positives plus the number of false

negatives. A true positive was where we detected the expected

genotype and a false negative is where we either did not detect a

Figure 1. Analysis strategies and methods for RNA-seq SNP detection. This figure outlines the analysis strategies and methods used to
identify the best performing methods of RNA-seq SNP detection. We analyzed our data by removing duplicates pre-alignment (strategy A) and post-
alignment (strategy B). Reads were aligned to either the genome or the transcriptome and SNP calls generated using SAMtools and GATK. This
produced 8 sets of calls for analysis (see table S2a).
doi:10.1371/journal.pone.0058815.g001
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SNP at that position, or did detect a SNP but the genotype did not

match.

SNPs identified in our RNA-seq data for which no correspond-

ing variant was reported in the 1000 Genomes pilot study release

were further examined in both dbSNP132 and the publicly

available 1000 Genomes alignment (BAM) files. SNPs with a

matching position and identical alternative allele call in dbSNP

were considered as potentially true variants. In addition,

corroborating evidence for the RNA-seq variant call was

examined in the 1000 Genomes alignment files because not all

true variants will have passed the filters employed in that study.

For heterozygote calls we required the alternative allele to occur in

between 20 and 80% of the 1000 Genomes aligned reads to

provide potential evidence of a true variant occurring at a site. For

homozygote non-reference calls we required .90% of reads in the

1000 Genomes alignment to carry the predicted alternative allele

at a site.

Results

The overview figure 1 demonstrates the analysis strategy that we

employed to evaluate RNA-seq as a SNP detection tool. We

initially applied these methods to our in-house RNA-seq data for

NA12878 and the results of these analyses using all methods based

on all strategies in figure 1 are detailed in table S2. We

subsequently validated these methods using additional online

RNA-seq data for NA12891 and NA12892, and describe these

analyses at the end of the results section.

Gene/Exon Expression in the NA12878 LCL Sample
The hg18 refFlat gene set of 23,147 unique genes is composed

of 212,392 exons. Aligning 40,784,356 single-end 40 bp fragments

resulted in at least one sequence read mapping to 17,014 genes

and 139,143 exons. 82,091 exons had complete coverage at 16or

greater across their full length. The 23,147 genes in the refFlat

gene set span 67,893,145 base pairs in the hg18 genome release.

Consistently across all alignment methods employed here, 50% of

these bases were not covered by a single read and 12% of the bases

in the transcriptome have 1–26coverage. The remaining 38% of

sites had 36or greater coverage and represent the total number of

transcriptome spanning sites at which a genotype call was

attempted in this study.

SNP Calls
Figure 2 displays (a) the number of SNPs called for each of the

eight methods employed for NA12878. SAMtools consistently

identifies 8–10% more variants than GATK for each of the

alignment methods. Approximately 96% of these extra SAMtools

variants are called at coverages lower that 106and most likely are

a consequence of the differing post-calling filtering strategies

employed by the two variant calling pipelines. Alignment to the

transcriptome identified between 12,296 and 14,224 variants

depending on the SNP caller and duplicate read removal strategy.

This represents between 27 and 33% of the total expected number

variants in the transcriptome of individual NA12878 based on

1000 Genomes pilot study 2. Between 80 and 88% of these called

variants are identified at sites reported by the 1000 Genomes study

and have an identical genotype assignment. Overall, for approx-

imately 70% of 1000 Genomes transcriptome-overlapping SNPs a

read depth of at least 36was not generated in this study and no

genotype call was attempted. On average for each transcriptome-

only calling method, 50–57% of the 45,371 known sites had zero

reads overlapping and represent sites in genes unexpressed in LCL

or sites in expressed genes where non-uniformity of coverage

across the transcript renders sites unusable. Whole genome

alignment identifies between 15,213 and 19,683 SNPs depending

on the method employed. The additional SNPs generated from

genome alignment, when compared to the transcriptome only

alignment calls, occur in regions outside those annotated as exonic

in RefSeq gene annotations. Table S2 details the number of SNPs

detected for the different methods at varying degrees of coverage.

Specificity
The specificity of NA12878 SNP calls based on 1000 Genomes

data for each of the eight methods at varying coverage depths are

displayed in figure 3A. At all read depths removal of duplicate

reads post-alignment (broken lines) results in a higher degree of

specificity than removal of duplicate reads pre-alignment. Even at

depths as low as 36, .60% of predicted variants represent real

1000 Genomes SNPs with specificity increasing to .90% at sites

with . = 106 coverage. A consistent finding for all methods was

that the specificity reached a plateau when base coverage is .10X.

These data indicate that a very high proportion of SNPs detected

in RNA-seq data are true variants and as expected the likelihood

of an accurate SNP call increases with higher sequence coverage.

The specificity of SNP calls is very similar for both heterozygous

and homozygous sites (figure 4A).

For each of the calling strategies we noted a substantial number

of sites which had not been identified as variant in the available

1,000 Genomes data (Table S2). Although these SNPs had been

classified false positive results in our specificity analysis, some may

represent variants that have not previously been recorded in

analysis of this individual by 1000 Genomes as a result of

insufficient coverage or being outside the employed variant

filtration parameters at these particular loci in the sequence data.

In order to quantify what proportion of these variants may

potentially be true, we accessed the aligned BAM files from the

Figure 2. Number of SNPs per method in RNA-seq data. This
figure displays the number of SNPs called for each of the 8 methods
used. The proportion of heterozygous (grey) and homozygous (black)
SNP calls is also displayed. Details of the numbers of SNPs called are
listed intable S2a.
doi:10.1371/journal.pone.0058815.g002
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1000 Genomes at these loci and looked for evidence of a non-

reference allele(s). The number of RNA-seq variant calls for which

acceptable evidence of variation is present in the aligned 1000

Genomes data ranges between 5 and 8% indicating that a small

but appreciable proportion of these variants may represent true

SNPs within the our data that were not detected to date by 1,000

Genomes project analysis (Table S2). A slightly higher proportion

of these SNPS are also found in dbSNP132 but most represent

SNPs deposited there as part of the three 1000 genomes pilot

studies (Table S2).

Sensitivity
To perform sensitivity analysis we identified SNPs that had

known genotypes from 1000 Genomes data for NA12878 and

were located at sites covered by at least 3 reads in our RNA-seq

data. Figure 3B shows the sensitivity for each method for the

sample. Similar to the specificity analysis, at all read depths

removal of duplicate reads post-alignment (broken lines) results in

a higher degree of sensitivity than removal of duplicate reads pre-

alignment. For all calling strategies sensitivity ranges from 40% to

80% at coverage depths below 106. In this coverage range,

sensitivity is much higher for homozygous variants compared to

heterozygous variants (figure 4B). Above 106, all methods

converge at approximately 92% sensitivity (figure 3B), indicating

that a very high proportion of expected variants will be detected

using RNA derived reads if sufficient coverage is available.

Extension of Analyses to NA12891 and NA12892
To investigate if the results from our analyses were reproducible

when applied to other RNA-seq datasets, we applied the same

methods of SNP detection to online RNA-seq data for NA12891

and NA12892. Importantly, these two samples have also been

whole genome sequenced to a deep coverage by 1000 Genomes so

two comprehensive sets of SNP calls are available to compare

against our SNP calls from the RNA-seq data. As methods

employing the removal of duplicate reads post-alignment per-

Figure 3. Specificity and sensitivity of the SNP calls from RNA-
seq data. This figure displays the specificity (A) and sensitivity (B) of
the SNP calls for each of the 8 methods at a range of coverage depths.
Solid lines represent calls made where duplicate reads had been
removed pre-alignment and broken lines are calls generated when
duplicate reads are removed post-alignment.
doi:10.1371/journal.pone.0058815.g003

Figure 4. Specificity and sensitivity of heterozygous and
homozygous SNP calls from RNA-seq data. This figure displays
the specificity (A) and sensitivity (B) for heterozygous and homozygous
SNP calls for the post_genome_gatk calling method at a range of
coverage depths.
doi:10.1371/journal.pone.0058815.g004
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formed best for our in-house sample, we just present data from

these four methods for the two online samples.

More sequence reads were available for these two samples

(80,062,322 and 80,023,151 reads for NA12891 and NA12892

respectively) compared to our in-house sample (40,784,356 reads).

When aligning to transcriptome, SNP numbers are similar in all

three samples for all calling methods tested (table S2a, b, c; figure

S1). However, when we align to the genome, we note firstly that

the results for the two on-line samples are very similar (average of

67,647 SNPs called per sample using SAMtools) but secondly we

note that this SNP number is far greater than we called for our in-

house sample (16,455 SNPs; figure S1). Analysis of the aligned

reads indicates that the proportion of reads aligning to the

annotated transcriptome is very different between our in-house

sample (95%) compared to the two online samples (45%). Thus,

when we align this data to the genome, the extra reads mapping

off-transcriptome are generating a huge increase in SNP calls in

the online sample data. This outcome could be due to differences

in the sample prep protocols employed for the different samples, in

particular in relation to Poly-A purification, which does influence

the comparability of RNA-seq datasets [35].

When we calculate specificity and sensitivity across our range of

methods, we find that the results for the two online samples are

near identical (figures S2, S3, S4, S5; table S2b,c). This highlights

the reproducibility of the SNP calling methods when applied two

RNA-seq datasets that were generated using the same methods.

When removing duplicate reads post-alignment, specificity is best

at all coverage levels when aligning to the genome compared to

the transcriptome and there is little difference in performance

between GATK and SAMtools (e.g., both 85% specificity at 106
coverage for genome). Sensitivity is marginally better for genome-

compared to transcriptome-alignment and SAMtools slightly out-

performs GATK at all read depths above 106 (e.g., 89% versus

88% sensitivity at 106coverage for genome). As SAMtools is also

calling more variants to begin with, it appears to be the better SNP

caller for RNA-seq data. When we compare the specificity and

sensitivity measurements for the two online samples to those from

our in-house NA12878 sample, we do observe some differences

but mostly for SNPs called at lower coverage levels (figure 5; table

S2a, b, c). Above 106 coverage, the data is much less noisy,

especially for the sensitivity measurements.

Discussion

This study examined next-generation transcriptome sequencing

(RNA-seq) as a method of expressed SNP detection in LCLs.

Many disease samples are now biobanked as LCLs and RNA from

these cell repositories are routinely used for scientific investigation.

As well as data on expression and splicing, RNA-seq data can be

used for SNP detection. It is therefore important to determine the

best strategy for RNA-seq SNP analysis and we have addressed

this question by quantifying the specificity and sensitivity of

different alignment and SNP-calling methods. These results are

also relevant to non-LCL derived RNA, e.g. from a different cell

line type or from a disease tissue sample, because they inform on

the parameters required for accurate SNP calling in RNA-seq

data.

We explored different strategies for RNA-seq SNP detection by

dropping duplicate sequence reads either pre- or post-alignment

and using different reference data for alignment (genome and

transcriptome) and different SNP-calling algorithms (SAMtools

and GATK; figure 1). We note that removing duplicate reads post-

alignment confers an appreciable increase in SNP detection in

terms of specificity and sensitivity when compared to dropping

reads pre-alignment. These differences are more pronounced at

read depths below 106 and indicate how marking of PCR

duplicates after alignment is more sensitive to removal of reads

originating from the same genome location which contain a

sequencing error rather than evidence of a true mismatching base,

when compared to strategy that collapses identical reads pre-

alignment.

The major difference between results of SNP-calling based on

alignment to the transcriptome or the genome was the number of

SNPs identified rather than the specificity or accuracy of those

SNP calls. Whole genome alignment results in more calls across all

methods when compared to alignment to the transcriptome alone.

Specificity and sensitivity measurements are at least similar and

often better for the genome alignment methods compared to the

transcriptome alignment methods. Several widely used gene sets

for the human genome have been generated including RefSeq

(taken from the NCBI RNA reference sequences), ENSEMBL

(computationally predicted from genomic sequence) and UCSC

Figure 5. Specificity and sensitivity of the SNP calls from RNA-
seq data for all three samples. This figure displays the specificity (A)
and sensitivity (B) of the SNP calls for each of the three samples (in
colour) at a range of coverage depths using the post_genome_sam
method. The black lines plot the averages of all three samples plus 95%
confidence intervals.
doi:10.1371/journal.pone.0058815.g005
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(based on protein data from Swiss-Prot/TrEMBL (UniProt) and

the associated mRNA data from Genbank). Each of these gene sets

contains significant differences from the others with both the

RefSeq and UCSC datasets being more conservative than the

ENSEMBL predictions. Even allowing for the differences between

these three datasets, a significant proportion of the SNPs called

following alignment to the genome occur in regions outside any

annotated gene region and would be missed by any analysis using

the transcriptome alone. This finding is of particular relevance to

variant calling studies in organisms without a fully sequenced

genome. Transcriptome de novo assembly followed by variant

detection in such species could result in a considerable underes-

timation of expressed variants, unless the transcriptome is

generated from reads sourced from all tissues. Sequencing to

sufficient depth to completely reconstruct the transcriptome of

such a species would be prohibitively expensive and with advances

in sequencing technology it might be more economical to

sequence the genome of such species to use as a reference for

subsequent RNA related studies.

Significant overlap exists between the calls sets generated by the

two SNP callers used in this study. On average 98% of GATK

derived calls are found in the SAMtools call set generated on the

same alignments, while approximately 91.5% of SAMtools calls

overlap with those of GATK, reflecting the higher number of SNP

calls by SAMtools. Comparison of results for both calling strategies

employed in this study indicates that sensitivity and specificity

calculations for variant calls made at . = 106coverage using both

SAMtools and GATK are virtually identical (figure 3). At coverage

depths below 106, SAMtools displays a higher degree of sensitivity

but a slightly lower specificity when compared to GATK. This is

because at these coverage levels, the greater number of SNPs

called by SAMtools identifies a higher proportion of the expected

true variants (increasing sensitivity) but with an associated increase

in the number of false positive SNP calls (reducing specificity).

Cirulli et al. [26] investigated the specificity of RNA-seq as a

SNP detection method by comparing whole genome and whole

transcriptome sequence for one individual. RNA was sourced from

peripheral blood mononuclear cells (PBMCs). When they restrict-

ed their analysis to PBMC-expressed genes; they report a

specificity of 67%, which is much lower than the specificity

reported here. This result was based on 8 lanes of sequence data

and they report that specificity dropped as the quantity of

sequence data used in the analysis increased. When this study used

just one lane of sequence data (equivalent to our study), specificity

was calculated as 83%; a result closer to the levels we report here.

In our study we had the benefit of being able to compare our

RNA-seq data to a more complete catalogue of genomic variation

data, which is likely to result in more accurate specificity

calculations. In addition, we utilised the masking data generated

by the 1000 Genomes project to remove sites from our analysis at

which variants cannot confidently be called. The addition of this

step to the pipeline significantly reduces the number of false

positive from the SNP call sets. In the absence of this step the

specificity and sensitivity estimated for our SNP calls closely

mirrors the results generated in previous studies [26]. For the three

CEU individuals sequenced as part of the 1000 Genomes pilot

study the ‘‘inaccessible’’ genome was estimated at 20% of total

bases (decreasing to 15% in coding regions) [21]. The majority of

these regions were removed from any variant calling analysis in

that study due to difficulty in accurately mapping reads to these

parts of the genome, as they mainly represent high-copy repeats or

segmental duplications. Of particular relevance to RNA-seq is that

more than 25% of human RefSeq genes contain at least 10% of

non-unique sequence [36]. This is principally due to the high rate

of gene duplication in mammalian gene families as well as the

widespread presence of common functional domains amongst

even non-related genes. The presence of such non-unique regions

in genes has important consequences for normalisation steps in

RNA-seq derived expression studies and, as shown here, using

information on non-unique gene regions will help reduce the

number of false positive SNP calls in RNA-seq data.

Genome mappability is influenced by both the local genomic

content and the sequencing strategy employed. A recent study has

produced an algorithm for determining the mappability of each

base in any reference genome using a user-specified read length

and mismatch number [37]. Using this method we were able to

generate mappability data matching to the read length and

number of sequence mismatches selected in alignment of our RNA

data. SNPs excluded from our analysis using this in-house

generated mappability data almost identically mirrors the sites

excluded using the 1000 Genomes accessible genome information

(data not shown). Use of such a mappability profile, generated with

the appropriate length and mismatch criteria, must be incorpo-

rated into any RNA-seq variant calling study in order to minimise

the number of spurious calls generated.

What is the cause of false positive SNP calls in our data? The

majority of these discordant genotypes occur at sites of ,106
coverage (figure 5). At .106 coverage, the proportion of these

mis-matches drops to ,12% for pre-alignment duplicate removal

strategies and ,6% when duplicates are removed post-alignment.

For NA12878, a small number of our false positive SNP calls were

in fact true variants when we examined alignment data from 1000

Genomes indicating that the exhaustive genomic sequencing of

this sample may not yet have identified all variants present in this

individual.

Our sensitivity analysis addressed the issue of what proportion

of true variants will be detected in a RNA-seq SNP analysis. This

again very much depends on coverage of the site irrespective of the

overall quantity of data produced for a test sample. For all analysis

methods tested here, overall sensitivity is .90% when there is

.10X coverage but can drop as low as 40% if a site has 36
coverage. As expected, the majority of false negative sites in our

RNA-seq sample occur at heterozygous sites where we have low

coverage (figure 4B). At such sites sufficient evidence for the

alternative allele may not be present in order to confidently emit a

non-reference call. The reduction of the false-negative rate to

,5% above 106 coverage suggests that sequencing to a higher

depth should decrease this rate appreciably.

There are a number of additional factors that affect both

sensitivity and specificity. All calculations in this study are based on

1000 Genomes data being correct. Comparison of available

HapMap and 1000 Genomes data for sample NA12878 identified

1,964,991 SNPs common to both datasets; however genotypes did

not match for 2% of these SNPs. Other factors to consider are

errors in the RNA-seq data (sequencing errors or artefacts of the

EBV cell line transformation), allelic imbalance in the RNA,

random mono-allelic expression in clonal cell lines [38], or

instances of RNA editing. The majority of sequencing errors

should be filtered out providing the sequence/base quality is high

enough but it is not possible to exclude all errors. Allelic expression

differences in the RNA whereby one allele at an expected

heterozygous site is over-expressed and appears as a homozygote

would result in a mis-match genotype call between DNA and

RNA. RNA-seq has been used in several studies for the

identification of these sites[7,39–41]. RNA editing is a post-

transcriptional mechanism of base re-coding through insertion,

deletion or modification of nucleotides and has been associated

with a number of diseases, including several neurological disorders
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[42,43]. We do not believe RNA editing to have a major influence

on SNP calling in our study because only 0.4% of our false

negative calls occurs at known sites of RNA editing ([44]; data not

shown).

We have shown that accurate variant detection is possible using

cDNA derived sequencing reads at sites with .106 coverage. In

our study of a LCL sample, SNP calling was possible at 38% of the

annotated transcriptome. The prohibitive cost associated with

sequencing to the required depth, to accurately call all expressed

variants in a sample, means that while RNA-seq variant calling

works well, it is not a viable alternative to exome or whole genome

sequencing. Use of longer and/or paired-end reads will increase

the base coverage within expressed genes in a sample and as a

result increase the sensitivity of the SNP calls generated, but this

will be limited to SNPs occurring in relatively highly expressed

genes.

In conclusion, SNP calls in RNA-seq data is a useful by-product

of the technique and boosts the amount of data that can be

generated from such experiments and potentially used in

convergent functional genomics research. We found that in

addition to the computational benefit of reducing the number of

reads to be processed in downstream steps, removing duplicate

sequences post-alignment will increase the quality SNPs called

overall. We found that aligning sequence reads to a genomic

rather than transcriptomic reference will increase the number of

SNPs called, with the additional SNPs occurring at bases not

currently curated as genic regions in human genome annotation

sets and greater specificity is achieved when aligning to the

genome. SAMtools identifies 8–10% more variants that GATK

and thus detects more true SNPs than GATK (higher sensitivity)

but also calls more false positives than GATK at low coverage

(lower specificity). When we applied our methods to multiple

RNA-seq datasets that had being prepared and sequenced with the

same methods (online samples NA12891 and NA12892), the

results for metrics of SNP detection were very reproducible. When

we compared these data to our original in-house sample

(NA12878), the main difference was the overall number of SNPs

detected. This indicated that the number of sequence reads used in

an analysis and original preparation of the sequencing library will

influence SNP detection. Despite this large difference in SNP

number, the only differences of note between the samples were

found at lower coverages. At .106 coverage, specificity and

sensitivity were very similar, again highlighting the reproducibility

of the methods. Overall, using appropriate methods and filters, a

very high proportion of SNPs called in RNA-seq data will be true

variants and RNA-seq SNP analysis will identify the majority of

variants present in expressed exons provided sufficient coverage is

available.
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