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Biological soil crusts (BSCs/biocrusts), which are distributed across various climatic
zones and well-studied in terrestrial drylands, harbor polyextremotolerant microbial
topsoil communities and provide ecological service for local and global ecosystem.
Here, we evaluated BSCs in the tropical reef islands of the South China Sea. Specifically,
we collected 41 BSCs, subsurface, and bare soil samples from the Xisha and
Nansha Archipelagos. High-throughput amplicon sequencing was performed to analyze
the bacterial, fungal, and archaeal compositions of these samples. Physicochemical
measurement and enzyme activity assays were conducted to characterize the soil
properties. Advanced computational analysis revealed 47 biocrust-specific microbes
and 10 biocrust-specific soil properties, as well as their correlations in BSC microbial
community. We highlighted the previously underestimated impact of manganese on
fungal community regulation and BSC formation. We provide comprehensive insight
into BSC formation networks on tropical reef islands and established a foundation for
BSC-directed environmental restoration.

Keywords: biological soil crust, tropical reef island, biocrust formation, microbiome, geographical distribution
pattern, enzyme activity

INTRODUCTION

Approximately 12% of Earth’s terrestrial surface is covered by biological soil crusts
(BSCs/biocrusts), which provide ecosystem services and impact biogeochemical fluxes on a
global scale (Grote et al., 2010; Castillo-Monroy et al., 2011; Elbert et al., 2012; Weber et al., 2015;
Mogul et al., 2017; Maier et al., 2018). However, recent research estimated that biocrusts will
decrease by approximately 25–40% within 65 years, mainly because of anthropogenic activities,
highlighting the urgent need for rehabilitation and conservation (Rodriguez-Caballero et al., 2018).

Biological soil crusts harbor polyextremotolerant microbial topsoil communities including
bacteria, archaea, fungi, lichen, and mosses, forming a model system for studying the assembly
principles of microbial communities. Based on the dominating photoautotrophic organisms,
biocrusts are categorized into the cyanobacterium-, lichen-, and moss-dominated types. Each
type exhibits distinct colors and morphologies representing successional stages (Bowker et al.,
2006b; Büdel et al., 2009; Weber et al., 2012). During the temporal development of BSCs, several
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key microbes have been found to stimulate pivotal events
in the successional process. First, filamentous cyanobacteria
(e.g., Microcoleus vaginatus) promote the initial surface soil
colonization and moisture-holding capacity by producing
polysaccharides (Mazor et al., 1996; Kuske et al., 2011; Pepe-
Ranney et al., 2015). Subsequently, heterotrophic diazotrophs
(e.g., Clostrideaceae and Proteobacteria) mediate N2-fixation in
the subsurface of early successional BSCs, whereas heterocystous
cyanobacteria (e.g., Scytonema, Spirirestis, and Nostoc) dominate
N2-fixation in the mature crusts (Yeager et al., 2007, 2012; Pepe-
Ranney et al., 2015). Together with environmental factors, these
species increase the moisture and nitrogen content of the topsoil,
generating a metabolic hub that increases microbial diversity
and population density and further favors seed germination
and vegetation establishment (Weber et al., 2016), so that
contribute to the development and succession of the whole
soil ecosystem (Hu and Liu, 2003; Lan et al., 2015; Couradeau
et al., 2016). Understanding the construction process of microbial
topsoil communities is valuable for modulating biocrust and
ecosystem stability.

Geographically, BSCs are common to arid and semi-arid
environments and are distributed among various climatic
zones, ranging from the Arctic Circle to the Namib Desert
in Africa (Büdel et al., 2009; Yoshitake et al., 2010; Williams
et al., 2017). BSCs in arid and semiarid regions have been
widely studied (Nagy et al., 2005; Gundlapally and Garcia-
Pichel, 2006; Zhang B. et al., 2016; Mogul et al., 2017; Zhang
et al., 2018), with Cyanobacteria, Proteobacteria, Actinobacteria,
Bacteroidetes, and Acidobacteria identified as the major bacterial
phyla. Moreover, high levels of endemism are present in global
BSC microbial communities (Büdel et al., 2009; Lan et al., 2015).
Such divergent biocrust microbial consortia are highly associated
with local environmental factors, such as radiation intensity,
topographic traits, soil structure, and soil types (Zaady et al.,
2000; Lan et al., 2012, 2015). A previous study demonstrated that
terrestrial dryland biocrusts improve soil quality by enriching
unique patterns of nutrient and metal elements via their diverse
microbial communities (Beraldi-Campesi et al., 2010). However,
BSC microbial community formation and the interaction of the
community with biotic and abiotic factors on tropical islands are
not well-understood.

Located in the western Pacific Ocean, the South China Sea
Islands encompass three archipelagos (i.e., Dongsha, Nansha, and
Xisha) with coral reefs as the predominant structure (Li et al.,
2013). Coral calcareous sand is the most important component of
coral reefs, but it is not conducive to the natural establishment of
vegetation. From the perspective of environmental and biological
elements, the coral reefs are regarded as “deserts” in the ocean,
which lacking real soil and freshwater resources, and have
extreme environmental characteristics, such as high salt, alkali,
temperature, and light. Meanwhile, because of their geographic
isolation, climate cycling, and ecological amplitude, the islands
in South China Sea are endowed with unique biodiversity
(Sivaperuman et al., 2008). Notably, soil and underground
freshwater resources support the ecosystems on coral reefs, the
key to livability (Zhao and Wang, 2015; Werner et al., 2017;
Han et al., 2020). Using biocrusts to change the “desert” state

of tropical reef islands is reminiscent of their application in
the desert ecosystem and extreme environment. However, BSCs
on tropical reef islands have rarely been reported. Previous
studies documented that in the tropical reef islands, biocrusts
play an important role in N-cycling in coral sand soil, and
contribute to soil stability to reduce soil loss (Collier et al.,
2021; Wang et al., 2021). Thus, understanding the biocrust
community endemism will provide mechanistic insight useful
for environmental rehabilitation in the terrestrial areas of
tropical reef islands.

Here, we aimed to answer the following questions: (1)
What is the composition of the biocrust microbiome derived
from coral calcareous sands on the tropical reef islands?
(2) What are the core microbes and key environmental
factors? (3) How do biocrust-enriched microbes associate with
their microenvironment in biocrust formation? Specifically, we
collected biocrust samples and their subsurface soil and bare
soil counterparts at 4 islands across the Nansha (NS) and Xisha
(XS) Archipelagos. High-throughput 16S rRNA gene (Bacteria
and Archaea) and fungal internal transcribed spacer (ITS)
region sequencing was performed to determine their microbial
composition. Additionally, biotic and abiotic soil properties such
as soil composition, chlorophyll content, and enzyme activities
were measured. Next, integrative bioinformatic analysis was
performed to identify key microbial operational taxonomic units
(OTUs) enriched in biocrusts on the reef islands, highlight
crucial environmental factors, and dissect the combinatorial
contribution of microbes and their correlated soil properties to
biocrust formation.

MATERIALS AND METHODS

Sampling and Storage
The BSC samples were collected from the Nansha Archipelago
and Xisha Archipelago, the South China Sea during May and June
2016. The islands are influenced by the tropical marine climate;
the average temperatures of Nansha and Xisha Archipelagos
are > 27◦C and 26–27◦C and their average annual precipitation
levels are∼2800 and∼1500 mm, respectively. Notably, biocrusts
in these areas were mainly the cyanobacteria-dominated type
(Wang et al., 2021). At each sampling site, topsoil (BSCs, top
0–1 cm of biocrusts), sub-surface soil (BSC_sub, the following 1–
3 cm of biocrusts), and bare soil (BS, top 0–1 cm of adjacent soil
containing no visible signs of biocrusts or black-crusted BSCs)
samples were collected using sterile spatulas. Due to the mobility
of cyanobacteria, some light crusts are not visually detectable,
thus possibly included in bare soil samples upon collection. All
collected samples were at least 100 m apart, including BSC and
bare soil samples. A total of 41 soil samples was collected, 8 BSC,
8 BSC_sub, and 8 BS samples in Nansha Archipelagos, 7 BSC, 7
BSC_sub, and 3 BS samples in Xisha Archipelagos.

Samples for soil properties assays were stored at 4◦C. The
samples used to evaluate the chlorophyll a (Chl a) were
transferred in Sterile Sampling Opaque Bags (EPN-4590, TWIRL
‘EM, Quebec City, QC, Canada) and stored in the dark at−20◦C.
Samples for DNA extraction were stored in 15-mL conical
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centrifuge tubes and preserved in LifeGuardTM Soil Preservation
Solution (MO BIO Laboratories, Carlsbad, CA, United States)
according to the manufacturers’ instructions.

Measurement of the Soil
Physicochemical and Biological
Properties
The physicochemical properties of the soil samples were
measured according to the Industry Measurement Standard of
China, including agricultural trade standards, forestry industry
standards, and national environmental protection standards
(Supplementary Table S1). Briefly, the pH values of samples
were analyzed electrometrically (Acosta-Martínez et al., 2007).
Soil organic carbon was measured by the dichromate oxidation
method of Walkey and Black (Nelson and Sommers, 1982).
Soil organic matter content was determined by the loss-on-
ignition method after heating the fresh soil for 24 h at 600◦C
(Schulte and Hopkins, 1996). Soil available kalium using the
1 mol/L NH4oAc Leaching-flaming luminosity (Chen et al.,
2007). Soil total nitrogen was determined using an Elementar
Vario EL analyzer (Matejovic, 1995), and soil total phosphorus
was determined by the H2SO4–HClO4 digestion method (Kuo,
1996). Soil available phosphorus was determined using the
Olsen method with NaHCO3 as an extractant (Kuo, 1996).
Soil available sulfur contents were measured as depicted by
Williams and Steinbergs (1959). Total water-soluble salts were
analyzed using methods described by the Nanjing Institute of
Soil Research and CAS (1980). Soil available boron content
was determined by the colorimetric method in a solution of
an alcohol-acetic mixture with quinalizarin at 610 nm (Kashin,
2012). Soil NO3-N and NO2-N were determined colorimetrically
as a combined value by the hydrazine sulfate reduction method
(Rand et al., 1975), soil NH4-N content was measured using
the phenohypochlorite method (Solórzano, 1969), soil NH3-N
concentrations was measured colorimetrically on a segmented
flow analyzer (AA3, Seal Analytical, Norderstedt, Germany) (Hu
et al., 2019). Soil available Zn, Cu, Mn, K, Ca, and Fe was extracted
with DTPA solution (Lindsay and Norvell, 1978), which consists
of 0.005 M DTPA + 0.01 CaCl2.2H2O + 0.1 triethanolamine
(TEA) with pH adjusted 7.3 0 ± 0.5, and determined by atomic
absorption spectrophotometer from HITACHI, Japan.

Chlorophyll a content was measured as a proxy of
photosynthetic biomass and to assess the developmental
stage of biocrusts in this study (Yeager et al., 2004; Couradeau
et al., 2016). Chl a was extracted from 2 g of soil samples by
incubation in 10 mL acetone (80%, v/v) at 4◦C for 20 h (Marker
and Jinks, 1982; Wellburn, 1994). The Chl a content of the filtered
solution was determined using a spectrophotometric method
with absorbance measured at 665 and 750 nm. Subsequently,
acid treatment using hydrochloric acid was incorporated into the
final calculation to increase the accuracy of the results (Lorenzen,
1967; Mush, 1980).

The activities of key enzymes involved in phosphorus,
carbon, nitrogen cycling, and peroxide degradation were
measured. Specifically, the activities of soil β-glucosidase (S-
β-GC), soil lipase (S-LPS), soil fluorescein diacetate hydrolase
(S-FDA), soil alkaline protease (S-ALPT), soil urease (S-UE),

soil alkaline phosphatase (S-AKP), and soil catalase (S-CAT)
were determined using soil system assay kits (Solarbio LIFE
SCIENCE, Beijing Solarbio Science & Technology Co., Ltd.,
Beijing, China) by the spectrophotometric method. Briefly, soil
urease activity was determined using urea as the substrate
and expressed as µg NH4

+-N d−1 g−1 (Liu et al., 2014).
Soil alkaline protease activity was measured by using casein
as the substrate (Zhang et al., 2015). Soil catalase activity
was determined by spectrophotometry via the measurement
of hydrogen peroxide breakdown (Trasar-Cepeda et al., 1999).
Soil alkaline phosphatase, soil lipase, and soil β-glucosidase
activities were measured by colorimetric determination of the
released p-nitrophenol (410, 400, and 410 nm, respectively),
with p-nitrophenyl phosphate, p-nitrophenyl butyrate, and
p-nitrophenyl β-D-galactoside as substrates (Zhang et al.,
2015; Sofi et al., 2016). Soil fluorescein diacetate hydrolase
activity was determined using fluorescein diacetate as substrate
colorimetrically at 490 nm (An and Kim, 2009).

DNA Extraction, Amplification and
Sequencing
Total DNA was extracted using a HiPure Soil DNA Kit
(Magen, Guangzhou, China) according to the manufacturer’s
instructions. The concentration and purity of genomic DNA
were determined using a NanoVuePlus Spectrophotometer
(GE Healthcare, Little Chalfont, United Kingdom). The V4
region of the bacterial 16S rRNA gene (primer set: 515F 5′-
GTGCCAGCMGCCGCGGTAA-3′, 806R 5′-GGACTACHV
GGGTWTCTAAT-3′), ITS1 region of fungal ITS (primer set:
ITS1f 5′-CTTGGTCATTTAGAGGAAGTAA-3′, ITS2 5′-GCT
GCGTTCTTCATCGATGC-3′), and V4-V5 region of
archaeal 16S rRNA gene (primer set: Arch519F 5′-
CAGCCGCCGCGGTAA-3′, Arch915R 5′-GTGCTCCCCCGC
CAATTCCT-3′) were amplified in triplicate from each sample
DNA extract with dual indices and adapters. The products
generated from standard thermocycling with an annealing
temperature, including 53◦C with 30 cycles for bacterial V4
and archaeal V4-V5 regions, and 53◦C with 35 cycles for
the ITS1 region, were pooled and sequenced at Magigene
(Biological Technology Co., Ltd., Guangzhou, China) on an
Illumina Hiseq 2500 platform (San Diego, CA, United States).
The raw sequencing data have been deposited in the National
Center for Biotechnology Information (Study accession
number PRJNA560457).

After quality checking of the raw sequencing data using
Trimmomatic (V0.33) (Bolger et al., 2014), the reads were merged
using FLASH (Version 1.2.11) (Magoč and Salzberg, 2011). The
flashed reads were processed using the Quantitative Insights into
Microbial Ecology (QIIME) software package (Version 1.8.0)
(Caporaso et al., 2011) and compared with Gold database (Haas
et al., 2011) using the UCHIME algorithm (Edgar, 2016) to
obtain effective tags (Bates et al., 2010a; Edgar et al., 2011;
Bokulich et al., 2012). Next, Uparse software (Uparse v7.0.1001)
(Edgar, 2013) was implemented to cluster the effective tags
into OTU with a threshold of 97% sequence identity (Edgar,
2013). For each representative sequence, the silva (for 16S,
Quast et al., 2012) and Unite (for ITS, Kõljalg et al., 2013)
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databases were used to annotate taxonomic information with a
confidence threshold of ≥0.5.

Statistical Analyses
Alpha diversity-related values, Chao1 (richness estimate) and
Shannon (diversity index) estimates of microbial communities
were calculated using QIIME (Version 1.8.0) (Caporaso et al.,
2011). One-way analysis of variance and post hoc comparison
using Tukey’s test was conducted to compare the soil properties
of different types of soil samples and the alpha diversity-
related values (SPSS version 18 software, SPSS, Inc., Chicago, IL,
United States). Additionally, permutational multivariate analysis
of variance (Anderson, 2001) was performed to determine the
pairwise statistical significance of differences among the three
groups (i.e., BSCs, BSC_sub, and BS, vegan package in R; Oksanen
et al., 2015). We graphically depicted multivariate relationships
of microbial communities based on the Bray–Curtis (Steinhaus)
distance using non-metric multi-dimensional scaling (NMDS,
vegan package in R; Kruskal, 1964; Oksanen et al., 2015). The
function envfit from the R vegan package was used to fit
environmental vectors onto the ordination (Oksanen, 2015).

Operational taxonomic units with differential abundance
levels in BSCs vs. BSC_sub and BSCs vs. BS were identified
based on a model using negative binomial distribution (DESeq2
package in R; Love et al., 2014). OTUs with fold-change
of abundance within the top and bottom 5% as well as
Benjamini–Hochberg-adjusted P-value < 0.01 were considered
as significantly increased and decreased species, respectively
(Love et al., 2014; Maier et al., 2018).

The niche breadth approach was applied to measure habitat
specialization as described by Pandit et al.(2009; Logares
et al., 2012) and using Levin’s niche breath index (Levins,
1968):

Bj =
1∑N

i=1 P2ij

where Bj indicates the habitat niche breadth and Pij is the relative
abundance of OTUj in a given habitat i. The average B-values
were measured from the microbial community among all soil
samples as an index of habitat niche breadth at the community
level. OTUs with mean relative abundances < 2 × 10−5 were
removed to avoid erroneous indication of specialists (Pandit et al.,
2009). Additionally, OTUs with B-values > 10 and <1.5 were
considered as habitat generalists and specialists, respectively,
as they were within the outlier area of the B distribution
(Supplementary Figure S1) (Logares et al., 2012; Luo et al., 2019).
Complementing the niche breadth approach, INDicator VALues
(INDVAL) analysis (labdsv package in R; Roberts, 2010) was used
to determine the specialists for BSCs (Dufrene and Legendre,
1997). OTUs with significant (P < 0.05) INDVAL values of
>0.3 among the specialists determined by niche breadth were
considered as strict specialists for BSCs (Liao et al., 2016; Luo
et al., 2019).

To identify the highly correlated OTU modules and their
association with soil physicochemical and biological properties,
we applied weighted gene co-expression network analysis

(WGCNA) (wgcna package in R; Langfelder and Horvath,
2008). To adapt to the negative binomial distribution of
the microbiomic datasets, we modified WGCNA by utilizing
Bray Curtis dissimilarity to cluster the microbial communities.
OTUs with highly similar relationships were classified as a
module, revealing their interconnectivity. Eigengene networks
were then applied to study the correlations of the OTU modules
with the physicochemical and biological traits of soil samples
(Langfelder and Horvath, 2007).

To visualize the correlations in the network interface, a
correlation matrix was constructed by calculating all the possible
pair-wise Spearman’s rank correlations between the key soil
properties and the signature OTUs (Zheng et al., 2018).
A correlation between two items was considered statistically
robust if the absolute value of Spearman’s correlation coefficient
(ρ) was > 0.35 and the P < 0.05, and the P-values were adjusted
with a multiple testing correction using the Benjamini–Hochberg
method (Benjamini et al., 2001; Li et al., 2015). We applied
the vegan R package (Oksanen, 2015) to perform the network
analysis, and used the Gephi interactive platform and Cytoscape
(version 3.5.1) (Shannon et al., 2003; Li et al., 2015) to make the
network visualization.

RESULTS

Physicochemical and Biological Soil
Properties
To extract soil properties indicative of the BSC formation
process, we performed one-way analysis of variance followed
by post hoc analysis to measure the statistical significance of
21 physicochemical and 8 biological (soil enzyme and Chl a
content) soil properties. Compared to bare soil (BS) and BSC
subsurface soil (BSC_sub), the pH values of biocrusts were
significantly lower, whereas the nitrogen contents, including soil
nitrate nitrogen (NO3-N) and soil ammonia nitrogen (NH3-
N) as well as soil available manganese (Mn), were significantly
higher in BSCs (Supplementary Figure S2 and Supplementary
Table S2). All biological soil properties evaluated except for soil
alkaline protease activity and soil lipase activity exhibited elevated
levels or enhanced enzymatic activities in BSCs (Supplementary
Figure S2 and Supplementary Table S4). In summary, the
10 soil properties (pH, Mn, NH3-N, NO3-N, Chl a, S-β-GC,
S-CAT, S-FDA, S-AKP, and S-UE) are considered as key
BSC soil features.

Microbial Diversity and Composition
Next, we performed bacterial and archaeal partial 16S rRNA
gene as well as fungal ITS1 sequencing to identify the microbial
composition in the BSCs, BSC_sub, and BS soil samples.
After quality filtering and the removal of potential chimeras,
2,732,516 bacterial, 2,854,485 fungal, and 1,437,029 archaeal
merged sequences remained.

Alpha diversity values determined as the Chao1 and Shannon
indices were applied to characterize the richness and diversity of
the microbial communities in different soil types, respectively.
The richness of bacterial species in BSCs was significantly higher
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FIGURE 1 | Dissimilarity of bacterial, fungal, and archaeal compositions in biocrusts comparing to sub-surface and bare soil samples. Ordination using NMDS is
derived from Bray–Curtis dissimilarity and applied to analyze the archaeal (A), fungal (B), and bacterial (C) communities. Circle shape represents soils from Nansha
Archipelagos whereas triangle represents Xisha Archipelagos. Different soil types are color coded. The function envfit from the R vegan package was used to fit
environmental vectors onto the ordination (environmental factor significant correlation with NMDS, P < 0.05). NMDS, non-metric multidimensional scaling; NS,
Nansha Archipelagos; XS, Xisha Archipelagos; BS, bare soil; BSC_sub, biocrust subsurface soil; BSCs, biocrusts; Mn, soil available manganese; NO3-N, soil nitrate
nitrogen; NH3-N, soil ammonia nitrogen; B, soil available boron; S, soil available sulfur.

than that in BS. Additionally, both the richness and diversity of
fungal species were greater in BSCs and BSC_sub comparing to
in BS. In contrast, the biocrusts richness, number of observed
species, and diversity of archaeal species were significantly
lower than those in BSC_sub (Supplementary Figure S3 and
Supplementary Table S3).

We observed significant differences in the microbiome in
BSCs compared to BS and BSC_sub (Supplementary Table S5).
Notably, NMDS analysis of bacteria, fungi, and archaea
revealed a common pattern in which BSC samples were closely
clustered, whereas BSC_sub and BS samples were relatively
scattered (Figure 1). Only bacterial communities were distinct,
while archaeal and fungal assemblages were not significantly
different in BSCs collected from NS and XS (Supplementary
Table S5). Except for the archaeal communities in BSC_sub,
the microbiome showed a geographical-dependent distribution
in BS and BSC_sub (Supplementary Table S5). Further, 7 soil
parameters (i.e., pH, soil available boron, soil available sulfur,
NO3-N, NH3-N, Ca, and Mn) were significantly correlated
with the NMDS axes of the bacterial, archaeal, and fungal
communities (Supplementary Table S6), which may contribute
to soil microbial heterogeneity on these reef islands (Figure 1 and
Supplementary Table S6).

Biological Soil Crusts-Associated
Operational Taxonomic Units
To identify key OTUs showing significant alterations in
abundance in BSCs compared to BSC_sub and BS, we performed
differential analysis based on the negative binomial distribution
(DESeq2) of the microbiomic datasets. As illustrated by the
volcano plots, 217 and 31 bacterial OTUs as well as 7 and 1
fungal OTUs were commonly enriched and impoverished in
BSCs, respectively (Figure 2). OTUs with significant alterations
in BSCs were grouped by their families and phyla, and were
listed by the fold-change in their abundance (Supplementary
Figure S4). Notably, most Cyanobacteria (highly abundant

bacterial phyla) and Chloroflexi (abundant bacterial phyla) were
enriched in BSCs, whereas the relative abundances of Firmicutes
(highly abundant bacterial phyla), Actinobacteria (abundant
bacterial phyla), Nitrospirae (low abundance bacterial phyla), and
WS3 (low abundance bacterial phyla) were decreased in BSCs
(Supplementary Figure S4).

In analysis of the niche breadth, we identified 518
(13.0%) generalists and 540 (13.5%) specialists among
all soil samples (Figure 3). Particularly, eight species
were identified as core generalists (ubiquity cutoff: 94%,
abundance cutoff: 4%, Figure 3), which were affiliated
with Nitrososphaeraceae, Erythrobacteraceae, Ellin6067
(Betaproteobacteria), Ellin6075 (Chloracidobacteria), Ellin517
(Pedosphaerales), Chitinophagaceae, and Comamonadaceae.
Through a combination of niche breadth and INDVAL analyses,
47 OTUs were identified as strict specialists associated with
BSCs (Supplementary Table S7), 31 of which were strictly
classified at the family level, including Cytophagaceae (2 OTUs),
Flammeovirgaceae (2 OTUs), Cryomorphaceae (1 OTU), A4b
(Anaerolineae, 2 OTUs), Chloroflexaceae (2 OTUs), Nostocaceae
(1 OTU), Scytonemataceae (2 OTUs), Cyanobacteriaceae (1
OTU), Phormidiaceae (2 OTUs), Pseudanabaenaceae (6 OTUs),
Lecanorales_fam_Incertae_sedis (1 OTU), Orbiliaceae (1 OTU),
Helvellaceae (1 OTU), Pezizomycotina_fam_Incertae_sedis
(2 OTUs), Glomerellaceae (1 OTU), Psathyrellaceae (1
OTU), Tulasnellaceae (2 OTUs), and Sebacinaceae (1 OTU)
(Supplementary Figure S5 and Supplementary Table S7).

Integrative Networks Analysis of Soil
Properties and Microbiome
We evaluated whether variations in microbial compositions
were associated with BSC-specific soil properties through
WGCNA. The interconnectivity among all 26,917 OTUs
was assessed through dissimilarity clustering, OTUs with
highly similar occurrence, including frequency and relative
abundance in the community, were classified as a module
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FIGURE 2 | Archaeal, fungal, and bacterial OTUs with significantly altered abundance in BSCs comparing to BS and BSC_sub. Volcano plots represent the
significantly increased (green) and decreased (red) OTUs (DESeq2, Benjamini-Hochberg adjusted p-value < 0.01, fold-change within top and bottom 5%) in archaeal
(A), fungal (B), and bacterial (C) communities in BSCs comparing to BS and BSC_sub as indicated. Log2-transformed fold-change values of the relative abundance
(X-axis) are plotted against adjusted P-values (unify P-value across the main text) (Y-axis). Venn diagrams illustrate the statistics of significantly increased and
decreased OTUs corresponding to the right or bottom panel. Families with the top2 highest numbers of significantly co-altered OTUs are denoted as Phylum_Family
(co-altered OTU number). BS, bare soil; BSC_sub, biocrust subsurface soil; BSCs, biocrusts.

(Supplementary Figures S6A–C). Next, the correlations among
the modules and soil properties were subsequently calculated by
using eigenvalue (Langfelder and Horvath, 2007). Among the 31
modules and 30 soil properties showing at least one significant
correlation (correlation coefficient p-value < 0.05; Figure 4),
biocrust was significantly positively and negatively correlated
with the module eigenvalues of module 31 and 3, respectively
(Figure 4). Notably, the module 1, 3, 6, 27, 29, 30, and 31 strongly
correlated with BSCs contained high percentages of significantly
altered OTUs (among the top three negatively and top four
positively correlated modules; Figure 4 and Supplementary
Figure S7A). Additionally, the modules positively correlated with
BSCs (except for module 31) comprised most BSC-specialists
(Supplementary Figure S7B). Further, correlation analysis
on biocrust-enriched OTUs and their microenvironmental
properties within identified modules detailed the crucial
associations (Figure 5). These observations uncovered the crucial
microbial sub-communities in cyanobacterium-dominated BSCs
on the tropical reef islands, South China Sea.

While WGCNA revealed the correlations among BSC-
featured soil properties and microbial sub-communities, the
relationship between key environmental factors and microbes
remained unclear. We employed the co-occurrence network
to integrate key soil properties representing BSC traits (i.e.,
pH, Mn, NO3-N, NH3-N, Chl a, S-β-GC, S-CAT, S-FDA,

S-AKP, and S-UE) as well as signature OTUs comprising co-
increased/decreased species (Figure 2), core generalists, and
BSC-associated strict specialists. Notably, the key soil properties
were significantly correlation with the microbial community and
highly correlated with biocrusts (absolute value of correlation
value > 0.5). Five BSC-associated microbial modules (i.e., module
20, 23, 28, 30, and 31), which were highly correlated with at least
three key BSC soil features and at least one signature OTU, were
selected to generate the co-occurrence network (Figure 5 and
Supplementary Table S8).

The network in Figure 5 was used to visualize the correlation
of key BSC features with the signature OTUs based on Spearman’s
correlation coefficient (ρ) and P-value. In the Figure 5,
the species that contain chlorophylls/bacteriochlorophylls
or impact chlorophyll contents possess more complicated
relationship in the network, which means that these OTUs
play an important role in the network constructure. We
observed that bacteria_OTU639 (Leptolyngbya), OTU11
(Phormidiaceae), OTU6251 (RB41), OTU87 (Cyanobacteria),
OTU393 (Leptolyngbya), OTU1263 (Acetobacteraceae),
OTU97 (Nostocales), and fungi_OTU25 (Pleosporales), OTU34
(Leprocaulon) were positively significant correlated with Mn
that enhanced in biocrusts (Figures 5A,B). However, the key
soil properties, i.e., pH and S-FDA, were negatively correlated
with the signature OTUs that in the network (Figures 5A,C,D).
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FIGURE 3 | Analysis of habitat specialists and generalists. Niche breadth of
OTUs identified across all sample types (BS, BSC_sub, and BSCs). Each
symbol represents an OTU. OTUs that are present along a wider range of
habitats have a higher niche breadth value and are considered habitat
generalists (green), while OTUs with a niche breadth value < 1.5 are
considered habitat specialists (red), and the black circles represent OTUs that
could not be defined as generalists or specialists. Generalists with highest
abundance (ubiquity cutoff: 94%, abundance cutoff: 4%) are considered as
core generalists (green triangle). Specialists with significant INDVAL values
(cutoff: >0.3) are specialists for BSCs (red triangle). Numbers outside of the
square was represent the number of OTUs for each category. BS, bare soil;
BSC_sub, biocrust subsurface soil; BSCs, biocrusts.

Additionally, the biocrust-enhanced Chl a content was positively
correlated with bacteria_108 (Anaerolineae), which was
significantly enriched in BSCs (Figure 5C). Notably, in addition
to bacteria members, fungi_OTU34 (Pleosporales) was observed
to be associated with S-UE (Figure 5B).

DISCUSSION

We performed the first study on biocrusts by integrating
the bacterial, fungal, and archaeal microbial communities.
We observed that the microbial composition in biocrusts
is distinct from that in bare soil. Specifically, the relative
abundances of major microbial phyla in the BSCs, including
Cyanobacteria, Chloroflexi, Ascomycota, and Thaumarchaetota,
were significantly increased compared to in the BS (Figure 2).
As the biocrusts collected from the South China Sea were mostly
in the early successional stage, the enrichment of Cyanobacteria
facilitates soil stabilization in the tropic reef islands, South
China Sea (Mazor et al., 1996). Moreover, Cyanobacteria
proliferation contributes to the cycling of organic matters

and nutrients in biocrusts and promotes the recruitment of
diverse microbial communities (Castenholz et al., 2001; DeFalco
et al., 2001; Pendleton et al., 2003), facilitating the formation
and development of BSC (Belnap and Lange, 2003; Garcia-
Pichel and Wojciechowski, 2009). As one of the anoxygenic
photosynthetic bacteria phyla, Chloroflexi lives phototrophically
under anaerobic conditions (Hanada, 2019), and may be
enriched in the below-crust portion of BSCs (Steven et al.,
2013) to support carbon fixation. Ascomycota is a major
fungal phylum in the cyanobacterium-dominated biocrusts. The
enrichment of Ascomycota enhances fungal-loop formation,
which translocate N from NH4

+ over NO3
− to facilitate nitrogen

cycling (Aanderud et al., 2018). Further, the major archaea
phyla, Thaumarchaeota, is highly enriched in the BSCs and
serves as an important biogeochemical agent of biocrust N
cycling (Marusenko et al., 2013). Notably, Cyanobacteria and
Thaumarchaeota were enriched in the BSCs compared to in
BS and BSC_sub. Additionally, 17 Cyanobacteria, 4 Chloroflexi,
and 10 Ascomycota OTUs were identified as strict specialists
associated with BSCs, comprising of ∼66% of the strict specialist
category (Figure 3), suggesting their substantial contributions to
BSC formation and development.

Compared to BS, BSC exhibits higher homogeneity with
BSC_sub in terms of microbial composition (Figure 1). Previous
studies demonstrated that BSC microbial communities act as
primary producers of local nutrients, transferring and cycling
inorganic and organic soil components to the heterotroph
communities in the subsurface (Dettweiler-Robinson et al., 2018;
Maier et al., 2018). We propose that nutrient transfer and
diffusion from the autotrophs in the BSCs to the heterotrophs
in the BSC_sub led to the microbial and physicochemical
similarity between BSCs and BSC_sub. It has also been reported
that under dark dim light and moisture conditions, many
subsurface populations of filamentous cyanobacteria migrate
vertically to the surface; when sensing impending drought,
these species return to their subsurface refuge (Garcia-Pichel
and Pringault, 2001; Pringault and Garcia-Pichel, 2004). Thus,
microbial vertical migrations, together with nutrient cycling
between BSCs and BSC_sub, may contribute to the connectivity
in microbial composition.

This is also the first comprehensive investigation of the
spatial distribution of biocrusts in tropical reef islands.
Although microorganisms (i.e., bacteria, fungi, and archaea)
thrive together in the biocrusts, their geographical distribution
patterns are distinct. Notably, bacterial communities exhibit
significant differences in relative abundance between the
Nansha Archipelagos and Xisha Archipelagos (Figure 1C and
Supplementary Table S5). This observation is consistent with
those of a previous study in the southwestern Idaho and
Colorado Plateau, demonstrating that the geographic distribution
impacts the BSC bacterial community (Steven et al., 2013;
Blay et al., 2017). Additionally, this geographic heterogeneity
in the microbial community was not observed for fungi or
archaea, as neither exhibited differences in relative abundance
between NS and XS (Figures 1A,B and Supplementary
Table S5). In contrast, Steven et al. (2015) demonstrated
a high level of spatial variability in the biocrust fungal
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FIGURE 4 | Weighted gene co-expression network analysis (WGCNA). The correlation among 53 modules (Y-axis) and 31 soil properties (X-axis) are illustrated in
the heatmap. Positive correlation value is represented by red and negative by blue. The “*” in the cells are presented as microbial module significantly correlating with
soil properties (P < 0.05). Pie charts on the right side of the indicated modules represent the percentage of significantly increased (red) and decreased (blue) OTUs in
biocrust. Pp, Precipitation; B, Soil Available Boron; OM, Organic Matter; OC, Organic Carbon; SAP, Soil Available Phosphorus; SEC, Soil Exchangeable Calcium;
SAK, Soil Available Kalium; K, Kalium; Ca, Calcium; Zn, Soil Available Zinc; Cu, Soil Available Copper; Fe, Soil Available Iron; Mn, Soil Available Manganese; TWSS,
Total Water Soluble Salt; STP, Soil Total Phosphorus; S, Soil Available Sulfur; STN, Soil Total Nitrogen; NO2-N, Soil Nitrite Nitrogen; NO3-N, Soil Nitrate Nitrogen;
NH4-N, Soil Ammonium Nitrogen; NH3-N, Soil Ammonia Nitrogen; Chl a, chlorophyll a; S-β-GC, soil β-glucosidase activity; S-LPS, soil lipase activity; S-FDA, soil
FDA hydrolase activity; S-ALPT, soil alkaline protease activity; S-UE, soil urease activity; S-AKP, soil alkaline phosphatase activity; S-CAT, soil catalase activity.

community across the Colorado Plateau, except for a few
conserved fungal lineages (predominantly belonging to order
Pleosporales). As the samples from the Colorado Plateau were
collected from sand soil and shale soil, whereas our NS and
XS samples were uniformly collected from coral sand, the
distinct physicochemical soil properties likely contribute to the
different fungal distribution patterns in the BSCs observed
by Steven et al. (2015). In agreement with our observation
regarding the archaeal community spatial distribution, Soule
et al. (2009) reported that archaeal populations were stable
with no significant differences in diversity and maintain a high
degree of conservation in the community composition in all
types of biocrusts.

Further, we investigated the environmental drivers impacting
the microbial communities in the tropic reef islands, South China
Sea. Nitrogen contents, including nitrate and ammonia nitrogen,
are highly enriched in the BSCs and significantly correlated with
bacterial communities (Figure 1). As BSC-nourishing nutrients,
nitrogen contents have been reported to determine the biocrust
bacterial and fungal composition in coastal dunes (Schulz
et al., 2016) and deserts (Zhang T. et al., 2016). Additionally,
manganese is also enriched in the biocrusts and significantly
associated with the fungal community. Consistently, a positive
correlation between manganese availability and lichen/moss
abundance in the biocrusts was previously established (Bowker
et al., 2005). Moreover, fungi-mediated manganese accumulation
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FIGURE 5 | The network analysis revealing the correlation of the key properties with the signature OTUs. A correlation between two items was considered
statistically robust if the absolute value of Spearman’s correlation coefficient (ρ) was > 0.35 and the P < 0.05. The nodes were the signature OTUs and the key
properties, which from microbial modules, module 28 (A), module 20 (B), module 30 (C), module 23 (D), and module 31 (E). OTUs were colored according to OTUs
classification information. The size of each node was proportional to the number of connections. Graphics were generated in Cytoscape 3.5.1 using a circular layout.
Chl a, chlorophyll a; GC, soil β-glucosidase activity; FDA, soil FDA hydrolase activity; UE, soil urease activity; CAT, soil catalase activity; NO3-N, soil nitrate nitrogen.
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and oxidation has also been reported (Thompson et al.,
2005). These results highlight the underappreciated role of
manganese in biocrust formation. Given the biological functions
of manganese, we predict that manganese-oxidizing microbes
in the BSCs utilize and accumulate manganese to facilitate
photosynthesis (Barber, 2008), and nitrogen cycling (Zehr and
Ward, 2002; Thompson et al., 2005). In addition, we observed
that the pH is lower in the BSCs compared to in the BS and
BSC_sub (Supplementary Figure S2) and significantly correlated
with bacterial and fungal communities (Figure 1). In support
of this observation, the pH has been shown to impact bacterial
and fungal communities in biocrusts in the Gurbantunggut
Desert (China), Intermountain West (United States), and Glacier
Foreland (Norway) (Zhang B. et al., 2016; Blay et al., 2017;
Borchhardt et al., 2019). Furthermore, our results demonstrated
that the calcium contents were significantly correlated with the
archaeal and fungal communities (Figure 1). Although it was not
observed in this study, calcium contents are known to be highly
correlated with the cyanobacterial and lichen communities in
Arctic soil crusts (Dickson Land, Svalbard) and lichen-dominated
biocrusts (Colorado Plateau, United States) (Bowker et al., 2006a;
Pushkareva et al., 2015). In general, these results underscore the
key physicochemical soil properties (i.e., NH3-N, NO3-N, pH,
Mn, and Ca) contributing to BSC formation and development.

We investigated the impact of physicochemical soil features
and microbial communities on BSC soil enzymatic activities.
Our data demonstrated that the soil biological properties,
including S-FDA, S-β-GC, S-AKP, S-UE, S-CAT, and Chl a,
were significantly enhanced in the biocrusts (Supplementary
Figure S2) and highly correlated with BSC microbial assemblages
(Figure 4). Specifically, upon biocrust development, we observed
that the pH value decreased from 9.6 to 8.8 (Supplementary
Figure S2). Compared to the highly alkaline state in the BS,
a relatively physiological soil pH in the BSCs may improve
enzymatic performance, preserve enzyme conformation, and
increase the solubility of substrates and cofactors for most
enzymes (Quiquampoix, 2000). In addition, manganese was
enriched in the biocrusts. Manganese is known to aid in
chlorophyll synthesis and photosynthesis (Schmidt et al., 2016)
and facilitate enzymatic activities of β-glucosidase (Olajuyigbe
et al., 2016), alkaline phosphatase (Fitt and Peterkin, 1976), and
manganese catalase (Whittaker, 2012). The combinatorial role of
manganese-enhanced photosynthesis and enzymatic activation
may contribute to BSC development. Elevation of nitrogen
contents was also observed in our study and likely stimulates
microbial community development and the energy supply for
enzyme production (Fontaine et al., 2003; Yuan and Yue,
2012).

In addition to the physicochemical soil properties, the
microbial abundance and composition have been reported to
impact BSC enzymatic activities (Bates et al., 2010b; Castillo-
Monroy et al., 2011). In this study, WGCNA analysis showed
that several OTU modules were strongly correlated with soil
enzyme activities. Further, network-based analysis revealed that
seven microbial species significantly correlated with the critical
soil enzyme activities (Figure 5); among them, five belong to
the phylum Cyanobacteria. This is consistent with the prediction

that Cyanobacteria significantly alter soil enzymatic activities (de
Caire et al., 2000; Zhang et al., 2012).

According to a previous study, the earliest stage of
biocrust formation in drylands is soil surface stabilization
via filamentous Cyanobacteria (Scott, 1982; Büdel et al., 2016).
In this study, 39.2% of nodes (key OTUs) were belong to
the phylum Cyanobacteria according to network analysis
(Figure 5), to affect BSC formation possibly by producing
exopolysaccharides (Bellezza et al., 2003; Felisberto and
Souza, 2014), stabilizing erodible substrates (Garcia-Pichel
and Wojciechowski, 2009), and fixing CO2. Moreover, the
BSC-specific bacteria_OTU17 (Erythrobacteraceae), OTU142
(Rubellimicrobium), OTU380 (Caulobacteraceae), OTU562
(Acetobacteraceae), OTU1263 (Acetobacteraceae), OTU14513
(Sphingomonadaceae), OTU31164 (Sphingomonadaceae),
OTU8543 (Sphingomonadaceae), and OTU134 (Sphingomonas),
account for 12.2% of the key OTUs, were potentially group
of aerobic anoxygenic phototrophic bacteria (Figure 5),
which could promote the development of BSC in drylands
(Tang et al., 2018, 2021). Additionally, the bacterial
family Sphingomonadaceae has been reported to produce
exopolysaccharides and synthesize bacteriochlorophyll, assisting
in soil particle bonding and increasing the biomass of the
biocrusts (White et al., 1996; Tonon et al., 2014). Taken
together, our analysis suggests that these two groups are
critical for BSC formation and development in the tropic
reef islands, South China Sea, possibly by enhancing BSC
soil stabilization and biomass. In the network analysis, we
also observed that many species, most of which contains
chlorophylls/bacteriochlorophylls, were significantly correlated
with the soil pH or Mn (Figure 5). This is mainly due to the
fact that Mn and soil pH could regulate chlorophyll synthesis
and photosynthesis rate (Quiquampoix, 2000; Schmidt et al.,
2016), which in turn leads to the enrichment of related species
in the biocrusts. These results demonstrate that BSC-enriched
microorganisms, their biochemical properties, together with
BSC-associated environmental factors, generate a multi-level
network relationship that modulates the biocrust formation and
development in the tropic reef islands, South China Sea.

CONCLUSION

We first comprehensively investigated the microbiome
composition in biocrusts on tropical reef islands and observed
cyanobacterium-dominant characteristics in the early stage.
Moreover, the microbiome in BSCs was distinct from that in bare
soil and beneath the soil. The geographical distribution pattern
of the bacterial community differed from the fungal and archaeal
communities in BSCs on the tropical reef islands. In addition to
geographical isolation, the biocrust microbial community was
affected by soil properties including pH, soil available sulfur, soil
available boron, soil available manganese, calcium content, soil
nitrate nitrogen, and soil ammonia nitrogen. We identified 518
generalists and 540 specialists among all soil samples. A total of
47 OTUs was identified as strict specialists associated with BSCs.
Further, we revealed the correlations of the signature species
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and soil properties in BSC microbial community. This study
improves the understanding of the initiation and process of
biocrust development on tropical reef islands, and the effects of
microbes on this process.
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