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Abstract: This study aims to compare soluble (pro)renin receptor [s(P)RR] levels between black
and white adults and to explore the associations of left ventricular (LV) structure and function
with s(P)RR in the total and ethnicity-stratified groups. The study sample included 1172 appar-
ently healthy black (n = 587) and white (n = 585) participants of the African-PREDICT study aged
20–30 years. Echocardiography was performed to determine relative wall thickness (RWT), LV mass
index, LV ejection fraction and stroke volume index (SVi). s(P)RR was analyzed from serum samples,
while plasma renin activity-surrogate (PRA-S) and eq angiotensin II were determined using the
RAS™ Fingerprint. s(P)RR was higher in the white participants compared to the black participants
(p < 0.001). In multivariable-adjusted linear regression analyses, we observed a positive association
between RWT and s(P)RR (β = 0.141; p = 0.005) and negative associations of LV ejection fraction
(β = −0.123; p = 0.016) and SVi (β = −0.144; p = 0.004) with s(P)RR only in white adults. Higher
s(P)RR observed in white vs. black participants was associated with higher RWT and poorer LV
function only in young white adults but not in their black counterparts. These results suggest that
s(P)RR may contribute to LV remodeling and dysfunction in white populations due to its role in
volume–pressure regulation and its proinflammatory as well as profibrotic effects.

Keywords: renin; soluble (pro)renin receptor; ethnicity; relative wall thickness; left ventricular mass
index; left ventricular ejection fraction; stroke volume

1. Introduction

The renin angiotensin system (RAS) is the major hormonal system involved in the
regulation of fluid balance and blood pressure (BP) [1]. Consequently, this system forms
the hallmark of therapeutic interventions in the treatment of hypertension and cardio-
vascular disease (CVD) [2,3]. Activation of RAS is initiated by the release of the enzyme
renin from the juxtaglomerular apparatus in response to low perfusion pressure, among
others [4,5]. Renin cleaves circulating angiotensinogen to form angiotensin I (AngI), which
is then converted to angiotensin II (AngII) by angiotensin-converting enzyme (ACE) [4,5].
AngII directly and indirectly contributes to pathophysiological mechanisms leading to
cardiac damage and remodeling, such as left ventricular (LV) remodeling, hypertrophy
and associated complications [6–8]. The mechanisms, which are mediated by activation of
the AngII receptor type 1 (AT1R) include chronic elevation of BP, inflammation, oxidative
stress, tissue growth and cell proliferation [9,10].
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(Pro)renin receptor [(P)RR], with an affinity for both prorenin and active renin, is ex-
pressed in various organs, including cardiac myocytes, the kidney and brain [11–13]. When
activated, (P)RR elicits proinflammatory and profibrotic effects through the AngII-AT1R
axis and intracellular signaling pathways such as mitogen-activated protein kinase (MAPK)
and extracellular signal-regulated kinase 1/2 (ERK1/2) [13,14]. In earlier studies on the
role of (P)RR as a biomarker, it was shown that binding of prorenin to (P)RR resulted
in activation of MAPK p44/42 and tissue-growth factor-β (TGF-β), leading to increased
contractility, hypertrophy and fibrosis [11,15]. Soluble (P)RR [s(P)RR], a product of (P)RR
cleavage, is adversely linked to lipid and glucose metabolism and BP in mice [16]. In
human studies, patients with heart failure presented with higher plasma s(P)RR levels as
compared to healthy controls [17]. Observations on (P)RR and s(P)RR in relation to target
organ damage have prompted suggestions that blockade of renin receptors may serve
as a target for tissue protection [5]. However, evidence on the use of s(P)RR as a clinical
marker is inconclusive, possibly due to limited data in population studies, especially on
circulating s(P)RR. Nguyen et al. [18] showed that s(P)RR differed by ethnicity, being lower
in black (n = 9) as compared to white men (n = 10). For the s(P)RR comparison, the study
included a small sample of black and white participants, highlighting the need for further
studies in human populations to confirm the ethnic differences in s(P)RR. Ethnic differences
are important when investigating RAS due to the known lower levels of classical RAS
components in black populations as compared to their white counterparts, and the impact
on response to some classes of antihypertensive drugs [19–21].

Previous studies that included data from the African Prospective study on Early Detec-
tion and Identification of Cardiovascular disease and HyperTension study (African-PREDICT
study) [22] have identified some of the biomarkers that may contribute to early cardiac
deterioration. These markers include some of the well-known RAS components (renin,
AngII, aldosterone excess) and sodium excretion [23–26]. Exploring the possible contribu-
tion of s(P)RR to LV structure and function will add to the knowledge and identification of
potential targets for therapeutic intervention, given the scarcity of human data on s(P)RR.
This study therefore compared s(P)RR levels between apparently healthy young black and
white adults and explored whether LV structure and function are associated with s(P)RR in
the total and ethnicity-stratified populations.

2. Materials and Methods
2.1. Study Design and Population

This study utilized data from participants of the African-PREDICT study. The study
sample included 1202 young adults prospectively followed over time to identify novel
and early markers of cardiovascular risk [22]. To be eligible, participants were required to
be self-reported black or white men and women, aged 20–30 years, with screening office
BP <140/90 mmHg. Pregnant or lactating women, individuals who were on chronic medi-
cation or those who had been previously diagnosed with a chronic health condition were
excluded. The present substudy used cross-sectional baseline data from 1172 participants
with complete data for s(P)RR and echocardiographic measurements.

All participants gave written informed consent. The African-PREDICT study was ap-
proved by the Health Research Ethics Committee of the North-West University
(NWU-00001-12-A1) and complied with the Declaration of Helsinki criteria for human
research. The study is registered on ClinicalTrials.gov (NCT03292094).

2.2. Demographic, Anthropometric and Physical Activity Measurements

Participant’s age, sex, ethnicity, alcohol, tobacco and medication use, and family
history were obtained using a demographic and health questionnaire. The socioeconomic
status (SES) of each participant was obtained using the Kuppuswamy’s Socioeconomic
Status Scale 2010 adapted to the South African context [27]. The socioeconomic score was
calculated based on skill level, education and household income by using a point system
from the scale.
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All anthropometric measurements were performed using the International Standards
for Anthropometric Assessment [28] and included weight (kg) (SECA electronic scales,
SECA, Birmingham, UK), height (m) (SECA stadiometer, SECA, Birmingham, UK) and
waist circumference (WC) (Holtain, Crymych, UK). Body mass index (BMI) was calculated
using the standard weight (kg)/height (m2) calculation. Body surface area (BSA) (m2) was
additionally calculated using the Mosteller formula [29].

The ActiHeart device (CamNtech Ltd., England, UK), which was worn for a maximum
of 7 days, was used to calculate average daily activity-energy expenditure (AEE) [30].

2.3. Cardiovascular Measurements

Ambulatory BP data was collected over a 24 h period using CardXplore devices
(MediTech, Budapest, Hungary), programmed to take recordings every 30 min during the
day (0600 to 2200 h) and every hour during the night (22:00 to 06:00 h). The device was
fitted to each participant at approximately the same time every day (late morning), using
an appropriately sized cuff as specified by the manufacturer. The mean inflation rate for
this study population was calculated as 88% (standard deviation ± 12.3).

A standard transthoracic echocardiography procedure was followed while each par-
ticipant was in a partial left decubitus position with the head of the examining table
moderately elevated. The General Electric Vivid E9 device (GE Vingmed Ultrasound A/S,
Hearten, Norway) was used along with the 2.5 to 3.5 MHz phased-array transducer and a
three-lead electrocardiograph for timing purposes. Standardized methods were employed
to obtain high-quality recordings according to the latest guidelines of the American Society
of Echocardiography. LV mass was indexed for BSA (LVMi) and end-diastolic volume
(EDVi), end-systolic volume (ESVi), LV internal diameter and posterior wall thickness at
diastole for body height and stroke volume for height to the power of 2.04 (SVi) [31–33].

2.4. Biological Sampling and Biochemical Analyses

Participants were required not to eat or drink anything except water overnight for at
least 8 h prior to undertaking the research measurements. Blood samples were collected
early in the morning by a qualified nurse. The samples were then prepared according to
standardized protocols and stored at −80 ◦C until the time of analysis. Serum samples
were analyzed for creatinine, C-reactive protein (CRP), total and low- and high-density
lipoprotein cholesterol (TC, LDL-c, HDL-c), glucose and gamma-glutamyl transferase
(GGT) (Cobas Integra 400plus, Roche, Basel, Switzerland).

Components of the RAS including PRA-s, ACE-s (eq AngII/eq AngI) and eq AngII
were analyzed using the RAS-Fingerprint® (Attoquant Diagnostics, Vienna, Austria). An-
giotensin peptides were quantified based on a liquid chromatography coupled to tandem
mass spectrometry (LC-MS/MS) multiplex assay in equilibrated serum volumes of 350 µL.
Following a solid-phase-based and internal-standard-controlled extraction procedure, the
LC-MS/MS quantification was performed using highly specific and simultaneous multiple
reaction monitoring (MRM) detection of endogenous angiotensin peptides and internal
standards [34,35]. Equilibrium angiotensin levels were further used to calculate a surrogate
marker of renin enzyme activity, PRA-s (eq AngI + eq AngII). We measured serum s(P)RR
(Immuno-Biological Laboratories Co., Ltd. (IBL-Japan)) and plasma prorenin (Human
Prorenin ELISA Kit (Biovendor Laboratorni Medicina, Karasek, Czech Republic)). Esti-
mated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease
Epidemiology (CKD-EPI) formula without the race factor [36,37].

Each participant self-collected a 24 h urine sample on a day that was convenient
for them, as recommended by the Pan American Health Organization/World Health
Organization (PAHO/WHO) [38]. Urine samples were aliquoted and placed in a −20 ◦C
freezer until analyses. Urinary creatinine, sodium and potassium were then measured
using ion-selective electrode potentiometry on the Cobas Integra® 400 plus (Roche, Basel,
Switzerland) and were then used to calculate the 24 h urinary sodium:potassium ratio
(Na+/K+).
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2.5. Statistical Analyses

Data analysis was performed with Statistica v13.3 (TIBCO software, Palo Alto, CA,
USA). Prior to statistical analyses, normality assumption for quantitative variables was
assessed using the Kolmogorov–Smirnov test and visual inspection of histograms. Nor-
mally distributed data were reported as the mean and standard deviation, and natural-
logarithmically transformed data were presented by the geometric mean with 5th and
95th percentiles. Means across quartiles of s(P)RR were compared using ANOVA, fol-
lowed by post hoc analyses where indicated, to compare pairwise means between quartiles.
Chi-squared tests were used to compare quartiles of s(P)RR with qualitative variables. Inde-
pendent sample t-tests were used to compare black and white participants. Ethnicity-pooled
and ethnicity-specific regression analyses were performed to account for the well-known
ethnic heterogeneity in RAS activity [19,25]. Candidate independent variables included
age, ethnicity (in ethnicity-pooled analysis), sex, waist circumference, socioeconomic score,
24 h diastolic blood pressure, eGFR, Na+/K+, glucose, LDL-c, CRP, smoking, alcohol use
and AEE as independent variables. Variables considered for entry in the multivariable
linear regression analysis were chosen based on clinical, exploratory bivariate analysis,
and partial correlations. Linear relationships were summarized using Pearson correlation
coefficients and linear regression slopes and 95% confidence intervals. The proportion of
variation in s(P)RR accounted for by regression models was summarized using adjusted R2.
A p-value < 0.05 was considered statistically significant.

3. Results
3.1. Descriptive and Linear Regression Analyses
3.1.1. Characteristics of the Study Sample

Ethnicity-pooled quartiles for s(P)RR were <20.40, 20.4–22.69, 22.70–25.31, and
≥25.31 ng/mL for Quartiles 1, 2, 3 and 4, respectively. Table 1 presents the profile of
the participants stratified according to quartiles of s(P)RR. The proportion of women
(p-trend = 0.008) and black participants (p-trend < 0.001) decreased with increasing quartiles
of s(P)RR. All measures of body composition increased with s(P)RR (all p-trend < 0.001).
24 h systolic and diastolic BP increased with increasing s(P)RR (p-trend ≤ 0.001), SBP:
114 mmHg in quartile 1 vs. 120 mmHg in quartile 4, p < 0.001). End diastolic and systolic
volume indices increased with s(P)RR quartiles (both p-trend < 0.001). LV internal diameter
and posterior wall thickness at diastole and left atrial diameter to aortic root ratio (LA/Ao
ratio) linearly increased across quartiles s(P)RR (all p-trend ≤ 0.022). Components of RAS
increased across s(P)RR quartiles (all p-trend ≤ 0.032), while 24 h urinary Na+/K+ and
eGFR showed a decreasing trend across s(P)RR quartiles (both p-trend ≤ 0.035; eGFR: quar-
tile 1 vs. quartile 4, p ≤ 0.001). Metabolic variables and all inflammatory markers increased
across the s(P)RR quartiles, with significantly higher levels in quartile 4 as compared to
quartile 1 (all p-trend < 0.001, quartile 1 vs. quartile 4, all p < 0.001). A measure of energy
expenditure decreased across s(P)RR quartiles (p-trend < 0.001) and quartile 4 had lower
levels as compared to quartile 1 (5.11 vs. 6.31; p < 0.001).

Figure 1 represents differences in s(P)RR and other RAS components between black
and white participants. s(P)RR, prorenin, PRA and eq AngII were higher in white par-
ticipants as compared to their black counterparts (all p ≤ 0.001) and Na+/K+ was higher
in the black compared to white participants (p < 0.001). Further comparisons between
black and white participants are presented in Table 2. White participants had substantially
higher values of measures of adiposity compared to their black counterparts (all p ≤ 0.005),
whereas black participants had a greater proportion of women with waist circumference
greater than the cut-off recommended by WHO in combination with the South African
population-based guidelines (p < 0.001). In terms of echocardiographic data, the white
participants had lower relative wall thickness; LV posterior wall thickness at diastole,
ejection fraction and E/e’ ratio (all p ≤ 0.014); and higher LV internal diameter at diastole,
end systolic and diastolic volume, stroke volume, E/A ratio and E/e’ ratio (all p ≤ 0.010).
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Table 1. Characteristics of the population across quartiles of soluble (pro)renin receptor.

s(P)RR Q1
(n = 296)
<20.40 ng/mL

s(P)RR Q2
(n = 290)
20.4–22.69 ng/mL

s(P)RR Q3
(n = 294)
22.70–25.31 ng/mL

s(P)RR Q4
(n = 292)
≥25.32 ng/mL

p Trend

Sociodemographics
Age, years 24.7± 3.07 24.3 ± 3.08 24.3 ± 3.15 24.9 ± 3.13 0.032 *
Ethnicity/Black n (%) 200 (67.6) 156 (53.8) 131 (44.6) 100 (34.3) <0.001
Sex/Female n (%) 172 (58.1) 151 (52.1) 158 (53.4) 129 (44.2) 0.008
Socioeconomic status 0.060

Low, n (%) 121 (40.9) 119 (41) 121 (41.2) 102 (34.9)
Middle, n (%) 89 (30.1) 86 (29.7) 90 (30.6) 74 (25.3)
High, n (%) 86 (29.1) 85 (29.3) 83 (28.2) 116 (39.7)

Anthropometric measurements
Waist circumference, cm 76.5 ± 9.70 78.0 ± 10.6 80.9 ± 12.6 84.9 ± 13.5 <0.001 ‡

Body weight, kg 66.1 ± 13.4 68.9 ± 15.4 72.0 ± 18.1 77.6 ± 18.4 <0.001 ‡

Body height, cm 167 ± 8.61 169 ± 9.45 168 ± 9.67 171 ± 9.89 <0.001 ‡

Body mass index, kg/m2 23.8 ± 4.56 24.2 ± 5.05 25.4 ± 5.42 26.8 ± 6.29 <0.001 ‡

Blood Pressure and Echocardiographic variables
24 h systolic BP, mmHg 114 ± 9.50 116 ± 8.85 117 ± 9.30 120 ± 8.88 <0.001 ‡

24 h diastolic BP, mmHg 67.9 ± 5.97 68.0 ± 5.63 68.7 ±5.83 70.2 ± 5.89 <0.001 ‡

24 h heart rate, bpm 74.8 ± 10.3 73.4 ± 10.9 74.7 ± 9.85 74.7 ± 11.0 0.33
Relative wall thickness, cm 0.37 ± 0.07 0.37 ± 0.07 0.37 ± 0.07 0.38 ± 0.07 0.28
Interventricular septal thickness at diastole, cm 0.82 ± 0.17 0.82 ± 0.16 0.83 ± 0.17 0.84 ± 0.17 0.52
Interventricular septal thickness at systole, cm 1.07 ± 0.19 1.06 ± 0.18 1.08 ± 0.18 1.10 ± 0.18 0.10
LV internal diameter diastole, cm/m 2.74 ± 0.23 2.77 ± 0.23 2.81 ± 0.23 2.80 ± 0.25 0.002 *
LV posterior wall thickness diastole, cm/m 0.51 ± 0.08 0.51 ± 0.09 0.52 ± 0.08 0.53 ± 0.08 0.005 *
End systolic volume index, mL/m 19.5 ± 5.53 20.5 ± 5.59 22.1 ± 12.8 21.8 ± 7.17 <0.001 *
End diastolic volume index, mL/m 58.1 ± 12.1 60.1 ± 12.4 62.2 ± 13.2 62.9 ± 13.6 <0.001
Left ventricular mass index, g/m2 71.5 ± 18.0 73.2 ± 17.1 74.4 ± 16.7 74.6 ± 17.4 0.12
LV ejection fraction, % 66.3 ± 5.95 66.2 ± 5.81 65.6 ± 6.27 65.7 ± 6.26 0.36
Stroke volume index, mL/m2.04 23.2 ± 5.16 23.8 ± 5.25 24.2 ± 5.19 24.2 ± 5.45 0.055
E/A ratio 2.14 ± 0.55 2.22 ± 0.60 2.14 ± 0.57 2.08 ± 0.52 0.029
E/e’ ratio 6.35 ± 1.17 6.28 ± 1.14 6.39 ± 1.17 6.28 ± 1.13 0.59
LA/Ao ratio 1.06 ± 0.15 1.04 ± 0.15 1.07 ± 0.15 1.08 ± 0.14 0.022
Kidney variables
Soluble (pro)renin receptor, ng/mL 18.4 (15.9–20.3) 21.6 (20.5–22.6) 23.9 (22.8–25.2) 28.4 (25.5–35.0) <0.001 ‡

a Prorenin, ng/mL 0.71 (0.09–2.66) 0.92 (0.29–3.07) 0.84 (0.12–3.89) 0.90 (0.14–4.84) 0.013 *
Plasma renin activity-S, pmol/L 72.1 (13.1–269) 84.7 (13.9–272) 92.0 (15.1–303) 114 (23.1–373) <0.001 ‡

eq Angiotensin II, pmol/L 54.7 (9.10–214) 62.9 (10.1–202) 68.9 (11.9–218) 83.2 (18.5–280) <0.001 ‡

24 h urinary Na/K ratio 3.28 (1.24–7.62) 3.32 (1.45–7.03) 3.06 (1.21–6.69) 2.96 (1.08–6.44) 0.035
eGFR, mL/min/1.73 m2 124 ± 17.1 121 ± 19.3 120 ± 17.7 113 ± 19.0 <0.001 ‡

Metabolic variables
Glucose, mmol/L 3.73 (2.37–5.39) 3.81(2.52–5.32) 3.89 (2.42–5.47) 4.39 (2.77–5.76) <0.001 ‡

LDL-cholesterol, mmol/L 2.05 (0.99–3.81) 2.14 (0.98–3.74) 2.28 (1.10–4.26) 2.60 (1.36–4.53) <0.001 ‡

HDL-cholesterol, mmol/L 1.08 (0.58–1.87) 1.08 (0.55–1.84) 1.08 (0.60–1.88) 1.10 (0.56–2.03) 0.92
C-reactive protein, mg/L 0.63 (0.05–5.85) 0.71 (0.09–9.08) 1.02 (0.12–8.58) 1.34 (0.11–13.7) <0.001 ‡

Interleukin-6, mg/L 0.95 (0.33–2.91) 1.01 (0.38–3.98) 1.09 (0.40–3.70) 1.28 (0.47–4.38) <0.001 ‡

Tumor Necrosis Factor-α, mg/L 0.91(0.34–2.41) 0.98 (0.38–2.09) 1.19 (0.62–2.84) 1.22 (0.60–2.66) <0.001 ‡

Gamma-glutamyl transferase, U/L 16.5 (5.40–54.8) 16.7 (5.80–45.5) 18.3 (6.20–58.5) 21.9 (7.90–77.5) <0.001 ‡

Lifestyle factors
Self-reported smoking, n (%) 63 (21.5) 56 (19.3) 81 (27.6) 76 (26) 0.063
Self-reported alcohol use, n (%) 153 (52.4) 153 (52.8) 167 (57.2) 176 (60.7) 0.14
AEE, kCal/kg/day 6.31 ± 2.57 6.21 ± 3.16 6.0 ± 2.91 5.11 ± 2.79 <0.001 ‡

a—Data available for only 974 participants. Values are arithmetic mean ± standard deviation; geometric mean (5th
and 95th percentile interval) for natural-logarithmically transformed variables. Abbreviations: LV, left ventricular;
E/A ratio, peak early filling E-wave/late diastolic filling A-wave; E/e’ ratio, mitral peak velocity of early
filling/early diastolic mitral annular velocity; LA/Ao ratio, Left atrial diameter to aortic root ratio; BP, blood
pressure; eGFR, estimated glomerular filtration rate; LDL, low-density lipoprotein, HDL, high-density lipoprotein;
AEE, activity-energy expenditure. Bold text indicates p < 0.05 across s(P)RR quartiles; ‡ p < 0.001, * p < 0.05
difference between Q1 and Q4.

3.1.2. Linear Regression Analyses

In crude correlations (Figure 2, Table S1) a statistically significant but weak positive
association was observed between LVMi (r = 0.063; p = 0.030) and s(P)RR in the sample
including both black and white participants. A similar pattern was observed in the black
participants for LVMi (r = 0.085; p = 0.039). SVi was associated positively with s(P)RR only
in black participants (r = 0.146; p < 0.001). In white participants, relative wall thickness
was positively associated with s(P)RR (r = 0.191; p = 0.001), which was not evident in black
participants. LV ejection fraction showed a negative association with s(P)RR only in white
participants (r = −0.138; p = 0.001).
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Figure 1. Ethnic comparisons of renin-angiotensin system profiles. (A) Soluble (pro)renin receptor
and prorenin; (B) Plasma renin activity surrogate, Angiotensin II and Na+/K+. Abbreviations: s(P)RR,
soluble (pro)renin receptor; PRA-S, angiotensin-based plasma renin activity, AngII, Angiotensin II.

Analyses adjusted for sex, ethnicity and waist circumference in the total group (Table 3)
revealed a statistically significant positive association between relative wall thickness and
s(P)RR (r = 0.062; p = 0.036). In the participants as stratified by ethnicity, an additional
adjustment was made for socioeconomic status score. In black participants, the positive
association between SVi and s(P)RR persisted (r = 0.11; p = 0.008). In white participants,
statistically significant partial-correlation coefficients were observed between relative wall
thickness and LV ejection fraction and s(P)RR (all p ≤ 0.024), with an additional negative
linear association observed between SVi and s(P)RR (r = −0.142; p = 0.001).

In multivariable-adjusted linear regression analysis adjusted for ethnicity, sex, waist
circumference, socioeconomic score and other covariates (Table 4), some of the associations
between s(P)RR and measures of LV structure and function became attenuated and lost
statistical significance, whereas new associations became evident. In ethnicity-pooled anal-
ysis, none of the associations remained statistically significant; however, a borderline-linear
positive association was observed between s(P)RR and relative wall thickness (β = 0.073;
p = 0.056). In white participants, there was a positive linear association between rela-
tive wall thickness and s(P)RR (β = 0.141; p = 0.005) and negative associations between
LV ejection fraction (β = −0.123; p = 0.016) and SVi (β = −0.144; p = 0.004) and s(P)RR.
The adjusted R-squared for LV ejection fraction was <0.10, but statistically significant
(p < 0.001). Multivariable-adjusted linear regression models showing all covariates are
shown in Tables S3–S5 and show s(P)RR as the main independent variables and the contri-
bution of other covariates such as waist circumference, sex, ethnicity, glucose and Na/K to
the models.
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Table 2. Comparisons between black and white adults.

Black
n = 587

White
n = 585 p-Value

Sociodemographics
Age, years 24.5 ± 3.17 24.6 ± 3.07 0.59
Sex/Female n (%) 303 (51.6)) 307 (52.5) 0.77
Socioeconomic status <0.001

Low, n (%) 345 (58.8) 118 (20.2)
Middle, n (%) 161 (27.4)) 178 (30.4)
High, n (%) 81 (13.8) 289 (49.4))

Anthropometric measurements
Waist circumference, cm 77.8 ± 10.8 82.3 ± 12.9 <0.001

* Men, n (%) 77 (27.1) 83 (30.3) 0.41
* Women, n (%) 116 (38.3) 75 (24.4) <0.001

Body weight, kg 66.2 ± 14.5 76.2 ± 17.8 <0.001
Body height, cm 164 ± 8.40 173 ± 8.79 <0.001
Body mass index, kg/m2 24.6 ± 5.70 25.5 ± 5.21 0.005
Blood Pressure and Echocardiographic Variables
24 h systolic BP, mmHg 116 ± 8.99 118 ± 9.63 0.001
24 h diastolic BP, mmHg 68.8 ± 5.94 68.6 ± 5.86 0.44
24 h heart rate, bpm 75.3 ± 10.7 73.6 ± 10.3 0.010
Relative wall thickness, cm 0.38 ± 0.07 0.36 ± 0.07 <0.001
Interventricular septal thickness at diastole, cm 0.84 ± 0.17 0.82 ± 0.16 0.16
Interventricular septal thickness at systole, cm 1.08 ± 0.18 1.08 ± 0.18 0.71
LV internal diameter diastole/height, cm/m 2.76 ± 0.24 2.80 ± 0.24 0.001
LV posterior wall thickness diastole/height, cm/m 0.53 ± 0.08 0.50 ± 0.08 <0.001
End systolic volume index, mL/m 19.8 ± 9.72 22.1 ± 6.54 <0.001
Left ventricular mass index, g/m2 73.6 ± 18.4 73.2 ± 16.2 0.70
LV ejection fraction, % 66.4 ± 6.23 65.5 ± 5.89 0.014
Stroke volume index, mL/m2.04 23.5 ± 5.26 24.3 ± 5.27 0.010
End diastolic volume index, mL/m 58.0 ±11.9 63.9 ± 13.3 <0.001
E/A ratio 2.25 ± 0.61 2.04 ± 0.48 <0.001
E/e’ ratio 6.55 ± 1.18 6.10 ± 1.07 <0.001
LA/Ao ratio 1.06 ± 0.15 1.06 ± 0.15 0.45
Kidney Variables
Soluble (pro)renin receptor, ng/ml 21.9 (19.9–29.2) 23.7 (17.9–31.6) <0.001
Prorenin, ng/mL 0.76 (0.12–2.78) 0.94 (0.28–4.31) 0.001
Plasma renin activity-S, pmol/L 63.0 (11.4–263) 127 (39.0–337) <0.001
eq Angiotensin II, pmol/L 47.3 (8.70–186) 94.1 (29.3–253) <0.001
24 h urinary Sodium, mmol/L 114 (39.7–250) 102 (35.8–207) 0.001
24 h urinary Potassium, mmol/L 34.8 (13.4–101) 51.3 (22.8–112) <0.001
24 h urinary Na/K ratio 3.98 (1.94–7.96) 2.58 (1.11–5.31) <0.001
24 h urinary Creatinine, mmol/L 8.83 (3.02–21.7) 9.34 (4.03–20.9) 0.11
eGFR, mL/min/1.73 m2 123 ± 16.2 116 ± 20.4 <0.001
Metabolic Variables
Glucose, mmol/L 3.79 (2.35–5.44) 4.11 (2.61–5.58) <0.001
LDL-cholesterol, mmol/L 2.07 (0.99–3.70) 2.46 (1.23–4.42) <0.001
HDL-cholesterol, mmol/L 1.08 (0.58–1.82) 1.09 (0.57–2.01) 0.78
C-reactive protein, mg/L 1.00 (0.10–10.1) 0.78 (0.08–8.08) 0.003
Interleukin-6, mg/L 1.24 (0.46–3.98) 0.93 (0.32–3.04) <0.001
Tumor Necrosis Factor-α, mg/L 0.96 (0.37–2.43) 1.18 (0.59–2.51) <0.001
Gamma-glutamyl transferase, U/L 22.3 (8.50–33.2) 14. 9 (5.40–47.0) <0.001
Lifestyle factors
Self-reported smoking, n (%) 147 (25.1) 129 (22.1) 0.22
Self-reported alcohol use, n (%) 325 (56.0)) 324 (55.5) 0.85
ExpenditureAEE, kCal/kg/day 6.54 ± 2.91 5.38 ± 2.64 <0.001

Values are presented as arithmetic mean ± standard deviation; geometric mean (5th and 95th percentile interval)
for natural-logarithmically transformed variables. * Waist circumference categories: WC > 94 cm for white men;
>81.2 cm for black men; >80 cm for white women, and >81 cm for black women [39,40]. Abbreviations: BP, blood
pressure; LV, left ventricular; E/A ratio, peak atrial early filling/late diastolic filling ratio; E/e’ ratio, mitral peak
velocity during early filling/early diastolic mitral annular velocity ratio; LA/Ao ratio, left atrium diameter to
aortic root ratio; eGFR, estimated glomerular filtration rate; LDL, low-density lipoprotein; HDL, high-density
lipoprotein. Bold text indicates p < 0.05.
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Table 3. Partial correlations between left ventricular indices and soluble (pro)renin receptor.

Soluble (Pro)renin Receptor (ng/mL)
Total (n = 1172) Black (n = 587) White (n = 585)

Relative wall thickness, cm r = 0.062; p = 0.036 r = −0.025; p = 0.552 r = 0.154; p < 0.001
Left ventricular mass index, g/m2 r = 0.018; p = 0.540 r = 0.078; p = 0.063 r = 0.042; p = 0.317
Left ventricular ejection fraction, % r = −0.009; p = 0.765 r = 0.071; p = 0.085 r = −0.094; p = 0.024
Stroke volume index, ml/m2.04 r = −0.01; p = 0.659 r = 0.11; p = 0.008 r = −0.142; p = 0.001

Adjusted for ethnicity, sex and waist circumference. Additionally adjusted for socioeconomic score in the ethnicity-
stratified participants.
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Table 4. Associations between left ventricular structure and function and soluble (pro)renin receptor.

Dependent Variables
Soluble (Pro)renin Receptor (ng/mL)
Total (n = 1172) Black (n = 587) White (n = 585)
a R2 β (95% C.I.) p a R2 β (95% C.I.) p R2 β (95% C.I.) p

Relative wall thickness, cm 0.075 0.073 (−0.002; 0.138) 0.056 0.012 −0.001 (−0.12; 0.10) 0.86 0.101 0.141 (0.039; 0.218) 0.005
Left ventricular mass index, g/m2 0.244 0.037 (−7.13; 24.0) 0.29 0.272 0.081 (−3.91; 45.5) 0.102 0.213 −0.012 (−22.6; 17.33) 0.79
Left ventricular ejection fraction, % 0.06 −0.031 (−8.62; 3.55) 0.42 0.049 0.059 (−4.49; 14.6) 0.30 0.072 −0.123 (−0.22; −0.023) 0.016
Stroke volume index, ml/m2.04 0.071 −0.029 (−28.2; 1.91) 0.449 0.104 0.104 (−6.36; 37.6) 0.067 0.247 −0.144 (−0.24; −0.045) 0.004

1a, Adjusted R2; Independent variables included in the multivariable-adjusted linear regression model: age, ethnicity (in total group), sex, waist circumference, socioeconomic score,
24 h diastolic blood pressure, estimated glomerular filtration rate, Na+/K+, glucose, low-density lipoprotein cholesterol, C-reactive protein, smoking, alcohol use and activity-energy
expenditure. Bold value indicates statistical significance, p < 0.05.
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4. Discussion

This study investigated serum levels of s(P)RR in young black and white adults and
associations with measures of LV structure and function due to the emerging role of s(P)RR
in CVD and target organ damage. The main findings of the exploration were higher
levels of s(P)RR in white as compared to black individuals and an independent positive
association of relative wall thickness and s(P)RR, accompanied by negative associations of
stroke volume and LV ejection fraction with s(P)RR only in white participants. To the best
of our knowledge, this is the first investigation to show the difference in the presence of
associations in a biethnic young population, with a relatively large sample size.

The higher levels of s(P)RR in the white population are consistent with a study by
Nguyen et al., [18] which compared healthy men of black (n = 9) and white (n = 10)
ethnicities aged 18–35 years. It was found that s(P)RR levels were lower in black men
as compared to their white counterparts. Our study included apparently healthy black
(n = 587) and white (n = 585) men and women with a comparable sex distribution and
confirmed the influence of ethnicity on s(P)RR levels. As previously reported in this
cohort [19], PRA-s, a measure of renin activity and eq AngII were two-fold higher in white
participants as compared to black participants. Prorenin was higher in white participants
which is inconsistent with recent relevant studies [18,41]. Tu et al. [41] found similar
prorenin levels when comparing healthy black (n = 58) and white (n = 71) adults, a similar
observation made by Nguyen et al. [18]. The discrepancies between the current study and
previous observations could be partly due to the measurement technique and participant
characteristics. In the current study, prorenin was measured directly in plasma, while in
studies by Tu et al. [41] and Nguyen et al., [18], active renin was subtracted from total
renin to obtain prorenin concentration values. Prorenin, when discovered, was initially
regarded as an inactive precursor of the enzyme renin. However, data emerged showing
that prorenin can bind with high affinity to (P)RR and result in various effects by activation
of this receptor [11,42].

In the current study, BP and EDVi tended to increase as s(P)RR levels increased when
investigated across s(P)RR quartiles, indicating involvement of s(P)RR in pressure and
volume regulation. Kidney function (eGFR) declined, while glucose and LDL cholesterol
increased across the s(P)RR quartiles. These observations represent the overall cardiovascu-
lar risk presented by high levels of s(P)RR, which may to some extent explain the adverse
associations with LV structure and function. Previous observations have linked (P)RR
polymorphisms to BP levels in Japanese men (mean age 61.1 ± 9.6 years) [43] and white
men (mean age, 45.4 ± 14 years) [44], while in animals s(P)RR was positively associated
with systolic BP [16]. Recently, Amari et al. [45] showed that s(P)RR is associated with
cardiovascular events and mortality, serving as a biomarker to identify patients that require
intensive care. The study population was older, with a number of CVDs and undergoing
hemodialysis [45]. Our study already points to the usefulness of s(P)RR as a biomarker
even in a healthy, young population (aged 20–30 years) with no current or historic CVD.

Previous studies have shown the detrimental effect of s(P)RR on kidney function and
BP [46–48], with limited research on the role of s(P)RR in cardiac deterioration, particularly
in young and healthy populations. To the best of our knowledge, the current study is
the first to show the positive association between relative wall thickness in a healthy
population, which may indicate the potential role of s(P)RR in early LV-structure alterations.
The negative associations of two measures of LV function (LV ejection fraction and stroke
volume) with s(P)RR further support its potential role in the early phases of LV remodeling
and compromised functioning. The adverse association of LV structure and function were
observed only in white participants and not in their black counterparts, which may be
explained by the higher levels of s(P)RR and both its ligands, prorenin and active renin
(represented by PRA) in white participants as compared to black participants. In Japanese
women, a +1513A>G polymorphism of (P)RR was independently associated with the risk
of LV hypertrophy and lacunar infarction, supporting the role of the renin receptor in target
organ damage [49]. The mean age of women was 65.5 ± 5.6 years. When compared to
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men, 25.2% of the women presented with lacunar infarction, 13.5% presented with LV
hypertrophy and 52.7% were classified as hypertensive [49]. In another study, plasma
s(P)RR was found to be higher in patients with heart failure and associated with kidney
damage in that group [17]. In our white participants with positive associations between
relative wall thickness and s(P)RR, there was a comparable distribution of men and women,
and sex was accounted for in multiple regression analyses. An important observation
from our study was the substantially higher values of measures of adiposity in the white
participants. This is despite a higher proportion of women with waist circumference
greater than the cut-off point in the black participants, in which there were no statistically
significant associations between s(P)RR and echocardiographic measures. The participants
were normotensive at screening (clinic BP < 140/90 mmHg) and did not present with
any known CVD. This may explain the absence of associations between s(P)RR and LVMi
and only between relative wall thickness and s(P)RR in our study. Activation of s(P)RR
by renin and/or renin can activate pathways via Ang II, leading to LV remodeling by
promoting volume expansion and overload, inflammation and fibrosis as part of circulating
RAS activation [50]. In addition to contributing to AngII formation, s(P)RR activation is
involved in proinflammatory and profibrotic pathways that can set the stage for cardiac
damage [11,15]. The absence of significant associations between LVMi and s(P)RR may be
due to young age and healthy status and may be apparent when the study population is
followed up over time with advancing age.

Our findings should be interpreted within the context of strengths and limitations. The
cross-sectional nature of the investigation prevents us from making assumptions regarding
the causal relationship between s(P)RR and markers of LV structure and function. The
study sample was from one area of the North West Province of South Africa and cannot
be regarded as representative of black and white populations in general. In the presence
of these limitations, the current study confirmed some findings by earlier studies which
included very small sample sizes and showed for the first time the positive association
between relative wall thickness and s(P)RR in young healthy white participants.

In conclusion, we found higher levels of s(P)RR in healthy white young adults as
compared to their black counterparts. s(P)RR was associated with an increase in relative
wall thickness and adversely with LV function, an observation made only in white partici-
pants. These results suggest that s(P)RR may play a role in LV structural deterioration and
compromised function in this study group. Our findings further support the notion that
s(P)RR could serve as a cardiovascular risk marker, already in young populations without
overt CVD; however, confirmation with follow-up data is required.

Implications

In this study we found higher levels of s(P)RR in young healthy white adults as
compared to black adults. The independent positive association between s(P)RR and
relative wall thickness, a marker of LV remodeling, accompanied by a negative association
of s(P)RR with measures of LV function in a young healthy cohort without overt CVD
suggest that s(P)RR may have the potential to serve as a biomarker of cardiovascular risk.
Further research is required to understand the absence of relationships between s(P)RR and
markers of LV remodeling in young black adults—a population known to be predisposed
to hypertension-mediated organ damage and CVD.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcdd9050130/s1, Table S1: Pearson correlation coefficients between
left ventricular indices and soluble (pro)renin receptor. Table S2: Multivariable-adjusted linear
regression analysis of relative wall thickness with soluble (pro)renin receptor as main outcome
variable. Table S3: Multivariable-adjusted linear regression analysis of left ventricular mass index
with soluble (pro)renin receptor as main outcome variable. Table S4: Multivariable-adjusted linear
regression analysis of left ventricular ejection fraction with soluble (pro)renin receptor as main
outcome variable. Table S5: Multivariable-adjusted linear regression analysis of stroke volume with
soluble (pro)renin receptor as main outcome variable.
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