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Summary

Fibrotic aortic valve disease (FAVD) is an important cause of aortic

stenosis, yet currently there is no effective treatment for FAVDdue

to its unknown etiology. The purpose of this study was to

investigate whether deficiency in the anti-aging Klotho gene (KL)

promotes high-fat-diet-induced FAVD and to explore the underly-

ing molecular mechanism. Heterozygous Klotho-deficient (KL+/�)
mice and WT littermates were fed with a high-fat diet (HFD) or

normal diet for 13 weeks, followed by treatment with the AMPKa
activator (AICAR) foranadditional2 weeks.AHFDcausedagreater

increase in collagen levels in the aortic valves of KL+/�mice than of

WTmice, indicating that Klotho deficiency promotes HFD-induced

aortic valve fibrosis (AVF). AMPKa activity (pAMPKa) was

decreased, while protein expression of collagen I and RUNX2 was

increased in the aortic valves of KL+/� mice fed with a HFD.

Treatment with AICAR markedly attenuated HFD-induced AVF in

KL+/� mice. AICAR not only abolished the downregulation of

pAMPKa but also eliminated the upregulation of collagen I and

RUNX2 in the aortic valves of KL+/� mice fed with HFD. In cultured

porcine aortic valve interstitial cells, Klotho-deficient serum plus

cholesterol increased RUNX2 and collagen I protein expression,

which were attenuated by activation of AMPKa by AICAR. Inter-

estingly, silencing of RUNX2 abolished the stimulatory effect of

Klotho deficiency on cholesterol-induced upregulation of matrix

proteins, including collagen I andosteocalcin. In conclusion,Klotho

gene deficiency promotes HFD-induced fibrosis in aortic valves,

likely through the AMPKa–RUNX2 pathway.

Key words: AMPKa; aortic valve; aortic valve interstitial cells;

fibrosis; Klotho; RUNX2.

Introduction

In 2010, more than 15 000 deaths were directly caused by aortic valve

disease (AVD) in the USA, making it the second-leading cause of

cardiovascular mortality (Go et al., 2014). The prevalence of moderate or

severe aortic stenosis in the general population > 75 years old is 2.8%.

While approximately 50% of patients with severe aortic stenosis are

referred for aortic valve replacement (AVR), only 40% are actually

admitted for AVR. The development of transcatheter AVR provides a

less-invasive approach than surgical replacement. However, this option is

currently only available for patients who were not surgical candidates for

AVR, and the 2-year mortality and hospitalization rates are > 50% (Go

et al., 2014). The prevalence of AVD is an increasing burden on the

healthcare system as global life expectancy increases (Nkomo et al.,

2006; Go et al., 2014).

For decades, AVD was thought to be a passive process involving

fatigue or deterioration of the valve with age. Currently, AVD is viewed

as an active, cellular-driven disease that is not an inevitable consequence

of aging (Rajamannan et al., 2011). However, no drug therapies have

been developed specifically for AVD, and although AVD shares several

risk factors and mechanisms with vascular diseases (e.g., atherosclerosis),

there are fundamental differences between arteries and the aortic valve

with respect to disease mechanisms and response to therapeutic

interventions (Weiss et al., 2013). Aortic valve fibrosis (AVF) is an

important pathological process that eventually leads to aortic valve

stiffening and aortic stenosis. Unfortunately, the pathological mecha-

nisms driving AVF are poorly understood.

Klotho (KL) was originally identified as a putative aging-suppressor

gene and is predominately expressed in kidneys and the brain choroid

plexus (Kuro-o et al., 1997). It extends lifespan and accelerates aging

when disrupted in mice (Kuro-o et al., 1997; Xu & Sun, 2015).

Specifically, Klotho-deficient mice display multiple pathologies resem-

bling human aging, such as endothelial dysfunction, soft tissue calcifi-

cation, progressive atherosclerosis, and shortened lifespan (Kuro-o,

2009, 2011). Klotho protein is found in the blood (Xu & Sun, 2015), and

its serum level declines with the normal aging process (Xiao et al., 2004;

Xu & Sun, 2015). By age 80, the serum level of Klotho is about a half of

what it was at age 40 (Xiao et al., 2004). By contrast, the prevalence of

AVD and aortic stenosis increases with age (Lindroos et al., 1993).

However, whether a reduction in Klotho contributes to AVF has never

been investigated. A reduction in the level of Klotho is also observed in

chronic kidney disease, hypertension, and diabetes mellitus (Wang et al.,

2012; Chen et al., 2015; Lin & Sun, 2015a,c).

A hallmark of AVD initiation is fibrotic collagen accumulation and

calcific nodule formation within the leaflets, which exacerbate the loss of

tissue compliance and function, ultimately leading to aortic stenosis

(Weiss et al. 2013). However, whether this fibrotic response is insepa-

rable from the formation of calcific nodules or whether valve fibrosis and

calcification are parallel processes during the development of AVD

remains uncertain. On the other hand, fibrotic collagen accumulation,

which leads to thickened and stiffened aortic valve leaflets and

subsequent degeneration of valve function, could cause aortic stenosis

(Miller et al., 2011). The epidemiological risk factors of AVD resemble

those of atherosclerosis, including elevated serum cholesterol, hyper-

tension, smoking, diabetes, and male gender (Lindroos et al., 1994;

Stewart et al., 1997). Low-density lipoprotein accumulation was found

in stenotic aortic valves in humans, and dietary hypercholesterolemia

induced aortic valve stenosis in small animal models (Weiss et al. 2013).

However, several clinical trials targeting cholesterol using lipid-lowering

therapy did not slow obvious effects on the progression of AVD (Cowell

et al., 2005; Houslay et al., 2006; Rossebo et al., 2008; Chan et al.,
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2010), and the beneficial effect of cholesterol-lowering treatment is

limited (Rosenhek et al., 2004). Although the failure of these clinical

studies may be multifactorial, it suggests that key pathological factors

that promote AVD remain to be determined. Nevertheless, it is currently

believed that high cholesterol levels are an early factor that contributes

to the development of AVD (Choi et al., 2015). In this study, we

investigated whether Klotho gene deficiency promotes fibrotic AVD

(FAVD) in mice fed with a high-fat diet (HFD).

Runt-related transcription factor 2 (RUNX2, also known as a core-

binding factor subunit alpha-1, CBFa1) is encoded by the RUNX2 gene.

RUNX2 has been identified as a ‘master gene’ in the differentiation of

osteoblasts, serving as a key transcription factor that regulates extracel-

lular matrix (ECM) gene products (e.g., osteocalcin, OCN) (Lee et al.,

2000; Tu et al., 2008). OCN is secreted by osteoblasts, it is believed to

play a role in the body’s metabolic regulation, and it is pro-osteoblastic

(bone building; Lee et al., 2007). OCN is therefore often used as a

marker of bone formation.

AMP-dependent protein kinase (AMPK) is a serine/threonine protein

kinase that serves as an energy sensor in the regulation of cellular

metabolism. Recent studies showed that AMPK is expressed in vascular

endothelial cells and that its activation improves endothelial function by

suppressingoxidative stress (Zou&Wu,2008;Wanget al., 2010). Themajor

isoform of AMPK in endothelial cells is AMPKa1b1c1, with a1 being the

catalytic subunit. Downregulation of AMPKa leads to vascular dysfunction.

Fortunately, an analog of AMP, 5-amino-1-b-D-ribofuranosyl-imidazole-4-

carboxamide (AICAR, also known as ZMP), stimulates AMPK activity. AICAR

does not perturb the cellular content of ATP, ADP, or AMP but activates

AMPKa due to increased phosphorylation (Thr-172; Corton et al., 1995). In

this study, we assessed whether activation of AMPKa by AICAR attenuates

the AVF-promoting effect of Klotho deficiency in mice fed with HFD.

Methods

Animal studies

Heterozygous KL+/� mutant mice with the 129/Sv background were

kindly provided by Dr. Kuro-o (Kuro-o et al., 1997). This study was

approved by the Institutional Animal Care and Use Committee at the

University of Oklahoma Health Sciences Center. Immunohistochemical

(IHC) procedures were performed as described in our previous studies

(Crosswhite et al., 2014; Chen et al., 2015; Lin & Sun, 2015a,c; Zhou

et al., 2015b). Western blotting was performed as described in our
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Fig. 1 Klotho efficiency downregulated AMPKa activity in aortic valves in mice fed with a high-fat diet (HFD). Immunohistochemical (IHC) staining of AMPKa (A) and

pAMPKa (B) in the aortic valves of wild-type and Klotho-deficient (KL+/�) mice after a 13-week HFD followed by treatment with AICAR for 2 weeks. AMPKa and pAMPKa
were stained brown. (C) Quantification of AMPKa and pAMPKa levels and their ratio (N = 4–6). Data = means � SEM. *P < 0.05, **P < 0.01 vs. WT-ND-Saline; +P < 0.05,
++P < 0.01 vs. KL+/�-ND-Saline; ^P < 0.05, ^^P < 0.01, ^^^P < 0.001 vs. KL+/�-HFD-Saline.
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previous studies (Goetz et al., 2010; Belting et al., 2012; Chen et al.,

2015; Lin & Sun, 2015b,c; Zhou et al., 2015a; Lin et al., 2016). For

details, see the Appendix S1 (Supporting information).

Statistical analysis

Data were analyzed using one-way analysis of variance (ANOVA). The

Newman–Keuls procedure was used to assess differences betweenmeans.

Datawere expressedasmean � SEM.P < 0.05was considered significant.

Results

Klotho deficiency downregulated AMPKa activity and

promoted fibrotic formation in aortic valves in mice fed with

a HFD

To evaluate whether Klotho deficiency plays a role in the development of

AVF, we fed KL+/� mice with a HFD for 13 weeks, followed by treatment

with AICAR for an additional 2 weeks. A HFD increased total blood

cholesterol levels in both WT and KL+/� mice to the same extent (data not

shown). Immunohistochemical staining showed that Klotho deficiency

and/or a HFD did not change the basal AMPKa expression level in aortic

valves (Fig. 1A,C, upper panel). Interestingly, Klotho deficiency plus HFD

significantly decreased phosphorylation of AMPKa (pAMPKa, Thr172) in
the aortic valves (Fig. 1B,C, middle panel), suggesting that Klotho

deficiency downregulates AMPKa activity. The decreased ratio of

pAMPKa/AMPKa also suggested a decrease in AMPKa activity (Fig. 1C,

lower panel). Treatment with AICAR rescued the downregulation of

AMPKa activity in KL+/� mice fed with a HFD (Fig. 1B,C).

Masson trichrome staining showed a marked increase in collagen

deposition on the aortic valves of KL+/� mice fed with a HFD (Fig. 2A–C).

A significant increase in collagen was found on the leaflets (Fig. 2A,B)

and root regions of aortic valves (Fig. 2A,C). AICAR treatment signifi-

cantly reduced collagen deposition on the aortic valves (Fig. 2B,C). The

aortic valves of KL+/� mice fed with a HFD showed typical pathological

changes of valve sclerosis and stenosis, such as mural fibrosis (Fig. 2D,

yellow asterisk), AVF (red arrows, Fig. 2A), and asymmetrical sclerosis of

the leaflets (Fig. 2D, black arrows). Collagen preferentially accumulated

on the aortic surface of the valve leaflets (solid arrows) compared with

the ventricular surface (dashed arrows).

Immunohistochemical staining further demonstrated that type I

collagen (also known as collagen I) expression was upregulated in the
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Fig. 2 Klotho deficiency promoted fibrotic formation in aortic valves via downregulation of AMPKa activity in mice fed with a HFD. (A) Masson’s trichrome staining of aortic

valves of wild-type and Klotho-deficient (KL+/�) mice after a 15-week HFD feeding. Collagen deposition (blue) is markedly increased in the leaflets of KL+/� mice fed with a

HFD. The red arrows indicate collagen deposition on the surface of the leaflets. (B) Quantification of collagen level in the leaflets (N = 4–6). (C) Quantification of collagen

levels of the entire aortic valve region including the aortic root (N = 4). Data = means � SEM. **P < 0.01, ***P < 0.001 vs. WT-ND-Saline; ##P < 0.01, ###P < 0.001 vs.

WT-HFD-Saline; ++P < 0.001, +++P < 0.0001 vs. KL+/�-ND-Saline; ^^^P < 0.001 vs. KL+�/-HFD-Saline. (D) Higher magnification of aortic valves in a KL+/� mouse fed with

HFD-Saline, which shows asymmetrical sclerosis of aortic valves. The collagen deposition preferentially accumulated on the aortic surface (solid arrows) compared with the

ventricular surface of the leaflets (dashed arrows). The yellow asterisks indicate severe mural fibrosis in aortic valves.
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aortic valve in mice fed with a HFD, especially in KL+/� mice (Fig. 3A,B).

This result suggests that AVF was mainly due to upregulation of collagen

I. AICAR treatment abolished type I collagen accumulation in the aortic

valve in KL+/� mice (Fig. 3A,B), suggesting that downregulation of

AMPKa activity mediates Klotho deficiency-induced upregulation of

collagen I in the aortic valve.

Klotho deficiency increased RUNX2 expression in the aortic

valve via downregulation of AMPKa in mice fed with HFD

RUNX2 is a member of the RUNX family of transcription factors, which are

involved in osteoblast differentiation and skeletal morphogenesis. IHC

staining of RUNX2 in the aortic valve showed that RUNX2 was expressed

in the interstitial cells in the aortic valve region (Fig. 4A). RUNX2 protein

levels were significantly increased in KL+/�mice and especially in those fed

with a HFD (Fig. 4A,B). Treatment with AICAR abolished the downreg-

ulation of RUNX2 expression inKL+/�mice fedwith a HFD, suggesting that

Klotho deficiency-induced upregulation of RUNX2 is mediated by

downregulation of AMPKa. Unexpectedly, Alizarin red staining showed

that there was no obvious calcification in aortic valves (Fig. S1).

Klotho deficiency upregulated RUNX2 and collagen I protein

expression in PAVICs

Due to the limited tissue size of mouse aortic valves, we used primary

porcine aortic valve interstitial cells (PAVICs) for further mechanistic

studies. These cells were cultured in Klotho-deficient FBS (~50%

secreted Klotho was removed from normal FBS through immunoprecip-

itation with the Klotho antibody (Fan & Sun, 2016). Immunofluorescent

staining showed a marked increase in RUNX2 expression in the Klotho-

deficient, FBS-treated cells, indicating that Klotho deficiency upregulates

RUNX2 protein levels in PAVICs (Fig. 5A,B). The addition of cholesterol

to the medium further enhanced Klotho deficiency-induced upregulation

of RUNX2. Interestingly, treatment with AICAR nearly abolished upreg-

ulation of RUNX2 expression in PAVICs treated with Klotho-deficient FBS

and cholesterol (Fig. 5A,B).

Interestingly, Klotho deficiency upregulated RUNX2 protein expres-

sion, which was further exacerbated by cholesterol (Fig. 5C,D). By

contrast, activation of AMPKa by AICAR almost abolished the upregu-

lation of RUNX2. The level of type I collagen, a major ECM protein, was

increased significantly in the medium when cells were treated with

Klotho-deficient FBS and was further enhanced by cholesterol in PAVICs

(Fig. 5C,E). This result suggests that Klotho deficiency increased collagen

synthesis, which was exacerbated by cholesterol. By contrast, AICAR

abolished the upregulation of collagen I expression induced by Klotho

deficiency and cholesterol (Fig. 5C,E).

Knockdown of RUNX2 abolished the upregulation of collagen

I and OCN protein expression in PAVICs treated with Klotho-

deficient FBS and cholesterol

To determine whether RUNX2 is required for the upregulation of

collagen I induced by Klotho deficiency and cholesterol, we investigated

the effect of knockdown of RUNX2 on collagen I expression in PAVICs.

An siRNA was designed to specifically knock down porcine RUNX2 in

PAVICs. RUNX2 protein expression was indeed decreased by ~50% by

RUNX2 siRNA (Fig. 6A,B), indicating effective knockdown of RUNX2.

Interestingly, knockdown of RUNX2 prevented the upregulation of

collagen I in PAVICs treated with Klotho-deficient FBS and cholesterol

(Fig. 6A,C), suggesting for the first time that RUNX2 is a critical mediator

of Klotho deficiency-induced upregulation of collagen I. In addition,

osteocalcin (OCN) protein expression was upregulated in PAVICs treated
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with Klotho-deficient serum and cholesterol, which was abolished by

knockdown of RUNX2 (Fig. 6A,D). This result suggests that RUNX2 plays

a critical role in the upregulation of ECM protein expression due to

Klotho deficiency and high cholesterol.

Discussion

Aortic valve disease, or FAVD, is a leading cause of adult heart disease

(Thom et al., 2006; Lloyd-Jones et al., 2010) and is the most common

form of acquired valvular disease in the USA (Lindroos et al., 1993;

Baumgartner, 2005; Freeman & Otto, 2005). Unfortunately, due to its

unknown etiology, there is currently no cure. The most important finding

of this study is that Klotho deficiency promotes formation of AVF in mice

fed with a HFD. Our study provides the first experimental evidence that

Klotho deficiency is a pathological factor for AVF, which is an important

remodeling process that causes aortic valve stiffening, eventually leading

to aortic valve calcification and aortic stenosis. It is known that serum

levels of Klotho decrease after age 40 (Xiao et al., 2004), while the

prevalence of aortic stenosis increases with age (Lindroos et al., 1993). In

this study, we found that the serum level of Klotho was reduced by 50%

in KL+/� mice (Fig. S2), which mimics the halving of Klotho protein levels

in the aged population (Xiao et al., 2004), and KL+/� mice fed with a

HFD may be a natural model of AVF. Klotho homozygous (�/�) mice

demonstrate early and extensive aging phenotypes and die before the

age of 8 weeks (body weight = 8 g) (Kuro-o et al., 1997). They also

develop severe hyperphosphatemia and nonselective soft tissue calcifi-

cation (Wang & Sun, 2009; Xu & Sun, 2015). For these reasons, Klotho

homozygous mice were not used in this study.

It is interesting that Klotho deficiency plus a HFD downregulated

valvular AMPKa activity (Fig. 1), although the detailed mechanism

remains to be investigated. This is the first study demonstrating that

downregulation of AMPKa activity mediates Klotho deficiency-induced

fibrotic formation in aortic valves, which can be abolished by activation

of AMPKa by AICAR (Fig. 2). This finding is also significant because it

provides a new and important therapeutic strategy for AVF. Recent

clinical trials showed that statin failed to attenuate the progression of

aortic stenosis (Cowell et al., 2005; Houslay et al., 2006; Rossebo et al.,

2008; Chan et al., 2010), suggesting that antihyperlipidemia therapy

alone is insufficient for treatment of the disease. The findings from the

current study suggest that pharmacological activation of AMPKa should

be tested for treating FAVD. Aortic valve stenosis, which is the most

common valvular disease in the elderly population (Lindroos et al.,

1993), is associated with a decline in serum levels of Klotho (Xiao et al.,

2004; Xu & Sun, 2015). Thus, an additional study is warranted for

assessing the effect of administration of recombinant Klotho protein on

aging-related aortic stenosis.

Klotho deficiency led to an increase in RUNX2 levels in aortic valves,

which was exacerbated by a HFD (Fig. 4). The upregulation of RUNX2

may be mediated by downregulation of AMPKa activity, as it can be

abolished by activation of AMPKa by AICAR. The finding that AMPKa
regulates RUNX2 is interesting and provides new mechanistic insight

into the regulation of RUNX2, a transcription factor that is involved in

the osteoblastic transition. RUNX2 regulates the transcription of

various genes, including osteocalcin (OCN), via binding to the core

site of their enhancers or promoters (Viereck et al., 2002; Tu et al.,

2008). Indeed, protein expression of OCN, an ECM protein, was

upregulated in KL+/� mice, which can be eliminated by silencing of

RUNX2 (Fig. 6).

The development of AVD involves phenotypic changes in valvular

interstitial cells through the osteogenic pathway (Cheek et al., 2012;
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Fig. 6 Knockdown of RUNX2 abolished

upregulation of collagen I and OCN protein

expression in PAVICs treated with Klotho-

deficient FBS and cholesterol. Confluent

cells were first transfected with RUNX2

siRNA or scramble siRNA for 48 h and

incubated with Klotho-deficient FBS and

cholesterol for 24 h. (A) Western blot

analysis of collagen I, RUNX2, and OCN. (B–
D) Quantification (N = 3) of Western blot of

collagen I, RUNX2, and OCN in PAVICs.

Data were first normalized with b-actin and

then calculated as fold change of the FBS,

Ctr. group. Data = means � SEM.

*P < 0.05, **P < 0.01, ***P < 0.001 vs.

normal FBS plus control siRNA (FBS Ctr);
+P < 0.05, ++P < 0.01, +++P < 0.001 vs.

cells treated with Klotho-deficient FBS plus

control siRNA (kl(–) FBS Ctr); ^^P < 0.01,

^^^P < 0.001 vs. cells treated with Klotho-

deficient serum plus 10 lM cholesterol plus

control siRNA (kl(–) FBS CHOL Ctr). N = 3

independent experiments. FBS, fetal bovine

serum; kl(–), Klotho-deficient FBS; Ctr,
control siRNA; siRNA, RUNX2 siRNA.
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Leopold, 2012; Nagy et al., 2013; Weiss et al., 2013). Unexpectedly, no

obvious calcification was found in aortic valves in KL+/� mice fed with a

HFD (Fig. S1). It is anticipated that fibrosis would eventually lead to

calcification after a longer period of HFD treatment, because fibrosis may

promote aortic valve calcification (Weiss et al., 2013).

Klotho directly interacts with valvular interstitial cells and regulates

their functions. Indeed, Klotho-deficient serum upregulated collagen

expression in cultured aortic valve interstitial cells, which was abolished

by silencing of RUNX2 (Figs 5 and 6). These results demonstrate for the

first time that upregulation of RUNX2 is involved in Klotho deficiency-

induced collagen synthesis in aortic valve interstitial cells. Therefore, this

study identifies a new pathway that may mediate the stimulatory effect

of Klotho deficiency on HFD-induced AVF as follows: Klotho deficiency

AMPKa RUNX2 collagen synthesis (Fig. S3).

One technical challenge of this study is the limited amount of aortic

valve tissue available for molecular assays. We realize the limitation of the

IHC assays, which allow only semi-quantitative analysis. Therefore, we

confirmed the IHC result that Klotho deficiency plus cholesterol induces

collagen synthesis in cultured porcine aortic valvular interstitial cells (Figs 5

and 6).We further elucidated themolecular pathway in Klotho deficiency-

induced collagen synthesis in cultured valvular interstitial cells (Figs 5 and

6). Although HFD increased plasma levels of cholesterol (data not shown),

it may also increase the levels of other lipids. Thus, we realize the limitation

of manipulating only cholesterol levels in the cell study, which may

partially, but not completely, reproduce the effect of a HFD in animals.We

observed that heart functionwas not altered significantly inKL+/�mice fed

with HFD for 15 weeks (Fig. S4), which suggests that AVF formation was

still at an early stage. The development of aortic stenosis is a slow process,

and noticeable changes in heart function would not occur until the late

stages of decompensation. We anticipate that longer treatment with a

HFD would cause obvious aortic stenosis that would eventually compro-

mise heart function.

Perspective

This study reveals a previously unidentified role of KL deficiency in

promoting the development of HFD-induced AVF. The promoting effect

may be mediated by downregulation of AMPKa activity, which leads to

upregulation of RUNX2 and collagen I levels in aortic valves. Therefore,

therapeutic activation of AMPKamight be a novel strategy for alleviating

arterial stiffening and hypertension.
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