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ABSTRACT: Staphylococcus aureus with spa-type t437 has
been identified as a predominant community-associated
methicillin-resistant S. aureus clone from Asia, which is also
encountered in Europe. Molecular typing has previously shown
that t437 isolates are highly similar regardless of geographical
regions or host environments. The present study was aimed at
assessing to what extent this high similarity is actually reflected
in the production of secreted virulence factors. We therefore
profiled the extracellular proteome, representing the main
reservoir of virulence factors, of 20 representative clinical
isolates by mass spectrometry. The results show that these
isolates can be divided into three groups and nine subgroups
based on exoproteome abundance signatures. This implies that
S. aureus t437 isolates show substantial exoproteome heterogeneity. Nonetheless, 30 highly conserved extracellular proteins, of
which about 50% have a predicted role in pathogenesis, were dominantly identified. To approximate the virulence of the 20
investigated isolates, we employed infection models based on Galleria mellonella and HeLa cells. The results show that the
grouping of clinical isolates based on their exoproteome profile can be related to virulence. We consider this outcome important
as our approach provides a tool to pinpoint differences in virulence among seemingly highly similar clinical isolates of S. aureus.
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■ INTRODUCTION
The Gram-positive bacterium Staphylococcus aureus is a
causative agent of different nosocomial and community-
acquired diseases that may range from mild superficial skin
infections to serious invasive disease.1 In recent years, S. aureus
infections have become increasingly difficult to treat due to the
acquisition of high-level antibiotic resistance, as underpinned
by methicillin-resistant S. aureus (MRSA) lineages that are also
resistant to other classes of antibiotics.2

To facilitate local surveillance and to monitor the global
spread of drug-resistant S. aureus lineages, molecular
approaches such as multilocus sequence typing (MLST) and
spa-typing have been developed. These have shown that
certain clones of S. aureus are frequently prevalent in particular
regions of the world. For example, the clone with sequence
type (ST) 59, which is linked with the spa-type t437, is one of
the most dominant community-acquired (CA)-MRSA clones

in Asia3 and Western Australia.4,5 In the period from 2016 to
2017, S. aureus ST59-MRSA-t437 was reported as the
predominant CA-MRSA clone in Chinese children, which
appears to relate to a strong ability to form biofilms.6 Several
studies have shown that the ST59 clone has also spread to
European countries.7,8 In particular, by MLST and multiple-
locus variable number tandem repeat analysis (MLVA) of 147
S. aureus isolates with spa-type t437 from 11 different
European countries, it was shown that these isolates represent
a genetically tight cluster irrespective of the country of
isolation, the year of isolation or the specific host situation.8 It
was therefore concluded that the S. aureus lineage with spa-
type t437 has the features of a potentially high-risk clone.
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The ability of S. aureus to cause infections relates to the
expression of a wide variety of virulence factors.9 These
proteins play decisive roles in promoting the colonization of
the human host, invasion of cells and tissues, and evasion of
the innate and adaptive immune responses. Interestingly, only
few staphylococcal virulence factors, such as the toxic shock
syndrome toxin or exfoliative toxins, can be directly associated
with particular disease phenotypes.10−12 Instead, in most
infections a highly potent cocktail of virulence factors is
employed by S. aureus to breach the barriers imposed by the
skin and mucosal tissues and to invade the human body.13,14

Early proteomics studies have shown that the assembly of
virulence factors produced by S. aureus is highly variable for
different clonal lineages.15 This can be attributed in particular
to the high genomic plasticity of the S. aureus genome, which is
shaped by successive events of horizontal gene transfer as
exemplified by the presence of prophages, staphylococcal
pathogenicity islands, and the staphylococcal cassette chromo-
some responsible for methicillin resistance. On the other hand,
very little is known about possible variations in the production
of virulence factors by different clinical isolates of one
particular clonal lineage of S. aureus. Yet, insights in such
variations are needed to understand the extent to which they
determine different degrees of staphylococcal virulence and to
assess the health risks imposed by individual clinical isolates.
The extracellular proteome (in short exoproteome) of

bacterial pathogens, like S. aureus, is considered as the main
reservoir of virulence factors.9,16 In the present study, we
profiled the composition of the exoproteomes of 20 clinical
S. aureus isolates with spa-type t437 to assess the extent to
which the production of virulence factors and other secreted
proteins may vary among this genetically highly homogeneous
group of S. aureus isolates. As a first approach to assess the
possible implications of the observed variations, we employed
larvae of the greater wax moth Galleria mellonella, an infection
model that was previously shown to be susceptible to a range
of human pathogens.17 Importantly, upon injection into the
larvae, bacteria are challenged directly by an innate immune
system, which is functionally and structurally equivalent to that
of mammals.18 Subsequently, we applied the human HeLa

cancer cell line for high-throughput profiling of invasion and
cytotoxicity of the investigated S. aureus t437 isolates in
nonprofessional phagocytic cells. Briefly, the results of our
present study show that the investigated S. aureus t437 clinical
isolates can be divided into three groups and nine subgroups
based on their exoproteome profiles, and that isolates
belonging to particular subgroups show similarities in virulence
when confronted with the innate immune defenses of
G. mellonella. In contrast, relatively smaller variations were
observed in the HeLa cell infection model, which assays the
efficiency of nonprofessional phagocyte invasion and subse-
quent killing. It thus seems that the observed variations in the
exoproteomes of different S. aureus t437 isolates do not have
the same impact in the two infection models which, most
likely, reflects the fact that these models impose different
challenges on infecting bacteria. A comparative analysis of the
present scale, relating staphylococcal exoproteome composi-
tion to virulence, is unprecedented. Importantly, this approach
represents an effective pipeline to define proteomic signatures
of S. aureus virulence.

■ MATERIALS AND METHODS

Bacterial Isolates

A total of 20 S. aureus spa-type t437 isolates was used for
exoproteome analyses in the present study (Table 1). Ten of
these isolates were selected from the MLVA type (MT) 621
group, which has been shown to represent the most
predominant class of S. aureus t437 isolates; the other ten
isolates belong to different MTs as indicated in Table 1.

Bacterial Cultivation and Collection of Extracellular
Proteins

Bacterial cultivation and extracellular protein extraction were
carried out as described previously.19 Briefly, all bacterial
isolates were grown in triplicate overnight (14−16 h) in 10 mL
tryptic soy broth (TSB, OXOID, Basingstoke, UK) under
vigorous shaking (115 rpm) at 37 °C in a water bath. The
cultures were then diluted into 10 mL prewarmed Roswell
Park Memorial Institute 1640 (RPMI) medium supplemented
with 2 mM glutamine (GE Healthcare/PAA, Little Chalfont,

Table 1. Genotypic and Epidemiological Characteristics of the 20 S. aureus t437 Study Isolates

isolate MLVA complex MLVA type country of origin year of isolation mecA gene pvl gene source

Q1−15 621 1870 France 2004 positive positive unknown
Q1−24 621 621 Denmark 2010 positive positive SSTI
Q1−54 621 1035 Scotland 2012 positive positive skin
Q1−57 621 1297 Spain 2011 positive negative SSTI
Q1−59 621 2075 Hungary 2008 positive positive throat
Q1−71 621 1875 Netherlands 2005 positive positive SSTI
Q1−93 621 621 Netherlands 2006 positive positive nose
Q2−101 621 2322 Netherlands 2007 positive positive nose
Q2−141 621 4183 Norway 2013 positive positive nose
Q2−153 621 621 China 2009 negative negative unknown
Q2−146 none 3560 China 2008−2009 positive positive unknown
Q2−142 621 621 China 2011 positive positive unknown
Q2−116 621 1831 Netherlands 2009 negative positive skin
Q3−143 621 621 China 2008−2009 positive positive unknown
Q3−147 621 621 China 2010 positive negative unknown
Q3−66 621 621 Netherlands 2004 positive positive nose
Q3−32 621 4125 Scotland 2008 negative positive skin
Q3−107 621 621 Netherlands 2007 positive positive wound
Q3−104 621 621 Netherlands 2007 positive positive nose
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United Kingdom) to an optical density at 600 nm (OD600) of
0.1 and cultivation was continued under the same conditions.
Exponentially growing cells with an OD600 of ±0.5 were again
diluted into 20 mL of fresh prewarmed RPMI 1640 medium to
a final OD600 of 0.1 and their cultivation was continued until an
OD600 of ±1.3 was reached, which corresponds to the
stationary growth phase. Then, growth medium fractions
were collected by centrifugation. Proteins in the growth
medium were precipitated overnight with 10% trichloroacetic
acid (TCA, Sigma-Aldrich, St. Louis, USA) on ice. The
precipitated proteins were collected by centrifugation. Pellets
of precipitated proteins were washed once with ice-cold
acetone, dried at room temperature and stored at −20 °C until
further use.

LDS-PAGE and Western Blotting

To inspect extracellular proteins by lithium dodecyl sulfate
(LDS) polyacrylamide gel electrophoresis (PAGE), TCA-
precipitated proteins were resuspended in LDS sample buffer
and separated on NuPAGE gels (Life Technologies, Grand
Island, NY. USA). The separated proteins were visualized by
Simply Blue Safe Staining (Life Technologies). The presence
of IsaA was assessed by Western blotting using Protran
nitrocellulose transfer paper (Whatman, Germany) and
immunodetection using the IRDye 800CW-labeled 1D9
monoclonal antibody that is specific for IsaA.20 Antibody
binding was detected using an Odyssey Infrared Imaging
System (LI-COR Biosciences, Lincoln, NE. USA).

Protease Activity Profiling

To assess the activity of proteases in the growth medium of the
investigated S. aureus t437 isolates in the stationary growth
phase, we applied His6-tagged derivatives of the S. aureus IsaA
and SCIN proteins that were recombinantly produced in
Lactococcus lactis NZ9700 as described previously.21 Specifi-
cally, 500 μL aliquots of L. lactis growth medium containing
recombinant IsaA or SCIN were mixed with 500 μL aliquots of
spent growth media (RPMI 1640) of the 20 investigated
S. aureus t437 isolates and incubated overnight at 37 °C. Of
note, prior to this incubation, cells of L. lactis and S. aureus had
been removed from the respective growth medium fractions by
centrifugation. After the overnight incubation, proteins in the
incubation mixtures were precipitated overnight at 4 °C with
10% TCA, and separated by LDS-PAGE. The presence of
His6-tagged IsaA or SCIN was then assessed by Western
blotting using His6-specific antibodies (Invitrogen, Canada).

Sample Preparation for Mass Spectrometry

Collected extracellular proteins were processed for Mass
Spectrometry (MS) analysis essentially as described previ-
ously.22 In brief, the dried protein pellets were resuspended in
50 mM ammonium bicarbonate buffer (Fluka, Buches,
Switzerland) and reduced with 500 mM dithiothreitol (DTT,
Duchefa Biochemie, The Netherlands) for 45 min at 60 °C.
The samples were then alkylated with 500 mM iodoacetamide
(IAA, Sigma-Aldrich) and incubated for 15 min in the dark at
room temperature. 100 ng of sequencing grade modified
trypsin (Promega, Madison, USA) were added and the mixture
was incubated overnight at 37 °C under continuous shaking at
250 rpm to completely digest the proteins. Subsequently, the
samples were acidified with a final concentration of 0.1%
trifluoroacetic acid (TFA, Sigma-Aldrich, St. Louis, USA) for
45 min at 37 °C to inactivate the trypsin. The digested
peptides were purified with C-18 ZipTips (Millipore, Billerica,

USA). The ZipTips were first wetted with 45 μL 70%
acetonitrile (ACN, Fluka, Buchs, Switzerland) and then
equilibrated with 45 μL 3% ACN/0.1% acetic acid. Peptides
were bound to the ZipTips by pipetting 10 times up and down.
After washing with 45 μL 0.1% MS-acetic acid, the ZipTips
were eluted with 45 μL 60% ACN/0.1% MS-acetic acid. Lastly,
the eluted peptides were dried in a SpeedVac (Eppendorf,
Hamburg, Germany) at room temperature. The dried samples
were stored at 4 °C until further use.

Mass Spectrometry Analyses

Purified peptides were identified by reversed-phase liquid
chromatography coupled to electrospray ionization mass
spectrometry (MS) using an LTQ Orbitrap XL (Thermo
Fisher Scientific, Waltham, MA) as described by Stobernack et
al.22 In brief, Sorcerer-SEQUEST 4 (Sage-N Research,
Milpitas, USA) was applied for database searching, and raw
data files were searched with SEQUEST against a target-decoy
database. The nonredundant database that was used for
protein identifications was based on published genome
sequences of the S. aureus isolates with ST2147, ST59, or
ST338 (downloaded from https://www.ncbi.nlm.nih.gov/),
which represent the dominant STs of S. aureus t437.8 This
database includes 7187 protein sequences with connected gene
names and Uniprot identifiers. Validation of MS/MS-based
peptide and protein identification was performed with Scaffold
V4.7.5 (Proteome Software, Portland, USA), and peptide
identifications were accepted if they exceeded the specific
database search engine thresholds. SEQUEST identifications
required at least deltaCn scores of greater than 0.1 and XCorr
scores of greater than 2.2, 3.3, and 3.75 for doubly, triply and
all higher charged peptides, respectively. Protein identifications
were accepted if at least 2 identified peptides were detected
with the above-mentioned filter criteria in 2 out of 3 biological
replicates. Protein data was exported from Scaffold and curated
in Microsoft Excel before further analyses (Tables S1 and S2).
Since we observed large differences in the total spectral counts,
the normalization of the data was not performed over all data
sets simultaneously, because this would over-represent the
quantities of proteins in samples with fewer protein
identifications. Instead, the data sets for different isolates
were clustered into three groups (Q1−3) based on the total
spectral counts, and each group was mean-normalized as
recommended in the Scaffold software for spectral counting
data sets (https://proteomesoftware.zendesk.com/hc/en-us/
articles/115002739586-Spectrum-Count-Normalization-in-
Scaffold).

Assessment of Virulence with a Galleria mellonella
Infection Model

To evaluate the virulence of investigated S. aureus t437 isolates
using G. mellonella, larvae of ∼250 mg in the final instar stage
were purchased (Frits Kuiper, Groningen, Netherlands) and
stored in the dark at room temperature. The larvae were used
for infection experiments within 7 days of receipt. Until then,
they were fed with wood shavings. Prior to an infection
experiment, bacteria were grown overnight in TSB medium
and collected by centrifugation at 2700g for 10 min at 4 °C.
The cell pellets were washed by resuspension in phosphate-
buffered saline (PBS), collected by centrifugation, resuspended
in PBS, and diluted to the desired number of colony-forming
units (CFU) per mL as approximated based on the optical
density at OD600 of the overnight culture. Infections were
performed by inoculating the larvae with 10 μL aliquots of a
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bacterial suspension in PBS (2.5 × 106 CFU) into the
hemocoel via the last left proleg using an insulin pen
(HumaPen LUXURA HD, Indianapolis, USA).23 After
injection, the larvae were kept in Petri dishes in the dark at
37 °C, and mortality was monitored after 24 and 48 h post
infection. Larvae were considered dead when they displayed no
movement after being touched with a sterile inoculation loop.
The virulence of each investigated S. aureus t437 isolate was
tested in triplicate using 15 larvae per experiment (n = 45), and
for each of these three biological replicates larvae from
different batches were used. Data from all infection experi-
ments were combined to calculate the average mortality. For
control, one group (n = 15) of larvae was injected with 10 μL
of PBS to monitor the impact of physical trauma, a second
group (n = 15) was injected with 2.5 × 107 CFU of heat-killed
bacteria to monitor potentially lethal effects caused by toxic
bacterial components, and a third group (n = 15) received no
injection at all.
To verify possible roles in virulence of the extracellularly

identified proteins IsdA, IsdB and IsaA, specific single mutant
strains and the respective parental strains USA300 LAC (for
isaA or isdB mutations)24 and SH1000 (for the isaA
mutation)25 were used to infect G. mellonella larvae. In this
case, the larvae were inoculated as described above, but with 1
× 106 CFU of bacteria. The larval survival was monitored from
24 h until 96 h post infection. Each bacterial isolate was used
to inoculate 10 larvae per experiment, and all experiments were
performed in triplicate.

Assessment of Staphylococcal Cytotoxicity with a HeLa
Cell Infection Model

The human cervical cancer HeLa cell line was cultured in
DMEM-GlutaMAX medium (Gibco, UK) supplemented with
10% fetal calf serum (Sigma-Aldrich, USA) at 37 °C and 5%
CO2. 0.25% Trypsin-EDTA (Gibco, UK) was used to detach
adherent cells for subculturing. 3 × 104 HeLa cells in a total
volume of 100 μL were incubated in 96-well plates for 24 h.
Next the HeLa cells were infected with 1.5 × 106 bacteria in
PBS (multiplicity of infection [MOI] 50:1), which had been
obtained from overnight cultures in TSB medium, washed in
PBS and resuspended in PBS. The infected HeLa cells were
then incubated at 37 °C and 5% CO2 for 2 h. After 2 h of
infection, the plates were washed 3 times with PBS to remove
unbound bacteria and, subsequently, lysostaphin (AMBI
Products, NY, USA) was added at a final concentration of
20 μg/mL to eliminate the extracellular bacteria. Incubation
was continued for another 2 h, and then 3-(4,5-dimethylth-
iazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma-
Aldrich, NL) was added to a final concentration of 0.5 mg/
mL to evaluate the viability of the infected HeLa cells. The
plates with added MTT were incubated at 37 °C and 5% CO2
for 3 h. Lastly, the cells were resuspended in 150 μL of acidic
isopropanol, and the absorbance of the suspension was
measured at 570 nm. The cytotoxicity of individual S. aureus
isolates was expressed as the absorbance at 570 nm relative to
the control of HeLa cells incubated in the absence of infecting
S. aureus cells.

Bioinformatic and Statistical Analyses

Bioinformatic tools including TMHMM (version 2.0),26

SignalP (version 4.1),27 LipoP (version 1.0),28 PsortB (version
3.0.2),29 ProtCompB (version 9.0),30 and SecretomeP (version
2.0)31 were used for the prediction of subcellular location of
proteins identified by MS analyses. Biological processes and

gene annotations were assigned based on the previously
annotated S. aureus strain NCTC8325, using the AureoWiki
database (http://aureowiki.med.uni-greifswald.de). To visual-
ize protein functions and the respective protein abundances,
Voronoi treemaps were built using Paver version 2.1 (Decodon
GmnH, Greifswald, Germany).32 To elucidate relationships
between samples of particular groups that had been
distinguished based on their exoproteome profiles, correlation
coefficients were calculated and principal component analyses
were performed on the basis of the MS data using R version
3.4.2.33 Spearman correlation coefficients were computed with
the cor function using a pairwise comparison (R package:
stats). A k-means clustering analysis was performed by
clustering the data with the kmeans function (R package:
stats) and the outcomes were visualized with f viz_cluster (R
package: factoextra).34 Significant differences in protein
spectral counts between isolates belonging to one group
were assessed by ANOVA tests (aov) and subsequently by the
Tukey’s Honest Significant Difference (TukeyHSD) method
(R package: stats). The statistical significance of differences in
the killing of G. mellonella larvae by the S. aureus t437 Q1−
3,a−c subgroups was assessed by Wilcoxon tests and a
subsequent Bonferroni correction to adjust the P-values
using the SAS/STAT software package (version 9.4). The
statistical significance of differences in the killing of HeLa cells
by the S. aureus t437 Q1−3 groups was assessed by ANOVA
tests, and a TukeyHSD test was applied for subgroup
comparisons using the SAS/STAT software package.

Biological and Chemical Safety

S. aureus is a biosafety level 2 (BSL-2) microbiological agent
and was accordingly handled following appropriate safety
procedures. All experiments involving live S. aureus bacteria
and chemical manipulations of S. aureus protein extracts were
performed under appropriate containment conditions, and
protective gloves were worn. All chemicals and reagents used
in this study were handled according to the local guidelines for
safe usage and protection of the environment.

Data Availability

The mass spectrometry data are deposited in the ProteomeX-
change repository PRIDE (https://www.ebi.ac.uk/pride/).
The data set identifier is PXD009082.

■ RESULTS

Exoproteome Quantification Distinguishes Three Groups
of S. aureus t437 Isolates

To identify possible variations in the exoproteomes of
previously collected S. aureus t437 clinical isolates, we selected
20 different isolates, cultured them in RPMI medium to the
stationary phase, and collected the secreted proteins from the
growth medium fraction by TCA precipitation. Of note, RPMI
medium was used for this study, because previous analyses had
shown that the global gene expression profiles of S. aureus
grown in RPMI medium closely resemble those of S. aureus
grown in human plasma.35 As can be expected when working
with clinical S. aureus isolates, we detected some variations in
growth among the investigated S. aureus isolates, but these
related mainly to the lag phase (Figure S1). Further,
extracellular proteins were collected in the stationary phase,
because the majority of virulence factors are secreted during
this particular growth phase.36 Interestingly, the banding
patterns of extracellular proteins and their relative intensities
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showed clear variations in Simply Blue-stained LDS-PAGE gels
(Figure S2). This was indicative of exoproteome heterogeneity
among the 20 investigated isolates, a notion that was
subsequently verified by close inspection of the MS data
(Table S2). First, among the total of 303 different identified
extracellular proteins, only 23 were found to be shared by all
investigated isolates, whereas 102 proteins were uniquely
identified for one or two isolates. Second, calculation of total
spectral counts revealed substantial variations in the abundance
of extracellular proteins between the different isolates, ranging
from 186 for isolate 15 to 1404 for isolate 31 (Figure 1). Since
this wide range precluded a reliable normalization of total
spectral counts, we divided the isolates into three groups (Q1−
3) based on the numbers of total spectral counts measured for
their extracellular proteins (Table S2). Specifically, the total
spectral counts of exoproteins for the Q1 isolates ranged from
186 to 500, for Q2 isolates from 730 to 995, and for Q3
isolates from 1009 to 1404. In accordance with this significant
variation, also the total numbers of identified proteins per
group differed substantially, ranging between 25 proteins for
Q1 (isolate 15) and 198 proteins for Q3 (isolate 31; Figure 1).
Further, in the Q1 group, 87 distinct exoproteins were
identified for all 7 isolates, while 41.3% of the exoproteins
were uniquely identified for one or two strains. In the Q2
group, 50% of the 220 identified proteins were uniquely
identified for one or two isolates. In the Q3 group, 36.3% of
the 303 identified proteins were unique for all 7 isolates. As an
alternative to the initial grouping based on total spectral
counts, we verified the clustering of the investigated isolates by
the total numbers of identified proteins. This yielded a very
similar distribution of the investigated isolates over the Q1−3
groups (Table S3). However, since the total numbers of
spectral counts present more information concerning extrac-
ellular protein abundance, we decided to use the group
classification based on spectral counts for our further analyses.
Together, these findings imply that essentially three different
exoproteome abundance types can be distinguished among the

20 investigated S. aureus t437 isolates. Importantly, this
distinction is independent of the country of origin, year of
isolation, MLVA type and source (Figure 1, Table 1).

Exoproteome Heterogeneity in S. aureus t437 Relates
Predominantly to Differential Abundance of Extracellular
Cytoplasmic Proteins (ECP)

To assess the nature of the identified proteins, we inspected
their predicted subcellular localization with different bio-
informatics tools. This showed that the largest level of variation
was related to the extracellular appearance of typical
cytoplasmic proteins that lack known targeting signals for
export from the cytoplasm (Figure 1). The numbers of
observed extracellular cytoplasmic proteins were, over all,
lowest for the Q1 isolates and highest for the Q3 isolates,
ranging from four to 154 (Figure 1). Conversely, differences in
the numbers of predicted extracellular proteins with signal
peptides for export from the cytoplasm were much smaller.
Specifically, for the different isolates, we identified 15−40
typical secretory proteins, 5−12 cell wall-associated proteins,
2−12 lipoproteins, and 1−12 membrane-associated proteins.
The observed exoproteome heterogeneity both in terms of
identified proteins and their relative abundance based on
normalized spectral counts, is reflected in the heat maps for the
Q1, Q2, and Q3 groups of isolates presented in Figure 2A and
Table S4. These heat maps show that the greatest
heterogeneity is observed for exoproteins that are present in
relatively low abundance. Intriguingly, typical cytoplasmic
proteins appear to be overrepresented in this heterogeneous
group of low abundance proteins (Figure 2A). In contrast, the
majority of the 30 most abundant extracellular proteins is
known to be exported from the cytoplasm with the aid of signal
peptides (Figure 2A,B). A representative of the latter class of
proteins is the well-characterized immunodominant staph-
ylococcal antigen A (IsaA),25,37 which was used to validate the
quantitative proteomics data in a Western blot with the aid of a
previously developed IsaA-specific monoclonal antibody.38 As

Figure 1. Overview of the numbers of identified extracellular proteins of S. aureus t437 isolates and their predicted subcellular locations. On the
basis of the numbers of total spectral counts measured for their extracellular proteins, the 20 S. aureus t437 study isolates were assigned to three
groups designated Q1−3. For each identified extracellular protein, the subcellular location was predicted bioinformatically and the respective
numbers of proteins assigned to each subcellular location are indicated in color code. The averaged total numbers of spectral counts measured for
the extracellular protein samples from each isolate are presented below the isolate numbers.
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Figure 2. Exoproteome abundance profiles of the investigated S. aureus t437 isolates within the Q1−3 groups. (A) Heat-map showing the relative
amounts of the identified extracellular proteins within the three Q1−3 isolate groups based on normalized total spectral counts. Color-coded bars
within each heatmap represent identified proteins and the isolate numbers are indicated on top of each lane. The black and gray bars flanking each
heatmap indicate the relative abundance of extracellular proteins with a predicted cytoplasmic location (gray) versus extracellular proteins with a
predicted extracytoplasmic location; each of the respective clusters represents 30 proteins. (B) The 30 most abundant and conserved identified
extracellular proteins and their respective descriptions. (C) Comparison of the relative spectral count measurements for IsaA and a Western blot
decorated with the monoclonal antibody 1D9 that is specific for IsaA. (D) Protease activity in the growth medium of the investigated S. aureus t437
isolates was assessed by assaying the stability of recombinantly produced His6-tagged IsaA and SCIN proteins added to spent growth medium
samples and subsequent Western blotting with His6-specific antibodies.
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shown in Figure 2C, the relative spectral count measurements
for IsaA and the Western blotting data are fully consistent,
providing conclusive support for the exoproteome hetero-
geneity as mapped by mass spectrometry. Together, these
observations show that the exoproteome heterogeneity
observed for S. aureus t437 isolates is largely related to a
differential abundance of extracellular cytoplasmic proteins.
It was previously shown for another Gram-positive

bacterium, Bacillus subtilis, that the appearance of extracellular
cytoplasmic proteins can be suppressed by protease activity in
the bacterial growth medium.39 To investigate whether
proteolytic activity might impact on the extracellular protein
abundance, we assessed the possible degradation of the
recombinantly produced S. aureus proteins IsaA and SCIN in
spent media of the 20 investigated S. aureus t437 isolates. The
advantage of using these proteins as markers for proteolytic
activity is that both of them contain a C-terminal His6 tag that
allows their distinction from the respective native proteins
secreted by the investigated S. aureus isolates. Upon overnight
incubation in the spent media at 37 °C, the presence of
recombinant IsaA and SCIN was assessed by Western blotting
with His6-specific antibodies. On balance, the highest levels of
IsaA and SCIN degradation were observed upon incubation in
spent media from isolates of the Q3 group (Figure 2D). This
implies that the respective media contain the highest protease
levels, which is consistent with the finding that the cysteine
protease staphopain A was most abundantly identified in media

of Q3 isolates, and that the zinc metalloprotease aureolysin and
the cysteine protease SsaA1 were most abundantly detected in
media of Q2 and Q3 isolates (Table S4). In fact, SsaA1 was
not detectable in the media of Q1 isolates. This implies that
the relatively high abundance of extracellular cytoplasmic
proteins in media of the Q3 isolates cannot be correlated to
protease activity as was previously shown for Bacillus.

S. aureus t437 Groups Q1, Q2, and Q3 Include Subclusters
of Isolates with Distinctive Exoproteome Abundance
Signatures

To elucidate possible exoproteome relationships among the
isolates of each group, Spearman correlation and k-means
clustering analyses were performed on the basis of protein
identifications and the respective protein abundance. For both
types of analyses, the normalized total spectral counts of
proteins that were produced by all the isolates within each
group were used. The Spearman analysis revealed that isolates
within the Q2 group are relatively homogeneous with respect
to their exoprotein abundance signatures as compared to
isolates in the Q1 and Q3 groups (Figure 3A). In the Q1
group, isolate 15 seems relatively less related to the other
isolates in this group, and in the Q3 group the same applies for
isolate 31. As shown in Figure 3B, the k-means clustering
analyses provided another angle to elucidate possible
exoproteome relationships between isolates, showing that
each group of S. aureus t437 isolates (Q1−3) can be
subdivided into three distinct subgroups (a,b,c). Following

Figure 3. Clustering of isolates within each group based on exoproteome abundance signatures by Spearman correlation and principal component
analysis. (A) Spearman correlation of the normalized total spectral counts of identified extracellular proteins within the Q1−3 groups. (B) k-means
clustering analysis based on the normalized total spectral counts of the identified extracellular proteins. Two-dimensional k-means plots further
divide each Q-group into three subgroups (a,b,c).
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this subdivision based on differences in protein abundance (as
assessed by k-means clustering), differences in the number of
protein identifications for each subgroup were determined.
The Venn diagrams in Figure S3 show the numbers of core
and variant extracellular proteins identified for each group.
Taken together, the results from these analyses show that each
of the Q1−3 groups, which were initially distinguished based
on the total spectral counts measured for their exoproteins, is
composed of isolates with three different exoproteome
abundance signatures.

The Core and Variant Exoproteomes of S. aureus t437
Isolates Have Apparently Distinctive Roles in
Pathogenesis and Cellular Functions

Despite the heterogeneity observed in the exoproteome
profiles of the investigated S. aureus t437 isolates, there are
nonetheless 30 highly abundant “core” proteins consistently
detected (≥80%) in the exoproteomes of all three groups of
isolates of which about 50% have a role in virulence (Figure
2B). This implies that their dominant expression is character-
istic for the core exoproteome of isolates from this particular

Figure 4. Functional categories and protein functions of identified extracellular proteins within the Q1−3 groups. Voronoi treemaps created with
the Paver algorithm show the functional categories assigned to extracellular proteins (left panels) and the respective protein names (right panels)
for each Q1−3 group. The different functional categories are marked in different colors, and each protein is represented by a polygon-shaped tile.
The size of each category is proportional to the number of identified proteins with the respective functions. In the panels on the right, the relative
abundance of each protein is indicated in color code. Of note, particular proteins may have dual functions as exemplified for IsdA and IsdB, which
are involved both in iron acquisition and virulence. Accordingly, these proteins are represented twice in the panels on the right.
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staphylococcal lineage. To further zoom in on the collective
and variant biological functions of the identified extracellular
proteins of the Q1−3 groups, a functional classification based
on the annotation of S. aureus NTCT8325 was performed
using the Paver algorithm. As shown in the Voronoi treemaps
presented in Figure 4, the extracellular proteomes of the Q1−3
groups have distinct functional signatures. In particular, 19
different functional categories and 95 predicted protein
functions were distinguished for the Q1 group, the most
prominently represented functional categories being virulence,
disease and defense (30.5%), protein metabolism (13.6%), iron
acquisition and metabolism (8.4%), and carbohydrate
metabolism (7.3%). For exoproteins of the Q2 group, 20
different functional categories and 240 protein functions were
assigned, with protein metabolism (19.5%), virulence, disease,
and defense (18.3%), carbohydrate metabolism (16.6%), and
iron acquisition and metabolism (4.5%) being the most
prominent categories. For exoproteins of the Q3 group, 21
functional categories and 308 predicted protein functions were
assigned, with protein metabolism (21.1%), carbohydrates
metabolism (14.9%), virulence, disease, and defense (13.8%),
and nucleosides and nucleotides (5.6%) being most prominent.
Altogether, the observations presented in Figures 2A,B and 4
imply that, over all, the core and variant exoproteomes of the
investigated S. aureus t437 isolates have apparently distinctive
roles in pathogenesis and cellular functions.

Production of Known Virulence Factors by S. aureus t437
Isolates Is Highly Heterogeneous

Our exoproteome analyses identified in total 35 proteins
implicated in staphylococcal virulence. The relative abundance
of these known virulence factors as produced by the individual

investigated isolates is represented in Figure 5. Twelve of these
proteins are primarily linked with bacterial adhesion to cells
and tissues of the human host, including three iron-regulated
surface determinants (IsdA, IsdB, IsdH), six proteins belonging
to the so-called “microbial surface components recognizing
adhesive matrix molecules” (MSCRAMM) family (ClfA, ClfB,
EbpS, Emp, FnbpA, FnbpB, Map, SpA, and vWbp), and SasG.
Eighteen identified virulence factors are secreted proteins that
serve to disrupt host cells and promote spreading, including
five exoenzymes (Aur, Lip1, Lip2, SC, and ScpA), five cytolytic
toxins (Hla, Hlb, Hld, LukD, and LukE), six superantigens
(EntC2, EntK, EntQ, SEIX, SSL7, and SSL11), and EsxA. In
addition, we identified five proteins (CHIPS, Efb, FLIPr, Sbi,
and SCIN), which are involved in the evasion of innate or
adaptive immune responses of the host. As shown in Figure 5,
the expression of these 35 virulence factors by S. aureus t437
isolates was highly heterogeneous in the different groups of
isolates. In particular, isolates belonging to the Q1 group
produced on average less known virulence factors than isolates
belonging to the other two groups.

Subclustering of S. aureus t437 Isolates Based on
Normalized Total Spectral Counts of Exoproteins Is
Predictive for High or Low Rates of Killing in a Larval
Infection Model

The observed differences in the production of known virulence
factors by the different S. aureus t437 isolates was suggestive of
possible differences in the virulence of these isolates.
Therefore, we assayed their virulence using a Galleria
mellonella larval infection model, where the bacteria are solely
challenged by innate immune defenses.18 Specifically, each of
the 20 investigated S. aureus t437 isolates was used to infect 15

Figure 5. Heat map representation of the relative abundance of identified extracellular virulence factors. A total number of 34 well-known virulence
factors was identified for the Q1−3 groups. Color-coded bars within each heatmap represent identified proteins and their relative abundance based
on normalized total spectral counts. The isolate numbers are indicated on top of each lane.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.9b00179
J. Proteome Res. 2019, 18, 2859−2874

2867

http://dx.doi.org/10.1021/acs.jproteome.9b00179


larvae, where a bacterial suspension of 10 μL containing 2.5 ×
106 CFUs in PBS was used per larval inoculation.

Subsequently, the larval mortality was assessed at 24 and 48

h post infection (p.i.). As a control, larvae were inoculated with

heat-killed bacteria equivalent to 2.5 × 107 CFU prior to heat

inactivation (i.e., a 10-fold higher CFU count than used in

inoculations with living bacteria). The vast majority of larvae

inoculated with heat-killed bacteria survived for 48 h p.i.

Figure 6. Virulence of the 20 investigated S. aureus t437 isolates in a G. mellonella infection model. (A) Larvae of G. mellonella were inoculated with
2.5 × 106 CFUs of the 20 S. aureus t437 study isolates. Killing of the larvae was assessed at 24 and 48 h post inoculation. All values are the mean ±
the standard deviation of three independent infection experiments. HK, heat-killed bacteria. (B) Statistical significance of observed differences in
virulence between the identified S. aureus t437 subgroups as assessed using a Wilcoxon test. A P-value <0.05 was considered significant.

Table 2. Extracellular Proteins of S. aureus t437 Isolates Significantly or Uniquely Associated with High or Low Virulence in
the Galleria mellonella Infection Modela

Q1 a versus b and c Iron-regulated surface determinant protein B (IsdB) a↑ b and c↓ (P < 0.0001)
Iron-regulated surface determinant protein A (IsdA) a↑ b and c↓ (P = 0.0002)
Immunodominant staphylococcal antigen A (IsaA) a↓ b and c↑ (P < 0.0001)
Chitinase B (ChiB) a− b and c+
N-Acetylmuramyl-L-alanine amidase (Sle1) a− b and c+

Q2 b versus a and c Iron-regulated surface determinant protein B (IsdB) b↑ a and c↓ (P < 0.0001)
Elongation factor G (EF-G) b− a and c+
Pyruvate kinase (PK) b− a and c+
Pyruvate dehydrogenase E1 component subunit alpha (PDHA1) b− a and c+
High-affinity heme uptake system protein (IsdE) b+ a and c−
Extracellular fibrinogen binding protein (Efb) b+ a and c−
ATP synthase subunit beta (ATPases) b− a and c+
30S ribosomal protein (S10) b− a and c+
ATP synthase subunit alpha (ATPases) b− a and c+
1,4-Dihydroxy-2-naphthoyl-CoA synthase (DHNA-CoA) b− a and c+
Ser-Asp rich fibrinogen/bone sialoprotein-binding protein (SdrH) b+ a and c−
Fibronectin-binding protein B (FnbB) b+ a and c−

Q3 c versus a and b Chitinase B (ChiB) c+ a and b−
50S ribosomal protein (L7/L12) c− a and b+
50S ribosomal protein (L5) c− a and b+

aStatistical significance in the amounts of particular extracellular proteins per Q1−3 group and the respective a,b,c subgroups was assessed by
ANOVA; “↑”, indicates a significantly higher level of protein abundance and “↓” a significantly lower protein abundance level. Proteins consistently
present or absent in the respective groups and subgroups are indicated with “+” or “−”, respectively.
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(Figure 6). In contrast, inoculation with living bacteria resulted
in death of the majority of larvae within 48 h p.i. Between
different S. aureus t437 isolates, the largest variations in larval
killing were observed at 24 h p.i., while differences in the larval
killing rates at 48 h p.i. were relatively smaller. For example,
inoculation with bacteria from the Q1 group resulted in

average killing rates between 17.7% (strain Q1−24) and 57.7%
(strain Q1−71) at 24 h p.i. At 48 h p.i. the larval killing due to
inoculation with isolates from the Q1 group ranged between
51.1% (strain Q1−15) and 77.7% (strain Q1−71). Similar
larval killing rates were observed upon inoculation with
S. aureus t437 isolates from groups Q2 and Q3. Of note, the

Figure 7. Assessment of possible roles of IsdA, IsdB, and IsaA in staphylococcal virulence in a G. mellonella infection model. (A) Effect of the
inoculation of G. mellonella larvae (n = 30) with 1 × 106 CFUs of S. aureus USA300 LAC, or isdA or isdB mutant derivatives of this strain on larval
survival. (B) Effect of the inoculation of G. mellonella larvae (n = 30) with 1 × 106 CFUs of S. aureus SH1000 or an isaA mutant derivative of this
strain on larval survival. The survival rates were monitored from 24 to 96 h post infection. The statistical significance of the observed differences
was assessed using a Wilcoxon test. A P-value < 0.05 was considered significant (isdA vs wild-type, P = 0.8621; isdB vs LAC, P = 0.1642; isaA vs
SH1000, P = 0.0325).

Figure 8. Cytotoxicity of the 20 investigated S. aureus t437 isolates in a HeLa cell infection model. (A) HeLa cells were infected with bacteria at a
MOI of 50:1. Upon 2 h incubation, lysostaphin was added to eliminate the extracellular bacteria. After another 2 h incubation, MTT was added to
evaluate the viability of the infected HeLa cells. The results are shown as the percentage of MTT reduction relative to the uninfected control. (B)
The statistical significance of differences in the killing of HeLa cells by S. aureus t437 PVL- or EbpS-negative isolates was assessed by t tests. Please
note that the absence of PVL from particular strains was previously demonstrated (Table 1), and that the EbpS-negative designation relates to a
lack of identification of EbpS in the present exoproteome analysis. P-values < 0.05 were considered significant. The P-values for isolate 15 versus
isolates 24, 54, and 59 are 0.0036, 0.0369, and 0.0149, respectively.
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observed variations could not be correlated to geographical
regions where the S. aureus isolates had been collected,
different host environments, or particular MLVA types (Table
1). However, for S. aureus isolates from the Q1, Q2, and Q3
groups, a clear correlation between the larval killing rates and
the k-means clustering-based separation of isolates into
different subclusters was observed. In particular, isolates from
the Q1a, Q2a, Q2c, Q3a, and Q3b subclusters displayed
relatively low-level killing of larvae (i.e., <40% killing at 24 h
p.i.), while isolates from the Q1b, Q1c, and Q2b subclusters
showed relatively high rates of larval killing (Figure 6; Table
S5). Only among isolates from the Q3c subcluster we observed
both high and low rates of larval killing.
To investigate which extracellular proteins might be involved

in the differences in larval killing activity per “Q-group”, we
assessed the statistically significant differences in the
abundance, as well as the presence or absence, of particular
exoproteins in the respective subclusters with high or low
killing activity. This revealed that distinguishing features for
Q1 isolates with high killing activity (subclusters Q1b and
Q1c) were the production of a secreted Chitinase B (ChiB)
and the amidase Sle1, relatively high levels of IsaA, and
relatively low levels of the IsdA and IsdB proteins (Table 2).
Interestingly, also for isolates from the Q3 group with mostly
high killing activity (Q3c), the identification of Chitinase B was
a distinguishing feature. Distinguishing features of isolates with
high killing activity in the Q2 group (i.e., subcluster Q2b) were
relatively high levels of IsdB, and the unique identification of
Efb, FnbB, IsdE, and SdrH (Table 2). To verify possible effects
of some of these extracellular proteins on virulence, we tested
isdA, isdB, or isaA mutant strains along with the respective
parental strains in the G. mellonella infection model. Compared
to the wild-type, the isdA and isdB mutations in the S. aureus
USA300 LAC background displayed no significant differences
in larval killing (Figure 7A), whereas the rate of larval killing by
the investigated isaA mutant was significantly lower compared
to the respective S. aureus SH1000 wild-type (Figure 7B).
Taken together, these observations imply that the k-means
clustering analysis based on the normalized total spectral
counts of exoproteins that were produced by all the isolates
within each Q group distinguishes those isolates that show
comparable levels of virulence, at least in the G. mellonella
infection model.

S. aureus t437 Isolates Show Relatively Small Variations in
Cytotoxicity in a HeLa Cell Infection Model

The observed differences in the larval killing activity by the
different S. aureus t437 isolates mostly reflect the ability of the
respective bacteria to survive a challenge by professional
phagocytes of G. mellonella. This prompted us to also
investigate their ability to invade and kill nonprofessional
phagocytic cells. To this end, we applied HeLa cells, which
were exposed to S. aureus at a MOI of 1:50. After 2 h,
lysostaphin was added to eliminate the extracellular, non-
internalized bacteria and an MTT activity assay was applied to
evaluate the viability of the infected HeLa cells. The results are
presented in Figure 8 as the percentage of MTT activity
relative to that of the uninfected control cells. Interestingly,
although some variations in the killing of HeLa cells were
observed, the differences were mostly not significant (Figure
8B; Table S5). Of note, as shown in Figure 8A, a relatively low
cytotoxicity was observed for three Panton-Valentine Leuko-
cidin (PVL)-deficient isolates (i.e., 57, 147, 153; Table 1), and

three isolates that seem to lack the adhesin EbpS as judged by
the present exoproteome analysis (i.e., 15, 71, and 93; Figure
5). Thus, the substantial differences observed for the
exoproteomes of the investigated S. aureus t437 isolates are
not mirrored in the ability to invade and kill nonprofessional
phagocytic HeLa cells.

■ DISCUSSION
In the present study, we have performed a first comparative
exoproteome profiling analysis for S. aureus with the spa-type
t437, including 20 isolates from eight different countries. In a
previous study, we described this clone as a genetically tight
cluster belonging to the CC59 clonal complex.8 Nonetheless,
our analysis uncovered substantial exoproteome heterogeneity
among these strains, and only relatively few proteins were
found to be produced by all investigated isolates. In contrast, a
large number of proteins was found to be unique for one or
two strains under the conditions tested. Of note, we have
previously uncovered substantial exoproteome heterogeneity
for the S. aureus species by investigating clinical isolates derived
from one hospital, but belonging to different clonal lineages.15

This was attributed to the large plasticity of the S. aureus
genome, which is continuously reshaped by the acquisition and
loss of mobile genomic elements, as well as strain-specific
differences in gene expression, translation, protein secretion
and post-translational protein modifications.40 On the other
hand, we demonstrated more recently that the exoproteomes
of S. aureus USA300 isolates from the Copenhagen area in
Denmark display fairly homogeneous exoproteomes, of which
the composition could be associated with their epidemicity.41

This appears to be different for the closely related S. aureus
t437 isolates in our present study, which were collected in
different European countries and China. Although it is
suggestive that the geographical distribution could play a role
in the observed exoproteome heterogeneity, it was not possible
to associate particular exoproteome profiles to particular
countries or even to particular subtypes of S. aureus t437 as
distinguished by MLVA or MultiLocus Variable-number
tandem repeat Fingerprinting. A similar observation was
reported by Liew et al., who compared pairs of S. aureus
isolates belonging to ST1, ST8 and ST33.42 To date, it was
difficult to explain this exoproteome heterogeneity. Impor-
tantly, however, our present data do shed light on possible
underlying mechanisms, in particular because a large extent of
the observed variation relates to the release or excretion of
typical cytoplasmic proteins, whereas the variations observed
for proteins secreted with the aid of Sec-type signal peptides
were relatively small.
In addition to proteins which are actively exported from the

cytoplasm via different secretion systems, the Sec system in
particular, the exoproteomes of S. aureus and many other
bacteria contain large numbers of typical cytoplasmic proteins
(Table S6).43,44 Consequently, the numbers of detectable
extracellular proteins of S. aureus may become very large as
exemplified by >1300 exoprotein identifications in a recent
study.45 The mechanisms by which these proteins are released
from the cytoplasm have been enigmatic for a long time.
However, in recent years a general picture has emerged where
this so-called alternative secretion46 or excretion of cytoplasmic
proteins (ECP)47 is the end result of different processes,
involving cell lysis caused by autolysins,48 phage activity, the
production of cytolytic toxins,49 and/or proteolytic activity.50

In the present study, we observed a massive variation in the

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.9b00179
J. Proteome Res. 2019, 18, 2859−2874

2870

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00179/suppl_file/pr9b00179_si_006.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00179/suppl_file/pr9b00179_si_006.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00179/suppl_file/pr9b00179_si_006.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00179/suppl_file/pr9b00179_si_007.xlsx
http://dx.doi.org/10.1021/acs.jproteome.9b00179


amounts of extracellular proteins to the extent that we had to
distinguish three groups (i.e., Q1, Q2, and Q3) based on the
total number of spectral counts of extracellular proteins
detected by MS. Interestingly, the variation in ECP could
not be correlated to the production of the major autolysin Atl,
which was detectable in comparable amounts in the
exoproteomes of the different isolates (Table S4). On the
other hand, we did observe a phage coat protein in the
exoproteomes of isolates belonging to groups Q2 and Q3 that
displayed high levels of ECP. In addition, among the
exoproteomes of these isolates we detected the phospholipase
C, which is encoded by the hlb gene into which the so-called β-
hemolysin-converting bacteriophages are usually integrated.51

Such phages encode immune evasion factors, like SCIN and
CHIPS, which were abundantly detected in the exoproteomes
of the here investigated S. aureus t437 isolates. Hence, we
consider it likely that the observed exoproteome heterogeneity
in groups Q2 and Q3 can be attributed at least to some extent
to (pro)phage activity. Intriguingly, we detected higher
amounts of the extracellular protease staphopain A in media
of Q3 isolates, and of the proteases aureolysin and SsaA1 in
media of Q2 and Q3 isolates, where the Q3 isolates show the
highest levels of ECPs. This is different from the situation
encountered in B. subtilis where overproduction of secreted
proteases led to complete degradation of ECPs, whereas the
deletion of multiple genes for secreted proteases led to highly
increased levels of ECPs.39,52 The latter was due both to
decreased turnover of ECPs and enhanced autolysin activity as
secreted proteases are needed to control autolysin activity.
Likewise, a recent study using S. aureus USA300 LAC showed
that increased protease production due to a sarA mutation
resulted in a substantial reduction in the number of identified
extracellular proteins.45 Thus, despite the fact that extracellular
proteases have been described as modulators of virulence
factor stability,53 it seems that other mechanisms like prophage
activity are more dominant in the appearance of ECPs in the
investigated S. aureus t437 isolates.
Irrespective of the precise mechanisms underlying ECP, it

has become increasingly clear that certain cytoplasmic proteins
can play decisive roles in host colonization and infection.
These multifunctional proteins are usually described as
“moonlighting proteins”. In many cases, moonlighting proteins
are evolutionarily well-conserved metabolic enzymes or
molecular chaperones.54 For instance, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), the first identified
moonlighting bacterial enzyme, was found to serve not only
as a glycolytic enzyme in the cytoplasm, but also as a virulence-
enhancing protein when associated with the cell surface of
pathogenic streptococci.55 In the exoproteomes of the S. aureus
t437 lineage, we identified 3 well-known moonlighting
proteins, namely fructose-bisphosphate aldolase, alkyl hydro-
peroxide reductase and elongation factor Tu. In fact, all
investigated isolates showed relatively high extracellular levels
of these three proteins. The cytoplasmic form of fructose-
bisphosphate aldolase is a glycolytic enzyme but, upon ECP by
Candida albicans and Neisseria meningitides, this protein was
shown to be involved in plasminogen binding and adhesion to
human cells.56,57 The alkyl hydroperoxide reductase is
generally responsible for detoxification of reactive oxygen
species, but it was also implicated in heme-binding by
Streptococcus agalactiae.58 The cytoplasmic form of elongation
factor Tu catalyzes the binding of aminoacyl-tRNA to the
ribosome but, when exposed on the surface of Mycoplasma

pneumoniae and Streptococcus gordonii, it can also play roles in
fibronectin- and mucin-binding, respectively.59,60 It thus seems
that the release of cytoplasmic proteins into the extracellular
environment, either by lysis or other mechanisms, can be
regarded as an altruistic mechanism for the bacterial
population. On this basis, it can be anticipated that several
of the presently identified ECPs may serve additional roles in
host colonization and infections caused by S. aureus t437.
One of the major challenges in understanding and predicting

the virulence of S. aureus is imposed by the multitude of
virulence factors produced by this pathogen, all of them serving
different but sometimes overlapping, redundant or even
synergistic roles during different stages of infection. Accord-
ingly, it has thus far been close to impossible to correlate
clinical data to particular exoproteome profiles. We therefore
made a first attempt to correlate our exoproteome data to
bacterial virulence in a simple high-throughput animal model
involving the larvae of Galleria mellonella. Of note, in this
model bacteria are injected into the larvae, which means that
early stages in the infection process, like adhesion, colonization
and breakage of barriers for infection are bypassed. Instead, the
bacteria are directly confronted by the innate immune response
of the larvae.18 Furthermore, for a number of opportunistic
human pathogens good correlations were observed between
infection of mice and G. mellonella.61,62 Importantly, the
Galleria model has already been successfully applied in the
identification of virulence factors of S. aureus, and the efficacy
of anti-staphylococcal agents.63,64 Intriguingly, we observed that
particular quantitative proteomic signatures within each Q-
group of investigated S. aureus t437 isolates correlated well
with high or low virulence in the Galleria model, irrespective of
the numbers of different extracellular proteins produced.
Instead, certain proteins such as IsaA, IsdB, IsdA, IsdE,
IsdH, and Chitinase B could be related to the observed killing
of larvae. For instance, the housekeeping protein IsaA, which
has been identified as a major antigen of S. aureus and a
potential candidate for antibody-based therapy,65 was a
distinctive feature of the exoproteome profile of the highly
virulent subgroups Q1b and Q1c. Consistent with this notion,
an isaA deletion mutant was found to be attenuated in the
G. mellonella infection model. A role of IsaA in staphylococcal
virulence had not yet been reported, but it would in fact
explain why this protein is invariantly produced in all
investigated clinical S. aureus isolates.15,66 Also, the hydrolytic
enzyme Chitinase B was uniquely present in the exoproteomes
of the highly virulent subgroups Q1b, Q1c, and Q3c. The
impact of the latter enzyme could in principle be due to the
degradation of larval chitin.67 However, it has to be noted that
chitin and chitinases were previously proposed to serve as
important regulators of innate and adaptive immune
responses.68 It is thus conceivable that the produced Chitinase
B also serves a function in immune evasion and infection, not
only in the Galleria model, but even in the human body from
which all investigated S. aureus t437 isolates included in our
study were originally derived. Clearly, this will require further
in-depth analyses. Confidence that the observed exoproteome
abundance profiles may be meaningful for virulence of the
investigated S. aureus isolates can be derived from the fact that
multiple proteins involved in iron homeostasis were found to
be associated with virulence, albeit in a differential manner.
The latter may explain why we did not observe a distinctive
effect of individual isdA or isdB mutations on virulence in the
G. mellonella model. Nonetheless, the importance of iron
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homeostasis determinants for virulence would be consistent
with the fact that both humans and G. mellonella represent an
iron restricted environment for S. aureus, where iron
deprivation may impose a need for high virulence whereas a
good ability to acquire iron may to some extent obviate the
need to be virulent. Thus, the fact that we can correlate certain
S. aureus t437 exoproteome abundance profiles to high or low
virulence in the G. mellonella model implies that these profiles
may also be relevant for the potential to cause infection in
particular niches of the human body. In this respect, one has to
bear in mind that animal models, such as the larvae of
G. mellonella, reflect the human setting only partially.
Furthermore, different bacterial traits are required to infect
different niches in the human body. Consistent with this view,
the investigated S. aureus t437 isolates behaved differently in
the HeLa cell infection model, where we essentially assayed
their ability to invade and kill nonprofessional phagocytic cells.
In the latter infection scenario, it appears that the presence or
absence of the adhesin EbpS or the toxin PVL may have a
greater impact on the viability of infected host cells than the
major differences that we observed in the composition of the
exoproteomes of the individual investigated S. aureus t437
isolates.

■ CONCLUSION
The present study provides a detailed survey of the
extracellular proteome and virulence assessment of the S. aureus
lineage with spa-type t437. The results allowed a separation of
20 representative clinical isolates into three groups and nine
subclusters with different exoproteome abundance profiles.
This shows that, despite the high degree of genomic
relatedness within this lineage, its exoproteome is highly
heterogeneous. This has important bearings on the virulence of
these isolates as was shown using a G. mellonella larval infection
model. On the other hand, the virulence of the investigated
isolates as assayed in the HeLa cell toxicity assay most likely
mirrors the relatively few variations observed for a core set of
about 20 known extracellular virulence factors that typify the
S. aureus t437 lineage. Here one has to bear in mind that
S. aureus requires different virulence factors to invade, thrive,
and survive in different niches of the human body. Thus, the
present data provide novel leads for further dissection of the
roles of particular exoproteome profiles or individual
extracellular proteins in staphylococcal virulence.
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