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Abstract
The increasingly wide application of chloroplast (cp) genome super-barcode in tax-
onomy and the recent breakthrough in cp genetic engineering make the development 
of new cp gene resources urgent and significant. Corydalis is recognized as the most 
genotypes complicated and taxonomically challenging plant taxa in Papaveraceae. 
However, there currently are few reports about cp genomes of the genus Corydalis. In 
this study, we sequenced four complete cp genomes of two endangered lithophytes 
Corydalis saxicola and Corydalis tomentella in Corydalis, conducted a comparison of 
these cp genomes among each other as well as with others of Papaveraceae. The 
cp genomes have a large genome size of 189,029–190,247 bp, possessing a quadri-
partite structure and with two highly expanded inverted repeat (IR) regions (length: 
41,955–42,350 bp). Comparison between the cp genomes of C. tomentella, C. saxi-
cola, and Papaveraceae species, five NADH dehydrogenase-like genes (ndhF, ndhD, 
ndhL, ndhG, and ndhE) with psaC, rpl32, ccsA, and trnL-UAG normally located in the 
SSC region have migrated to IRs, resulting in IR expansion and gene duplication. An 
up to 9 kb inversion involving five genes (rpl23, ycf2, ycf15, trnI-CAU, and trnL-CAA) 
was found within IR regions. The accD gene was found to be absent and the ycf1 gene 
has shifted from the IR/SSC border to the SSC region as a single copy. Phylogenetic 
analysis based on the sequences of common CDS showed that the genus Corydalis is 
quite distantly related to the other genera of Papaveraceae, it provided a new clue for 
recent advocacy to establish a separate Fumariaceae family. Our results revealed one 
special cp genome structure in Papaveraceae, provided a useful resources for clas-
sification of the genus Corydalis, and will be valuable for understanding Papaveraceae 
evolutionary relationships.
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1  | INTRODUC TION

Chloroplasts (cp), generally considered to have originated from ancient 
cyanobacteria, are the main site of photosynthesis and energy con-
version in plant cells, containing the major enzyme systems for photo-
synthesis and a highly conserved genome (Ahlert et al., 2003; Moore 
et  al.,  2010). With the development of high-throughput sequencing 
technology, cp genomics has made rapid progress (Li et  al.,  2015). 
The National Center for Biotechnology Information (NCBI) database 
included 377 complete cp genome sequences in 2010 and had more 
than 10,381 sequences in 2020 (https://www.ncbi.nlm.nih.gov/genom​
e/brows​e/), a nearly 30-fold increase over 10 years. Currently, cp ge-
nomics research is an intense area of botanical and genomic study.

Correct understanding of the relationship between different bi-
ological groups is the main focus of phylogenetic biology, the basis 
of taxonomy and naming, and a foundation for research in other 
branches of biology (Chen et al., 2016). Compared with traditional 
molecular markers, the cp genomes provide specific advantages 
for establishing plant phylogenetic relationships and taxonomic re-
search (Guo et al., 2017). The length of cp genomes is usually 115–
165 kb, a modest size that is easily sequenced. The longer sequence 
provided more sufficient information for phylogenetic analysis. 
Relatively conserved gene sequences allow produce co-linearity 
among plant groups, and the evolution rates of coding regions and 
noncoding regions are significantly different to be suited for phylo-
genetic analysis of different ranks (Clegg et al., 1994). Taxonomists 
have used cp genomes to study plant phylogenetics and advocated 
for use of cp genomes as a super DNA barcode for species identifi-
cation (Guo et al., 2017).

In recent years, a large number of cp genome have been se-
quenced, providing abundant data that can be used for plant phy-
logeny research to more accurately reveal the true evolutionary 
relationships between species and effectively solve difficult phy-
logenetic relationship problems in the study of complex plant taxa 
(Guo et al., 2019; Jansen et al., 2006; Zhang et al., 2017). Cp genomes 
have been successfully used as a “super barcode” to identify many 
taxonomically difficult species (Cui et  al.,  2019; Ying et  al.,  2019). 
With the reduced cost of sequencing and the development of bioin-
formatics technology, cp genome will be extensively used in future 
studies of plant taxonomy.

Corydalis DC., the largest genus of Papaveraceae, is recognized 
as one of the most taxonomically challenging plant taxa (Magnus 
et al., 1996). It has extremely complex morphological variation be-
cause of typical reticulate evolution and intense differentiation 
during evolution (Wu et al., 1996). Taxonomic study of the genus on 
the basis of morphological characteristics has been very difficult (Lu 
et al., 2018). Cp genomes have been proven effective for phyloge-
netic research of many taxonomically complex taxa. However, there 
currently are few reports about cp genomes of the genus Corydalis, 
but see two plants, Corydalis trisecta and Corydalis conspersa (Kanwal 
et al., 2019; Wu et al., 2020). Therefore, it is necessary to sequence 
the cp genomes of Corydalis plants in order to provide more accurate 
basis for the classification and identification of this genus.

In this study, high-throughput sequencing and comparative 
genomics were used to study the cp genomes of two Corydalis 
plants: Corydalis saxicola and Corydalis tomentella. They belong 
to Sect. Thalictrifoliae Fedde of the genus Corydalis, which grows 
in dry cracks of limestone (Figure  1) and is known as lithophytes. 
There are little available soil and water on the limestone, so they 
have been subjected to extreme environmental conditions, such as 
high temperature, drought, and high PH (Ren et al., 2019). Then, we 
asked whether the cp genome structures of these two lithophytes 
had special variation under the extremely harsh lithophytic envi-
ronment, and whether these variation would affect their classifi-
cation and identification. We sequenced four complete cp genome 
sequences from these two plants, described their genomic charac-
teristics, conducted comparisons between these genomes and other 
Papaveraceae cp genomes, and analyzed the phylogenetic relation-
ships on the basis of common protein CDS. Our study aim was to 
assess structural variation, and provide valuable resources for classi-
fication of the genus Corydalis.

2  | MATERIAL S AND METHODS

2.1 | Materials, DNA extraction and sequencing

Plant materials were provided by the Chongqing Institute of 
Medicinal Plant Cultivation (CQIMPC) and identified by researcher 
Zhengyu Liu as C.  tomentella Franch. and C.  saxicola Bunting. The 

F I G U R E  1   The habitat of C. saxicola 
and C. tomentella. (a) The distant view of 
steep cliff growing C. saxicola; (b) the close 
shot of C. saxicola; (c) the close shot of 
C. tomentella. The yellow arrows indicated 
the Corydalis plants

(a) (b) (c)
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voucher specimens of the two species were deposited in CQIMPC, 
and the specimen accession numbers were NC-CQIMPC201651, 
NC-CQIMPC201652 NC-CQIMPC201661, and NC-CQIMPC201662, 
respectively. We collected young leaves from selected plants that 
were vigorous, healthy, and disease-free. These leaves were wiped 
with 70% alcohol and repeatedly washed with sterile water before 
genomic DNA extraction. Total DNA was extracted using a Tiangen 
plant genomic DNA extraction kit (Tiangen Biotech Co.), and the 
DNA quality and concentration were detected using 1% agarose 
electrophoresis and a Nanodrop 2000. The DNA was sheared to 
yield approximately 500  bp long fragments for paired-end library 
construction. The library was sequenced on Illumina HiSeq 4000 
Platform (Illumina) according to the standard protocol of manu-
facturer's manual. Approximately 3–5  Gb raw paired-end reads 
(2 × 150 bp) were obtained for each specimen.

2.2 | Genome assembly and annotation

The cp genome were assembled on a Linux system. First, raw se-
quencing data were filtered using Trimmomatic (Version 0.36) to get 
the high-quality clean data (Bolger et al., 2014). In the second step, 
we used the thirteen chloroplast genome sequences of Papaveraceae 
species which were downloaded from GenBank to establish a Basic 
Local Alignment Search Tool (BLASTn) database. Then the clean data 
were mapped to the BLAST database, and the mapped reads which 
were considered as reads from chloroplast genome were extracted. 
Next step, the extracted reads were assembled to contigs using 
SOAPdenovo2 (Luo et al., 2012). At last, SSPACE was used to con-
struct the scaffold of the chloroplast genome (Boetzer et al., 2011), 
and GapCloser was used to fill gaps (Luo et al., 2012). The completed 
genomes were annotated using CPGAVAS2 (Shi et al., 2019), and the 
results were modified for starter and terminator revisions by Apollo 
software (Lee et al., 2009). CPGAVAS2 software was used to con-
vert revised GFF3 format annotation results into a sqn format for 
NCBI submission. Sequin software was used to check and correct 
unsatisfactory comments in the sqn file, and the corrected results 
were submitted to the NCBI database. Physical maps of the cp ge-
nomes were drawn by GenomeDRAW (Marc et al., 2013) using a GB 
format file exported from the sqn file by sequin software.

2.3 | Genome structure analyses and 
genome comparison

GC content was analyzed using MEGA6.06 software (Tamura 
et  al.,  2013). The distribution of codon usage was investigated 
using CodonW software with the RSCU ratio (Sharp & Li,  1987; 
Zhou et  al.,  2017). MISA software (http://pgrc.ipk-gater​sleben.de/
misa/) was used to detect simple sequence repeats (SSRs) (MISA-
Microsatellite Identification Tool, 2017). Parameters were set as fol-
lows: no less than 8 single-base repeat units; no less than 4 units 
with 2, 3 bases in one unit; and no less than 3 units with 4, 5, 6 bases 

in one unit (Huang et al., 2020). Tandem Repeats Finder v4.0.4 soft-
ware (Benson, 1999) was used to detect tandem repeat sequences, 
and the default parameter was set to 2-7-7 -80-10-50-500-f-d-m 
(Li et al., 2014). REPuter software (http://bibis​erv.techf​ak.uni-biele​
feld.de/reputer) was used to detect scattered repeating sequences 
(>30  bp) using the parameter: hamming distance  =  3 (Stefan 
et al., 2001). VISTA software was used to compare multiple cp ge-
nomes (Frazer et al., 2004).

2.4 | Phylogenetic analysis

A total of 13 cp whole genome sequences were used in cluster 
analysis. Eleven genomes were from Papaveraceae (C.  tomentella 
MT093187 MT077878, C. saxicola MT077878 MT077879, Papaver 
somniferum NC029434, Papaver orientale NC037832, Papaver rhoeas 
MF943221, Meconopsis racemosa MH394401 NC039625, Macleaya 
microcarpa NC039623, and Coreanomecon hymenoides NC031446), 
and Coptis chinensis (NC001879) and Nicotiana tabacum (NC036485) 
genomes were included as outgroups. Of the Papaveraceae ge-
nomes, four genomes were newly sequenced in this study, and 
nine genomes were downloaded from the NCBI database. Common 
protein coding sequences were extracted from the cp genome se-
quences (Li et al., 2014), and multiple global alignments of the pro-
tein coding sequences was performed using the Clustalw module in 
MEGA6.06 software. Maximum-Likelihood (ML) phylogenetic tree 
was constructed by MEGA6.06 software (Tamura et al., 2013). The 
program operating parameters were set as follows: a Tamura–Nei 
nucleotide substitution model with 1,000 bootstrap repetitions, ac-
companied by Gamma distributed with invariant site (G  +  I) rates, 
and partial deletion of gaps/missing data. The model with the high-
est bootstrap values at each node was determined to be the most 
appropriate model.

3  | RESULTS

3.1 | Chloroplast genomes features

Approximately, 5.12, 5.23, 2.68, and 2.77 Gb raw paired-end reads 
(2 × 150 bp) were obtained from the Illumina HiSeq 4000 Platform 
for MHJ-1, MHJ-2, YHL-1, and YHL-2, respectively. The raw se-
quencing data were filtered using Trimmomatic, 4.54, 4.61, 2.25, and 
2.30 Gb of clean data were used to assemble the complete chloro-
plast genome. The complete C. tomentella genomes were 190,198–
190,247  bp long and exhibited a typical angiosperm circular cp 
structure, containing four regions: large single-copy region (LSC: 
96,530–96,701 bp), small single-copy region (SSC: 9,636–9,664 bp), 
and a pair of inverted repeats (IR: 41,955–42,002 bp) (Figure 2). The 
GC content of the genome and each genomic region was also typical 
of angiosperm cp structure. Specific lengths and contents are shown 
in Figure 2 and Table 1. The lengths of the two complete C. saxicola 
genomes were 189,029 and 189,155 bp, which were slightly smaller 

http://pgrc.ipk-gatersleben.de/misa/
http://pgrc.ipk-gatersleben.de/misa/
http://bibiserv.techfak.uni-bielefeld.de/reputer
http://bibiserv.techfak.uni-bielefeld.de/reputer
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than those of C. tomentella. The cp genome structure, size of each re-
gion, and GC content were similar between the two species (Table 1).

CPGAVAS2 was used to annotate the cp genomes of C. tomentella 
and C. saxicola. Removing duplicate genes, a total of 119 annotated 
genes (Figure 2, Table 2 and Table S1), including 78 protein-coding 
genes, 37 tRNA genes, and four rRNA genes, were identified from 
the C. tomentella. There were 28 genes in the IR region, of which 15 

were involved in gene expression. Introns greatly affect regulated 
selective splicing in the genome. There were 19 genes that contain 
introns in the C. tomentella cp genome. Most intron genes contained 
only one intron, while the ycf3 gene contained two introns. There 
were 12 introns with a length of more than 700 bp, and the longest 
gene was trnK-UUU with a length of 2,478 bp. The gene features 
of C. saxicola cp genome were similar to those of C. tomentella. The 

F I G U R E  2   Schematic representation of the chloroplast genomes of C. tomentella. The map contains four rings. From the center going 
outward, the first circle shows forward and reverse repeats connected with red and green arcs, respectively. The next circle shows tandem 
repeats marked with short bars. The third circle shows microsatellite sequences identified by MISA. The fourth circle is drawn using 
drawgenemap and shows the gene structure of the plastome. The genes are colored on the basis of their functional categories. Genes inside 
and outside of the circle are transcribed in clockwise and counterclockwise directions, respectively. IR, inverted repeat; LSC, large single 
copy; SSC, small single copy. The red rectangles indicated the nine gens (ndhF, ndhD, ndhL, ndhG, ndhE, psaC, ccsA, rpl32, and trnL-UAG) 
normally located in the SSC region have migrated to IRs; the green rectangles indicated the reversed segment involving five genes (rpl23, 
ycf2, ycf15, trnl-CAU, and trnL-CAA)
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C.  saxicola cp genome contained 120 genes, including 78 protein-
coding genes, 38 tRNA genes, and four rRNA genes. Nineteen genes 
contained introns. The longest intron gene in the C. saxicola cp ge-
nome was trnK-UUU, and its length was also 2,478  bp (Figure  2, 
Table 2 and Table S1).

3.2 | Variation in genome structural

VISTA software was used to make multiple comparisons of the C. to-
mentella and C.  saxicola cp genome sequences, and results show 
that intraspecific variation was small but there were still some inter-
specific differences (Figure  3). The coding and noncoding regions 
of C. saxicola samples were conserved, while the coding regions of 
C.  tomentella samples were conserved but there were differences 
in several consecutive intergenic regions of rps12-clpP, clpP-psbB, 
and petB-psbH. Comparing C.  tomentella and C.  saxicola, the most 
highly divergent regions mainly were observed in coding regions and 
intergenic regions, including rpl20, rrn23s, trnH-GUG, trnN-GUU, 
rps12-clpP, clpP-psbB, petB-psbH, and ycf1-ndhL. On the basis of 
morphological features and cluster analysis of DNA barcodes, it was 
found that the two species are closely related (Ren et al., 2019). The 

cp genome differences between the two species have potential for 
use as molecular markers for species authentication.

Comparisons with the N.  tabacum outgroup and Papaveraceae 
family plants P.  rhoeas, P.  orientale, P.  somniferum, and C.  hylome-
conoides showed that C.  tomentella and C.  saxicola cp genomes 
have distinct cp genome structures. The differences included ge-
nome size, number of genes, and a disruption of gene collinearity 
(Figure  4). First, the C.  tomentella and C.  saxicola cp genome sizes 
(189.1–190.2 kb) were larger than those of N. tabacum (155.9 kb) and 
P. somniferum (152.9 kb). Second, the length of intergenic regions in 
C. tomentella and C. saxicola cp genomes were longer than those in 
N. tabacum and P. somniferum, as seen, for example, in the lengths 
of intergenic regions for psal/rpl32 (7 kb) in the IR region and rps12/
clpP (5 kb) in the LSC region. Third, C. tomentella and C. saxicola cp 
genome structures were significantly different from those of the 
other six species, including large-scale gene replication, movement, 
reversal, and changes in the number and arrangement of genes. 
Fourth, C.  tomentella and C.  saxicola IR regions were highly dilated 
(41.9–42.5 kb). The ndhF, ndhD, ndhL, ndhG, ndhE, psaC, ccsA, trnL-
UAG, and rpl32 genes, usually located in the SSC region, migrated to 
the IR regions to become double-copy genes (Figure 1). A few rpl19 
and rpl2 genes migrated from the IR region to the LSC region. In 

TA B L E  1   Summary of chloroplast genome features of C. tomentella and C. saxicola

Species
Voucher 
No. Genbank No. Total

Length (bp) GC content (%)

IR LSC SSC Total IR LSC SSC

Corydalis tomentella MHJ1 MT093187 190,247 41,955 96,701 9,636 40.3 42.2 39.2 35.4

MHJ2 MT077878 190,198 42,002 96,530 9,664 40.2 42.2 39.0 35.4

Corydalis saxicola YHL1 MT077877 189,155 42,350 94,744 9,711 40.2 42.2 39.1 35.1

YHL2 MT077879 189,029 42,164 94,993 9,708 40.3 42.2 39.1 35.1

TA B L E  2   List of genes in the two Corydalis chloroplast genomes

Group of genes Gene names Number of genes

Photosystem I psaA, psaB, psaC(×2), psaI(×2), psaJ 5 (2)

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ 14

Cytochrome b/f complex petA, petB*, petD*, petG, petL, petN 6

ATP synthase atpA, atpB, atpE, atpF*, atpH, atpI 6

NADH-dehydrogenase ndhA*, ndhB*(×2), ndhC, ndhD(×2), ndhE(×2), ndhF(×2), ndhG(×2), ndhH, ndhI(×2), 
ndhJ, ndhK,

11 (6)

RubisCO large subunit rbcL 1

DNA dependent RNA polymerase rpoA, rpoB, rpoC1*, rpoC2 4

Small subunit of ribosome rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12*(×2), rps14, rps15, rps16*, rps18, rps19 12 (2)

Large subunit of ribosome rpl2*(×2), rpl14, rpl16*, rpl20, rpl22, rpl23(×2), rpl32(×2), rpl33, rpl36 9 (3)

Proteins of unknown function ycf1, ycf2(×2), ycf3**, ycf4, ycf15(×2) 5 (2)

Other genes ccsA(×2), cemA, infA, matK, clpP** 5 (1)

Transfer RNAs 37 tRNAs(C. tomentella); 38 tRNAs(C. saxicola) 37/38

Ribosomal RNAs rrn16S(×2), rrn23S(×2), rrn4.5S(×2), rrn5S(×2) 4 (4)

Note: One or two asterisks followed genes indicate the number of contained introns, respectively. (×2) indicates the number of the repeat unit is 2. 
The numbers in parenthesis at the line of “Number” indicate the total number of repeated genes.

info:refseq/MT093187
info:refseq/MT077878
info:refseq/MT077877
info:refseq/MT077879
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particular, in C. tomentella and C. saxicola, there is a large fragment 
(containing rpl23, trnL-CAU, ycf2, ycf15, and trnL-CAA) that moved 
within the IR region. Gene migration increased the length of the IR 
region and decreased the length of the SSC region. Fifth, the LSC 
region was highly conserved, but the accD gene was lost and the 
position of the rbcL gene changed substantially. In short, both the 
coding and noncoding regions of C. tomentella and C. saxicola cp ge-
nomes differ greatly from those of other Papaveraceae and tobacco.

Inverted repeat regions are the most conserved regions in the 
plant plastome, contraction, and expansion at their borders are re-
garded as the major causes of size variation (Chumley et al., 2006; Xin 

et al., 2019). We selected four phylogenetically close species (P. rhoeas, 
P. orientale, P. somniferum, and C. hylomeconoides) and two model spe-
cies (N. tabacum and A. thaliana) as references for cp genome struc-
ture comparisons. Figure 5 displays the detailed information about the 
boundaries between IR/SSC and IR/LSC in the eight species.

Except for C.  tomentella and C.  saxicola, the IRb/SSC boundar-
ies were generally positioned in the coding region of the ycf1 gene, 
resulting in duplication of the 3′ end of this gene. This duplication 
also produced a variably sized pseudogene ycf1 at the IRa/SSC bor-
der. The length of the ycf1 pseudogene varied from 916 to 1,200 bp. 
However, the ycf1 genes in C. tomentella and C. saxicola cp genomes 

F I G U R E  3   Sequence identity plot comparison of the C. tomentella and C. saxicola cp genomes. Gray arrows and thick black lines above 
the alignment indicate genes with their orientation and the position of the inverted repeats (IRs), respectively. A cutoff of 70% identity was 
used for the plots, and the Y-scale represents the percent identity ranging from 50% to 100%
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have been transferred to the SSC region to become a single copy 
gene. Except for C. tomentella, C. saxicola, and N. tabacum, the LSC/
IRb borders of other species were located within the rps19 coding 
region. Correspondingly, a 3′-truncated rps19 pseudogene with a 
length of 74–113 bp was located at the IRb/LSC border. In the C. to-
mentella cp genome, the LSC/IRb border was located in the rpl2 cod-
ing region. Additionally, in C. tomentella and C. saxicola cp genomes, 
the IRa/SSC boundaries were positioned in the ndhA coding region, 
and trnN was situated in the IRa and IRb regions, away from the LSC/
IRa and IRb/LSC borders. The trnH gene was present in LSC regions, 
away from the IRb/LSC border.

3.3 | Codon usage bias, SSRs, and repeat sequences

Coding sequence codon usage patterns for the C.  tomentella and 
C.  saxicola cp genomes were calculated on the basis of relative 

synonymous codon usage (RSCU) values. We defined codons with 
RSCU values greater than 1.00 to be used more frequently, and vice 
versa. All protein-coding genes in the C.  tomentella and C. saxicola 
cp genomes were encoded by 52,244 codons and 51,125 codons, 
respectively (Table S2). The most prevalent amino acid was Leucine 
in the cp genomes of C. tomentella (5,656; 10.83%) and C. saxicola 
(5,528; 10.81%). Conversely, the least frequently utilized amino acid 
was Cysteine in the cp genomes of these two species (591–634; 
1.16%–1.18%). The third position nucleotides in each codon of all 
the coding genes had a high AT content, at 65.83% and 65.91% for 
C. tomentella and C. saxicola, respectively.

Simple sequence repeats are short tandem repeats of 1–6 bp DNA 
sequences that are widely distributed throughout the cp genome (Lee 
et al., 2019). In this study, CPGAVAS2 software was used to analyze 
the sequences and the classification statistics of SSRs with a length 
greater than or equal to 8  bp. Here, we analyzed the distribution 
and the type of SSRs contained in C.  tomentella and C.  saxicola cp 

F I G U R E  4   Sequence identity plot comparison of the cp genomes of C. tomentella, C. saxicola, P. somniferum, P. rhoeas, and C. hymenoides. 
Gray arrows and thick black lines above the alignment indicate genes with their orientation and the position of the inverted repeats (IRs), 
respectively. A cutoff of 70% identity was used for the plots, and the Y-scale represents the percent identity ranging from 50% to 100%
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genomes. A total of 172 SSRs were identified in the whole C. tomen-
tella cp genome (take MHJ1 as an example), including 100 mono-, 34 
di-, and one compound nucleotide SSRs. Among all SSR types, A and 
T were the most commonly used bases and 116 SSRs in the C. tomen-
tella cp genome had A, T, or AT repeat units (Table 3 and Table S3). For 
C. saxicola, 170 SSRs (take YHL2 as an example) were categorized as 

96 mono-, 36 di-, six tri- and six compound nucleotide SSRs, including 
115 SSRs with A, T, or AT repeat units (Table 3 and Table S3).

In addition to SSRs, forward repeats (F) and palindromic repeats 
(P) are also called interspersed repeat sequences (length ≥ 30 bp). In 
the C. tomentella cp genome, there were 112 interspersed repeat se-
quences, comprised of 64 tandem repeats, 39 forward repeats, and 

F I G U R E  5   Comparison of the borders of LSC, SSC, and IR regions among the eight chloroplast genomes. Number above the gene 
features indicates the distance between the ends of genes and the border sites. Ψ: pseudogenes

Species
Voucher 
No.

SSR Interspersed repeat sequences

Total
Mono 
SSR Total T F P

Corydalis tomentella MHJ1 172 100 111 61 39 11

MHJ2 174 102 112 62 39 11

Corydalis saxicola YHL1 171 96 132 82 23 27

YHL2 170 96 133 83 26 24

Abbreviations: F, Forward repeats; P, palindromic repeats; T, tandem repeats.

TA B L E  3   Interspersed repeat 
sequences and tandem repeat sequences 
of C. saxicola and C. tomentella
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11 palindromic repeats (Table 3). A total of 132 long repeats were 
present in C. saxicola cp genome, comprised of 82 tandem repeats, 
23 forward repeats, and 27 palindromic repeats (Table 3). Comparing 
the cp genomes of the two species, the C.  saxicola genome had a 
greater total number of repeats than the C. tomentella cp genome, 
and the cp genome repeat content in both species was significantly 
higher than that of most species.

3.4 | Phylogenetic analysis

With C. chinensis and N. tabacum as outgroups, 70 common protein 
coding sequences from 13 cp genome sequences were extracted 
from C.  saxicola, C.  tomentella, and six Papaveraceae species to 
build a Maximum Likelihood (ML) phylogenetic tree (Figure 6). The 
ML tree has high bootstrap values at each node, indicating a highly 
credible tree. In this ML tree, the Papaveraceae family is monophy-
letic, and all samples from Papaveraceae are clustered in a clade. In 
Papaveraceae, the samples from the genus Papaver (P. somniferum, 
P. orientale, and P. rhoeas) are clustered in a clade; the samples from 
Corydalis (C. saxicola and C. tomentella) are clustered in a clade; the 
samples from Meconopsis (M. racemosa) are clustered in a clade; and 
C. hymenoides and M. microcarpa are clustered in a clade. Except for 
Coreanomecon and Macleaya, which had only one sample, species in 
the same genus are clustered into one branch, consistent with pre-
vious classification of Papaveraceae genera. At the species level, 
the C. saxicola and C. tomentella samples are clustered into separate 
branches, indicating that the cp genome clustering analysis could ef-
fectively distinguish them, while these two closely related species 
were not monophyletic in the phylogenetic analysis based on short 

sequence DNA barcodes (Ren et al., 2019). At the same time, C. saxi-
cola and C.  tomentella are clustered in a clade in the ML phyloge-
netic tree that is distant from other Papaveraceae genera. It shows 
that C.  saxicola and C.  tomentella, both from Sect. Thalictrifoliae in 
Corydalis, have a close genetic relationship.

4  | DISCUSSION

4.1 | High variability of genome size and the 
expansion of IRs

Corydalis saxicola and C. tomentella cp genomes are the large cp ge-
nomes due to the expansion of IR regions. Most angiosperms cp 
genomes are highly conserved, typically 115–165 kb in size and pos-
sessing a quadripartite structure with two IR regions (IRa and IRb) 
separating the LSC region and the SSC region (Xin et al., 2019). The 
sizes of C. saxicola and C. tomentella cp genomes are larger than those 
of most flowering plants, such as N.  tabacum (Sajjad et  al.,  2016; 
Shinozaki et  al.,  1986; Yukawa et  al.,  2006), 30–40 kb larger than 
those reported genomes in Papaveriaceae, such as P.  somniferum 
(Sun et al., 2016) and C. hymenoides (Kim & Kim, 2016). Distinctions 
between different cp genomes mainly result from the variability of 
the length and direction of IR regions (Duan et al., 2020). In terms of 
length, IR regions of the genus Taxodium (T. distichum, T. mucronatum 
and T. ascendens) contracted to about 282 bp (Saski et al., 2005), while 
IR regions were entirely absent in Pisum sativum and Cryptomeria ja-
ponica (Hirao et al., 2008; Ki & Hae, 2005). In contrast, the length 
of Pelargonium hortorum IR regions expanded to 76  kb (Duan 
et al., 2020). Numerous studies have shown that IR region lengths 

F I G U R E  6   ML tree of C. saxicola and C. tomentella and its relative species based on common protein coding sequences
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are the main factor influencing cp genome size (Yan et al., 2017). In 
our study, IR region lengths for the two newly sequenced species 
were 41,955 to 42,350 bp, which significantly increased their cp ge-
nome sizes over that of other Papaveraceae species. Genes normally 
located in the SSC region, such as ndhC, ndhD, ndhE, ndhF, ndhG, 
ndhL, rpl32, and trnL-UAG, have moved to IR regions, contributing to 
the expanded size of C. saxicola and C. tomentella IRs.

4.2 | Gene inversions, duplications, and deletions

Inversions usually serve as useful phylogenetic markers (Cosner 
et  al.,  2004; Kim et  al.,  2005). An up to 9  kb inversion containing 
five genes (rpl23, ycf2, ycf15, trnL-CAU, and trnL-CAA) was found in 
the IR regions of C. tomentella and C. saxicola cp genomes. Relatively 
large inversions have been found in the cp genomes of some other 
flowering plants. The 22.8 kb inversion is present in all Asteraceae, 
except Barnadesioideae (Jansen & Palmer, 1987; Martin et al., 2014), 
the 36 and 78 kb inversions have been detected in core genistoid 
legumes and Fabaceae subtribe Phaseolinae, respectively (Bruneau 
& Palmer,  1990; Jansen,  2011). These distinctive inversions serve 
as phylogenetic markers. The inversion in C. tomentella and C. saxi-
cola is quite distinct from other sequenced Papaveraceae species. 
To determine if it can be used as a phylogenetic marker of genus 
Corydalis, more species will need to be sequenced. In some plants, 
the large inversions have been found to be associated with short 
inverted repeats in cp genome (Joachim et al., 2017; Yi et al., 2013). 
In Geraniaceae, Campanulaceae and some Fabaceae species, a mass 
of short inverted repeats have been found to be present at their in-
version endpoints (Cosner et al., 2004; Yan et al., 2017). However, 
we didn't detect large numbers of short inverted repeats emerged in 
inversion endpoints in C. tomentella and C. saxicola.

Several NDH (NADH dehydrogenase-like) genes (ndhD, ndhE, 
ndhF, ndhG, ndhL) are duplicated in the C. tomentella and C. saxicola 
cp genomes, which could provide an explanation for their robust 
adaptability to harsh environments. Large-scale duplication of cp 
genes tends to occur only in highly rearranged genomes and can be 
explained by repeated expansion and contraction of IRs (Mercedes & 
Bartolomé, 2010; Ruhlman et al., 2015). In this study, genes that are 
normally located in the SSC region (ndhD, ndhE, ndhF, ndhG, ndhL, 
psaC, rpl32, ccsA, and trnL-UAG) have migrated to IRs resulting in IR 
expansion and gene duplication. We found that most of these du-
plicated genes belong to the NDH complex. Because plastid NDH 
genes are dispensable under optimal growth conditions, they have 
been lost in a number of autotrophic and heterotrophic lineages, 
although they are widely retained across land plants (Ruhlman 
et  al.,  2015; Yan et  al.,  2017). For example, plastid NDH genes 
have been partially lost or pseudogenized in parasitic plants, such 
as several orchids and Petrosavia (Petrosaviaceae), and autotrophs 
plants, such as Najas (Hydrocharitaceae) and Erodium (Geraniaceae) 
(Mercedes & Bartolomé, 2010), even they have been completely lost 
in Selaginella tamariscina (Xu et al., 2018). Conversely, it is rare for 
NDH genes to undergo large-scale duplication and augmentation, 

and the effects of the increased genes resulting from gene duplica-
tion on plant growth and development have rarely been discussed in 
previous research. The NDH complex participates in photosystem I 
(PSI) cyclic electron flow (CEF), chlororespiration. NDH-dependent 
CEF provides additional pH change and ATP for CO2 assimilation and 
alleviates oxidative stress caused by stromal over-reduction under 
stress conditions (Ruhlman et  al.,  2015). The nonphotochemical 
quenching ability of NDH deficient mutants decreased under mild 
drought (Sergi et al., 2005). NDH deficient mutants grow slowly at 
low humidity (Horvath, 2000). Under strong light, tobacco ndhB mu-
tants were more susceptible to photobleaching (Sergi et al., 2005). 
Under heat stress conditions, NDH-mediated cyclic and chlororespi-
ratory electron transport are accelerated, mitigating photo-oxidative 
damage, and inhibition of CO2 assimilation caused by high tempera-
ture (Ju et al., 2003). Corydalis tomentella and C. saxicola mainly grow 
in dry cracks of limestone, a unique environment with little available 
soil and water (Ren et al., 2019) (Figure 1). So they have long been 
subjected to extreme environmental conditions, such as high tem-
perature, drought, and low light. In view of NDH gene functions in 
plant defense against various environmental stresses, the doubling 
of NDH genes those results from IR expansion could lead to overex-
pression of these doubled genes, which would be helpful for adapta-
tion to harsh environmental conditions. The special structure of the 
C. tomentella and C. saxicola cp genomes provides a clue that could 
explain their robust adaptation to harsh environments.

The accD gene was absent in C. saxicola and C. tomentella cp ge-
nomes. Usually, gene content is highly conserved among photosyn-
thetic angiosperm cp genomes (Jansen et al., 2007; Yan et al., 2017), 
but in a very few plants, for example, legumes and Circaeasteraceae 
(Magee et al., 2010; Xu et al., 2018), a number of genes have been 
lost or pseudogenized. The loss of accD in the cp genome is mir-
rored in other plant taxa, such as grasses, Circaeasteraceae, and 
Oleaceae (Joachim et al., 2017; Yan et al., 2017). The accD gene en-
codes an acetyl-CoA carboxylase subunit and is an important reg-
ulator of carbon flow entering the fatty acid biosynthesis pathway 
(Rousseau-Gueutin et al., 2013). It is known to be essential for leaf 
development in angiosperms (Hong et al., 2017; Kode et al., 2005). 
Recent research has shown that the accD gene present in the plas-
tome of most angiosperms is functional (Hong et al., 2017; Rousseau-
Gueutin et al., 2013). Furthermore, several studies have shown that 
the accD gene has been transferred into the nucleus, and the pro-
teins it encodes are transported from the nucleus to the chloroplast 
to function in the form of a transfer peptide (Joachim et al., 2017; Liu 
et al., 2016). Whether the C. tomentella and C. saxicola accD genes 
have been lost or transferred to the nucleus, the effects on develop-
ment are currently unknown.

4.3 | Potential application of cp genome in 
phylogenetic research of Corydalis and Papaveraceae

By exhibiting high species identification power that accurately dis-
tinguished two closely related species (C. saxicola and C. tomentella), 
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cp genomes have demonstrated a great potential for use as a super-
barcode to discriminate Corydalis species. Corydalis, is considered 
to be one of the most taxonomically complex taxa (Wu et al., 1996). 
It is extremely difficult to depend on morphological characteristics 
for Corydalis species identification. Single-locus DNA barcodes lack 
adequate variation in closely related taxa. Researches using short 
sequence gene fragments and DNA barcodes showed that both nu-
clear genome (ITS/ITS2) sequence and cp genome (matK/rbcL/rps16) 
sequence produced unsatisfactory taxonomic identifications within 
Corydalis (Ren et al., 2019; Wang, 2006). Cp genomes, exhibiting many 
advantages, including a moderate size and an appropriate frequency 
of nucleotide substitutions that can provide sufficient mutation sites 
(Yan et al., 2017), have been successfully used in the identification of 
various taxa, such as genera Epimedium (Guo et al., 2019), Fritillaria 
(Yan et al., 2018), Epipremnum (Tian et al., 2018), and Papaver (Zhou 
et al., 2017). In this study, C. tomentella and C. saxicola, two closely re-
lated species from Sect. Thalictrifoliae in Corydalis, are clustered into 
two branches in the phylogenetic tree, which indicates they could be 
accurately distinguished by cp genome analysis. While, in the phylo-
genetic analysis based on short sequences of DNA barcodes, these 
two related species were not monophyletic and couldn't be effec-
tively distinguished. Recent barcoding studies have placed a greater 
emphasis on the use of whole-cp genome sequences, which are now 
more readily available as a consequence of improving sequencing 
technologies (Li et al., 2015). The demonstrated use of cp genomics 
in Corydalis species identification suggests that it has a great poten-
tial for taxonomic identification of this genus.

The cp genome also efficiently identified every genus of 
Papaveraceae in this study. The evolution rates of coding and non-
coding regions are significantly different in cp genomes, enabling cp 
genome use for systematic analysis of different phylogenetic ranks 
(Clegg et  al.,  1994). The genus Corydalis belongs to Papaveraceae 
Fumarioideae (Corydaleae) and the phylogenetic relationships of this 
genus remain controversial (Wu et  al.,  1996). Recent studies have 
tended to treat the genus Corydalis as an independent Fumariaceae 
family because the morphological characteristics of this genus con-
stitute a unique evolutionary series (Pérez-Gutiérrez et al., 2012; Wu 
& Lu, 2003; Zhang et al., 2008). In this study, a Papaveraceae phy-
logenetic tree, built using common protein CDS, shows that every 
genus is clustered into one separate clade. However, the clade of 
Corydalis is far from the other genera of Papaveraceae. Combined 
with the substantial differences in cp genome structures between 
Corydalis and the other Papaveraceae genera, it will be necessary 
to analyze more representative species to reveal the phylogenetic 
relationship of Corydalis.
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