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Simple Summary: Tumor-Associated Macrophages (TAMs) play an important role in the develop-
ment of tumors, modulation of neoangiogenesis, immune suppression, and metastasis. High infil-
tration of macrophages in the tumor is also correlated with poor prognosis in several cancer types.
Therefore, they became an attractive target for cancer immunotherapies. In this review, we describe
the role of macrophages in tumorigenesis and summarize the most recent advances in the therapies
targeting TAMs.

Abstract: Macrophages are critical mediators of tissue homeostasis and influence various aspects
of immunity. Tumor-associated macrophages are one of the main cellular components of the tumor
microenvironment. Depending on their activation status, macrophages can exert a dual influence
on tumorigenesis by either antagonizing the cytotoxic activity of immune cells or, less frequently,
by enhancing antitumor responses. In most situations, TAMs suppress T cell recruitment and function
or regulate other aspects of tumor immunity. The importance of TAMs targeting in cancer therapy
is derived from the strong association between the high infiltration of TAMs in the tumor tissue
with poor patient prognosis. Several macrophage-targeting approaches in anticancer therapy are
developed, including TAM depletion, inhibition of new TAM differentiation, or re-education of
TAM activation for cancer cell phagocytosis. In this review, we will describe the role of TAMs in
tumor development, including such aspects as protumorigenic inflammation, immune suppression,
neoangiogenesis, and enhancement of tissue invasion and distant metastasis. Furthermore, we will
discuss therapeutic approaches that aim to deplete TAMs or, on the contrary, re-educate TAMs for
cancer cell phagocytosis and antitumor immunity.

Keywords: tumor-associated macrophages; immunotherapy; tumor microenvironment; tumor;
immune suppression; macrophage

1. Introduction

The recent decade has seen major advances in understanding the role of innate and
adaptive immunity in cancer, which has catalyzed the development of new cancer im-
munotherapeutics. A frontrunner in this respect has been the therapeutic targeting of
T cells, with curative treatments such as Chimeric Antigen Receptor (CAR) T cell [1] and
checkpoint inhibitor therapies [2]. However, macrophages can represent more than 50% of
tumor-infiltrating immune cells. More recently, they also gained prominence, with, e.g.,
complete responses in a recent clinical trial in relapsed/refractory patients upon inhibi-
tion of the macrophage checkpoint CD47/SIRPα [3] as well as preclinical advances in the
development of CAR macrophages [4].

Macrophages are innate immune cells pivotal for tissue homeostasis, removal of
superfluous cells, and inflammatory responses to infections. Macrophages also play diverse
roles in cancer development, ranging from antitumor activity in early progression stages to,
most commonly, tumor-promoting roles in established cancer [5]. Notably, macrophages
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are highly plastic cells and, depending on the microenvironmental cues in the Tumor
Microenvironment (TME), can undergo marked changes in their function. In established
cancers, high macrophage infiltration often strongly associates with poor prognosis or
tumor progression in many types of solid tumors, including breast [6], bladder [7], head and
neck [8], glioma [9], melanoma [10], and prostate cancer [11]. Conversely, in colorectal
and gastric cancers, high macrophage infiltration correlates with a better prognosis [12].
These apparently opposite effects are likely related to macrophage plasticity and resultant
heterogeneity of phenotype and functions in various cancers.

Such macrophage heterogeneity has historically and simplistically been defined into
a dichotomous classification of a classically activated so-called M1 subtype and an al-
ternatively activated M2 subtype. In a recent review that combined 300 studies, a clear
prognostic association was presented for various solid cancer types and the infiltration
of either M1 or M2 macrophage subtypes, with the M2-subtype corresponding with poor
patient outcome, contrary to the presence of the M1 subtype macrophages corresponding
with a favorable prognosis [13].

In the current review, we will briefly detail the basics of macrophage biology, then
provide an in-depth discussion on the diverse impact of macrophages in the tumor microen-
vironment and finally focus on recent advances in the therapeutic targeting of macrophages
for cancer therapy.

2. Macrophage Activation

Similar to the Th1/Th2 T cell distinction, the diverse functions of macrophages were
categorized into two opposite phenotypes, “classically activated macrophages” (M1) and
“alternatively activated macrophages” (M2). M1 macrophages have a proinflammatory phe-
notype with pathogen-killing abilities, production of proinflammatory cytokines, like Tu-
mor Necrosis Factor α (TNFα), Interleukin-1β (IL-1β), IL-12, IL-23 [14], secretion of reactive
oxygen species (ROS) [14], and higher antigen-presenting capacities [15]. M1 macrophages
can be easily generated in vitro by stimulation with Interferon-γ (IFNγ), Lipopolysac-
charide (LPS), or IFNγ/LPS. Substantial overlap exists between in vivo M1 and in vitro
classically activated (LPS+IFNγ) macrophages. It includes many interferon-induced genes
like Irf9, Irf7, Ifi35, Ifnar2, pro-M1 genes such as Il12a, Il12b, Jak2, Stat1/Stat2, and cos-
timulatory molecules such as CD86 and CD40 [16]. On the other hand, the M2 subtypes
have higher phagocytic activity, increased expression of scavenger receptors, increased
arginase pathway activity, secrete IL-10, Transforming Growth Factor β (TGFβ), and vas-
cular endothelial growth factor (VEGF). Thus, M2 macrophages are anti-inflammatory
and play a crucial role in the anti-parasitic immune response, promote tissue remodeling,
neoangiogenesis, and tumor progression [17]. M2 could be generated by a range of various
stimuli, including IL-4, IL-10, IL-13, or TGFβ (Figure 1). A small overlap exists between
in vivo M2 (LPS-deprived) and in vitro alternatively activated macrophages (polarized
with IL-4). They include the expression of genes involved in the positive regulation of
the MAPK cascade (Gab1, Jun, P2ry1) and glutamine synthetase (Glul), a gene associated
with glutamine metabolism [16]. However, more genes are regulated in opposite or unre-
lated ways. For example, in contrast to in vivo M2, the in vitro IL-4-derived alternatively
activated macrophages express only the standard IL-4 markers like CD206, CD36, CD9,
CD74, Bcl2, and Arg1 [16]. Macrophage activation leads to profound changes in their
cellular metabolism. M1 activation is characterized by glycolysis and fatty acid synthe-
sis, whereas M2 activation is linked with tricarboxylic acid cycle, fatty acid oxidation,
and glutaminolysis (Figure 1) [18].

Despite the general acceptance, the M1/M2 dichotomic model is an oversimplification
representing two phenotypic extremes of the M1-M2 spectrum, which was explained by
the nomenclature and experimental guidelines published by Murray et al. [19]. However,
the M1/M2 nomenclature was extensively used in multiple papers that are discussed in
this review, justifying its use.
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formation and can support tumor growth by encouraging neoangiogenesis, immune sup-
pression, and oncogenic mutations [24]. Cell death is frequent in tumors and leads to the 
release of damage-associated molecular patterns (DAMPs), like High Mobility Group Box 
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However, chronic stimulation will lead to immunosuppression mediated by increased 
production of IL-10, which inhibits the expression of proinflammatory cytokines and in-
duces the formation of Tregs [27] (Figure 2). 

Figure 1. A spectrum of macrophage activation. The functional M1-M2 spectrum subdivisions
of activated macrophages, derived from human monocytes or mouse bone marrow upon CSF-1
stimulation. Stimulation conditions are IL-4, immune complexes (Ic), IL-10, glucocorticoids (GC)
with TGFβ, glucocorticoids alone, LPS, LPS and IFNγ, and IFNγ alone.

Macrophage activation state is an important aspect in tumor development and therapy.
TAMs can directly inhibit cytotoxic T lymphocyte (CTL) responses through the expres-
sion of immune checkpoint molecules (e.g., programmed cell death ligand 1 (PD-L1)),
production of inhibitory cytokines such as IL-10 and TGFβ [20], and metabolic activities,
including the depletion of metabolites, such as L-arginine [21]. Additionally, M2 TAMs
control the TME by recruitment of immunosuppressive populations such as regulatory
T cells (Treg), inhibition of dendritic cells (DCs) remodeling the extracellular matrix (ECM),
and the expression of various chemokines. M2 TAMs also upregulate receptors involved
in the formation of ‘don’t eat me’ signaling [22]. On the other hand, M1 TAMs could
take part in a robust adaptive anticancer immune response, e.g., by enhancing antigen
presentation and activation of adaptive immunity. However, more frequently, particularly
in the presence of tumor hypoxia, TAMs are programmed to drive immune suppression
and tissue remodeling. Thus, the main therapeutic strategies to target TAMs in the TME are
depletion of TAMs, reactivation into a more pro-inflammatory (M1) state, or reactivation of
anticancer activity by breaking the ‘don’t eat me’ signaling.

3. The Role of Macrophages in Cancer Development
3.1. The Role of Macrophages in the Tumor-Promoting Inflammation

In a physiological context, inflammation is initiated to restore homeostasis after the
disturbance caused by external factors [23]. However, not every type of inflammation
is advantageous, and chronic inflammation increases the chances for the transformation
into a malignant cell. Tumor-promoting inflammation could be induced long before
tumor formation and can support tumor growth by encouraging neoangiogenesis, immune
suppression, and oncogenic mutations [24]. Cell death is frequent in tumors and leads
to the release of damage-associated molecular patterns (DAMPs), like High Mobility
Group Box 1 (HMGB1), Heat Shock Proteins (HSPs), or ATP [25,26]. This stimulation can
lead to the promotion of anti-tumor immunity, e.g., by activation of dendritic cells and
macrophages. However, chronic stimulation will lead to immunosuppression mediated by
increased production of IL-10, which inhibits the expression of proinflammatory cytokines
and induces the formation of Tregs [27] (Figure 2).
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Figure 2. Mechanisms of tumorigenesis stimulation by TAMs. TAMs play an important role in the
process of tumorigenesis by induction of inflammation (top left loop), stimulation of neoangiogenesis
(top right loop), immune suppression (bottom left loop), and induction of metastasis (bottom right
loop). The figure was created with Biorender.com.

Macrophages can contribute to tumor-promoting inflammation, e.g., by secretion
of proinflammatory cytokines, like IL-6, IL-1β, TNFα. On the one hand, it can induce
immune response but it can also support tumor growth and survival of malignant cells.
TNFα, upon binding to its receptors (TNFR1/2), activates the nuclear factor -κB (NF-κB)
pathway. NF-κB further mediates cancer cell proliferation and survival by controlling
the expression of target genes (e.g., VEGF, IL-6) and stimulation of neoangiogenesis [28].
The proinflammatory effect of IL-6, mediated by the JAK/STAT3 pathway, leads to cell
proliferation, differentiation, and apoptosis [23,29]. Proinflammatory cytokine, IL-1β,
activates endothelial cells to produce VEGF, which supports angiogenesis, contributing
to tumor invasiveness and metastasis. It also drives the expression of downstream pro-
tumorigenic cytokines such as IL-6, TNFα, and TGFβ [30]. TGFβ is also produced by
activated macrophages and plays a dual, pro-, or anti-inflammatory role [31,32]. In the
early stages of tumor development, TGFβ promotes apoptosis and inhibits the progression
of the cell cycle. In the later stages, TGFβ induces epithelial-mesenchymal transition (EMT),
which enhances tumor invasion and metastasis. Increased TGFβ concentrations have an
inhibitory effect on anti-tumor T-cell response [23,33]. Thus, TAMs could enhance tumor
formation and progression by their inflammatory activity, particularly a chronic low-grade
inflammatory state.

Biorender.com
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3.2. Macrophages and Neoangiogenesis

The rapid proliferation of cancer cells results in the fast growth of tumor mass and
increased demand for nutrients and oxygen. Essential nutrients are delivered to the tumor
by a capillary network formed in the process of neoangiogenesis. The formation of new
vessels is regulated by the growth factors released by cells in the TME [34]. Due to poor
regulation, the structure and function of newly formed vessels are abnormal with increased
vessel permeability, which contributes to disease progression [35]. Hypoxic regions of
tumor tissue are formed due to the rapid and uncontrolled cell growth and are accompa-
nied by an increased rate of cancer cell death. TAMs infiltrate these hypoxic regions to
regain homeostasis through stimulation of new blood vessel formation. The process of
neoangiogenesis is modulated by many factors produced by TAMs, including VEGF, matrix
metalloproteinases (MMPs), platelet-derived growth factor (PDGF), and angiopoietin-1
(Figure 2) [36,37]. VEGF induces proliferation and maturation of endothelial cells by engag-
ing the VEGF Receptor 2 (VEGFR2) expressed on the endothelial cells (ECs) [37]. VEGF also
stimulates the chemotaxis of macrophages and ECs. This process is promoted by MMP-2,
MMP-7, MMP-9, which are also secreted by TAMs. The main role of MMPs is to break
down the extracellular matrix, which allows migration of ECs and the formation of new
vascular sprouts [38]. Additionally, it facilitates the infiltration and invasion of adjacent
tissues, which may also promote the formation of metastases [35].

TAMs and platelets are also the main sources of PDGF, which induces infiltration of
pericytes [39]. The interaction between pericytes and ECs is crucial for vessel maturation
and remodeling, which affects vascular permeability [40]. The angiopoietin-1 released from
pericytes binds to Tie-2 receptor on ECs, leading to tightening of ECs’ cell-cell junctions
and stabilization of newly formed vessels (Figure 2) [41].

It has been shown that a specific subset of monocytes expressing the Tie-2 receptor
(Tie-2 receptor-expressing monocytes—TEMs) account for most of the proangiogenic ac-
tivity of macrophages in both spontaneous and orthotopic tumors. TEMs are present in
peripheral blood and are responsible for early angiogenic responses. Thus, it is thought
that TEMs can be precursors of proangiogenic TAMs [42].

3.3. Immune Suppression and Orchestration of the Tumor Microenvironment by TAMs

The TME is infiltrated with various immune cells, out of which TAMs are the most
abundant cell population. TAMs play a significant role in immunosuppression and tumor
progression by releasing immunomodulatory factors such as PGE2, IL-10, and TGFβ, which
inhibit cytotoxic activity of T lymphocytes and NK cells (Figure 2) [24,33]. Upon secretion
of IL-10 and TGFβ, TAMs induce Tregs that suppress the activity of effector T lymphocytes.
Moreover, TAMs recruit Tregs to the TME by secretion of chemokines CCL5, CCL20, and
CCL22 [43]. Additionally, TAMs are involved in the conversion of Th cells into Tregs, which
further inhibit the immune response in an antigen-specific manner [44,45].

The other mechanism of the suppression of the immune response can be mediated by
direct cell-to-cell contact between macrophages and other immune cells. TAMs could di-
rectly inhibit the immune response by expression of surface proteins, PD-L1, CD80/CD86,
or death receptor ligands, FasL or TRAIL, that function as agonists for inhibitory receptors,
PD-1, CTLA-4, FAS, and TRAIL-RI/-RII, respectively, that are present on the immune
effector cells [5,46]. The stimulation of PD-1 and CTLA-4 receptors leads to the inhibition
of the signaling pathway from the T cell receptor (TCR) and causes a decrease in the
production of cytokines and proteins that promote cell survival. PD-L1 expression has
been observed on macrophages and dendritic cells in many cancer types [47] as well as
on macrophages and myeloid-derived suppressor cells isolated from the hypoxic tumor
regions [48]. Therefore, macrophages may modulate lymphocyte function and inhibit the
antitumor immune response via PD-1/PD-L1 interaction [49]. TAMs also express CD80
and CD86, that upon binding to CTLA-4 on T lymphocytes, inhibit their activation [50].
Moreover, TAMs produce arginase-1—an enzyme degrading L-arginine, which is necessary
for the expression of TCR complex, lymphocyte proliferation, development of the immuno-
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logical memory [51], and T cell-mediated antitumor response [52]. L-arginine starvation
leads to inhibition of T cell proliferation via Go–G1 phase blockade [53]. Thus, TAMs have
pleiotropic immunosuppressive abilities that quench adaptive antitumor immunity.

3.4. TAMs in Tissue Invasion and Distant Metastasis

Colonization of distant organs by neoplastic cells is a multistep process. First, cancer
cells acquire the ability to grow invasively; second, they penetrate the vasculature; third,
they survive in the circulation; and last effectively settle in the new metastatic location [54].
TAMs are important players in almost every step of metastasis formation [54]. Activa-
tion of Toll-like receptor 4 (TLR-4) on the surface of M2-like macrophages increases the
level of IL-10, which promotes the EMT program, which plays an important role in the
first steps of metastases [55]. EMT can also be induced by proinflammatory cytokines
(IL-6, IL-1β, TNFα) [56] and TGFβ [57] released by TAMs (Figure 2). During the EMT,
epithelial cells lose cell-cell junction and acquire motile and invasive mesenchymal cell
phenotype facilitating the passage through dismounted basement membranes. TAMs are
also involved in the breakdown of the extracellular membrane around endothelium by
the release of MMP9 and cathepsins, which results in vascular intravasation of tumor
cells. Additionally, there is a positive feedback loop between macrophages and tumor
cells: CSF-1 produced by tumor cells stimulates macrophage motility and secretion of EGF,
which in turn supports chemotaxis of tumor cells into blood vessels [58]. TAMs support
the survival of cancer cells in the circulation by the interaction of α4 integrin with vascular
cell adhesion molecule-1 (VCAM-1) on the surface of cancer cells. This interaction activates
the PI3K/Akt survival pathway protecting cancer cells from the pro-apoptotic activity of
molecules such as TRAIL [59]. It was observed that tumor cells are in direct interaction
with TAMs when crossing the endothelial cell layer into the blood vessel [60]. Interaction
of macrophages with tumor cells enhances extravasation. Before metastasis is formed,
local changes occur in the target tissue leading to the creation of a premetastatic niche.
Increased influx of macrophages into healthy tissue is an important step preceding the
formation of metastases. Macrophages are attracted to the circulation by various agents
released from tumor cells, including CSF-1, CCL-2, VEGF, TNFα, or TGFβ, and accumulate
at pre-metastatic sites [61]. Macrophages that appear in the site of future metastasis form
migration tracks for cancer cells by remodeling of collagen fibers, which facilitates the inva-
sion of cancer cells [62]. TAMs shape the extracellular matrix by releasing growth factors
deposited in the extracellular matrix, which results in the stimulation of neoangiogenesis,
extravasation, and EMT [54]. The above-mentioned processes show the role of TAMs in
the enhancement of local tumor cell migration and distant metastasis formation.

3.5. The Role of M1 TAMs in the Elimination of Cancer Cells

Although the M2 TAMs play an important role in tumor development, M1 TAMs
have been shown to effectively eliminate cancer cells. M1 polarized macrophages drive Th
responses via antigen presentation more efficiently than M2 macrophages, including T cell
proliferation and IFNγ secretion [63]. IFNγ-stimulated macrophages secrete IL-12 [64],
which is a proinflammatory cytokine with potent antitumor activity [65] and the ability to
recover costimulatory properties of TAMs for T cells [64]. M1 macrophages also secrete
less VEGF, MMPs, and CCL18 than M2 macrophages [64]. What is more, TLR ligands
(e.g., LPS) either alone or together with IFNγ drive M1 polarization, which further leads
to the inhibition of cancer cell growth [66]. Therefore, M1 TAMs are considered tumor-
suppressive, and M2 TAMs are considered tumor-promoting macrophages [14].

4. Targeting TAMs for Cancer Therapy

Tumors are dynamic and heterogeneous tissues that depend on the microenvironment,
with a complex relationship between cancer cells and infiltrating immune cells [67,68].
Therefore, therapeutic strategies and universal protocols to treat cancer are difficult to
establish and apply, and rarely single-agent treatment is effective. TAMs play a significant
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role in the development of resistance to many cancer therapies due to their abundance
in TME and important role in tumor progression [69,70]. Therefore, targeting TAMs
becomes a crucial strategy for cancer treatment. Currently, two main approaches are used
to target TAMs. One is the reduction of the number of macrophages in the tumor, which
involves either depletion of TAMs or inhibition of the recruitment of monocytes, which will
give rise to TAMs. The second approach involves re-education of macrophages by either
repolarization to proinflammatory M1 phenotype or induction of macrophage-mediated
anticancer response, like phagocytosis [71]. Many drugs used to target macrophages are
currently in clinical trials both as a single agent treatment and in combination therapies,
with radio-, chemotherapy, or immunotherapies. A variety of formats of macrophage-
targeting therapeutics are also used, starting from small chemical molecules, soluble
ligands, antibodies, and nanoparticles loaded with therapeutic agents.

4.1. Depletion of TAMs in the TME

The first approach is to target cytokine/chemokine ligand-receptor interactions. Cy-
tokines are considered core regulators of TME and cancer progression. They are secreted
by either cancer cells or tumor-infiltrating immune cells and, upon binding to receptors
expressed on immune cells, induce specific signaling, e.g., macrophage differentiation
and survival in the TME. The most common chemokines that attract macrophages to the
tumor are CCL2, CCL20, CCL5, and CXCL12 [72]. As the higher macrophage infiltration in
the TME is often correlated with poor patient outcomes [73], depleting them by targeting
cytokine/chemokine ligand-receptor interaction is an attractive strategy.

CSF-1R. The main approach to deplete TAMs is to target the colony-stimulating
factor 1 receptor (CSF-1R) [74]. CSF-1R belongs to a type III protein kinase receptor
family and binds to two ligands, CSF-1 and IL-34. Receptor-ligand binding induces
homodimerization of CSF-1R and activation of receptor signaling, which is crucial for the
differentiation and survival of macrophages [74]. Most of the therapeutics that target the
CSF-1/IL-34—CSF-1R pathway bind to CSF-1R. The main formats include small molecule
inhibitors [75] and monoclonal antibodies (Figure 3). Many of them are summarized in a
few recent reviews [74,75]. Here, we describe the most recent advances in cancer treatment
with CSF-1R targeting drugs.

Pexidartinib (PLX3397) is a small molecule inhibitor targeting CSF-1R that has been
approved by the Food and Drug Administration (FDA) in 2019 for the treatment of symp-
tomatic tenosynovial giant cell tumor. Pexidartinib is studied in several clinical trials
for the treatment of advanced solid tumors, recurrent glioblastoma, and hematological
malignancies (NCT04703322) [76] (Table 1). Other small molecule inhibitors of CSF-1R,
like ARRY-382 or DCC-3014, were well tolerated in Phase 1 trials by patients with ad-
vanced solid tumors and entered Phase 2 trials (clinical trials: NCT02880371—ARRY-382 in
combination with Pembrolizumab for treatment of advanced solid tumors; NCT03069469—
DCC-3014 monotherapy for the treatment of advanced tumors and tensynovial giant cell
tumor). Recently, TD-92 (Erlotinib derivative) showed efficacy in the non-small lung carci-
noma cancer model. The mode of action of TD-92 is different from the above-mentioned
CSF-1R inhibitors. It decreases the expression of CSF-1R, which results in the reduction
of the number of TAMs [77]. Monoclonal antibodies targeting CSF-1R, like AMG820,
LY3022855, emactuzumab, also entered Phase 1 of clinical trials and were well tolerated
by patients with a range of advanced solid tumors (Table 1). However, results from these
studies vary significantly among drugs, cancer types, and combination therapies [78,79].
No sufficient anticancer activity with the use of monoclonal antibodies as a single-agent
treatment has been achieved thus far for most of them [80,81].

Only a few therapeutics that are currently studied in clinical trials are targeting CSF-1,
and there are no drugs in development that target IL-34. However, this molecule is getting
more attention recently [82]. As CSF-1R binds to two different targets (although with
different binding domains), targeting only one may not be fully effective as the other
one may replace its function. In fact, in a murine model, combination treatment with
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antagonistic antibodies targeting both CSF-1 and IL-34 had a synergistic effect on the
elimination of tissue-resident macrophages [83].
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Figure 3. Strategies to target TAMs for anticancer therapy. Two main strategies are used to target
TAMs in the TME, reduction of the number of macrophages in the tumor (top panel) or re-education
of macrophages (bottom panel). Several molecular targets have been discovered to apply therapies
targeting TAMs (mentioned in the figure), and various therapeutics have been developed that
target these molecules, including small molecule inhibitors, monoclonal antibodies, soluble ligands,
bispecific fusion proteins, and antibody fragments, and nanoparticles. The figure was created with
Biorender.com.

Of note, the mode of action of CSF-1R targeting compounds seems to act not only by
the depletion of TAMs as previously thought. In recent studies, CSF-1R blocking antibodies
resulted in repolarization of M2 macrophages to M1 phenotype, as shown in mouse models
of glioma and pancreatic cancer [84,85]. In another study, treatment with PLX3397 depleted
only M2 macrophages, but CD206+ macrophages persisted. It also resulted in the less
protumor phenotype of macrophages [85]. Therefore, CSF-1R antagonists can have a
dual mode of action: Depletion of protumoral M2 macrophages and repolarization of M2
macrophages into proinflammatory M1 subtype.

Biorender.com
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Trabectedin is a marine-derived alkaloid that possesses a few functions: It binds a
minor groove of DNA and blocks the cell cycle but also affects gene transcription and
DNA-repair pathways. It was shown that it also selectively reduces the number of TAMs
but does not affect neutrophils or lymphocytes in the TME. Additionally, it inhibits the
local differentiation of monocytes into fully mature macrophages [86]. Treatment with
trabectedin depleted monocytes and macrophages in several animal tumor models and
resulted in reduced tumor growth, downregulation of neoangiogenesis, and production of
IL-6, CCL2, and CXCL8 [87,88]. Trabectedin is approved by FDA for the treatment of unre-
sectable or metastatic liposarcoma and leiomyosarcoma (Table 1) [89]. Recent clinical trials
showed efficacy in the treatment of soft tissue sarcoma with trabectedin and radiotherapy
and for the treatment of platinum-sensitive ovarian cancer with trabectedin and pegylated
liposomal doxorubicin [90,91].

Table 1. List of therapeutics that target TAMs and are currently studied in clinical trials or have recently been approved for
the treatment of solid tumors.

Target Compounds Form (Pre)Clinical Phase Cancer Type Reference

TAMs depletion/inhibition of recruitment

CSF-1R

Pexidartinib/
PLX3397

Small molecule
inhibitor

Approved by FDA in 2019 for
the treatment of symptomatic
tenosynovial giant cell tumor

(TGCT)

Tensynovial giant cell tumor
Studied in clinical trials in

advanced solid tumors
[92]

ARRY-382 Small molecule
inhibitor Phase 1b/2 [93]

DCC-3014 Small molecule
inhibitor Phase 1/2 Advanced solid tumors [94]

AMG820 mAb Monoclonal antibody
Phase 1/2 as monotherapy and

in combination with
pembrolizumab

Advanced solid tumors [80,81]

Cell
cycle/
DNA
repair

Trabectedin Small molecule
Approved for the treatment of

liposarcoma and
leiomyosarcoma

Liposarcoma, leiomyosarcoma
Studied in the treatment of

ovarian cancer (combination
therapy)

[89,95,96]

CCL2/
CCR2

propagermanium Small molecule
inhibitor Phase 1 Breast cancer [97]

CNTO888 Anti-CCL2
Monoclonal antibody Phase 1 Solid tumors [98]

CCL5/
CCR5

Maraviroc Small molecule
inhibitor Phase 1 Metastatic colorectal cancer [99]

Vicriviroc Small molecule
inhibitor Phase 2 Advanced metastatic colorectal

cancer [100]

Leronlimab Anti-CCR5
monoclonal antibody Phase1 Triple-negative breast cancer [101]

TAMs reprogramming/re-activation

CD40

ChiLob7/4 Chimeric monoclonal
antibody Phase 2 pancreatic cancer and head and

neck cancer [102]

CDX-1140 Antibody Phase 1 Melanoma, advanced cancers [103]

Sotigalimab
(APX005M)

Humanized rabbit
IgG1 monoclonal

antibody

Approved with orphan drug
status

Orphan drug status for the
treatment of gastroesophageal
junction cancer and pancreatic

cancer.

[104]

ABBV-428 Mesothelin-CD40
bispecific Phase 1 Advanced solid tumors [105]

TLRs Resiquimod Small molecule
targeting TLR 7/8 Phase 1/2 melanoma [106]

PI3K IPI-549 Small molecule
inhibitor Phase 1b Advanced solid tumors [107]

CD47/SIRPα Magrolimab Monoclonal antibody Phase 1–3 Solid tumors and hematological
malignancies [108]

TTI-621 SIRPα-Fc Phase 1 Hematological malignancies [109]
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4.2. Targeting Macrophage-Recruiting Chemokines

CCL2/CCR2. CCL2 is a chemokine that attracts high CCR2-expressing monocytes to
the tumor site. Increased expression of CCL2 positively correlates with the accumulation
of macrophages in many solid tumor types [72,110,111]. The increased level of CCL2 is
associated with metastasis of many cancers [112] and is a negative prognostic factor for
several cancer types [113,114]. The role of CCR2 seems to outreach the influence on TAM
recruitment at the tumor site. In a recent study, it has been proven that CCR2 is involved
in the recruitment and initiation of tumor-promoting inflammation [115]. To break the
CCL2-CCR2 interaction and inhibit monocyte recruitment to the TME, both CCR2 and
CCL2 antagonists are used (Figure 3). Many preclinical studies showed high efficacy of
CCL2/CCR2 antagonists, e.g., in the mouse model of lung adenocarcinoma, targeting CCR2
with a small molecule inhibitor not only reduced recruitment of M2-type macrophages but
also induced tumor infiltration of activated CD8+ T cells [116]. Administration of CCL2
neutralizing antibodies reduced tumor growth, inhibited angiogenesis, and macrophage
infiltration in a mouse model of clear cell renal cell carcinoma [117]. Many other preclinical
studies on hepatocellular carcinoma [114], prostate cancer [118], and breast cancer showed
that either depletion of CCR2 or breaking the CCL2-CCR2 interaction has an impact on
inhibition of TAMs recruitment and tumor regression or inhibition of metastasis [119].

Several monoclonal antibodies and small-molecule inhibitors targeting CCL2/CCR2
pathway entered Phase 1 clinical trials: CCL2-neutralizing antibody CNTO888 (Carlumab),
anti-CCR2 antibody (MLN1202, plozalizumab), and CCR2 antagonist (CCX872-B) (Figure 3
and Table 1). Even though well-tolerated, some of these therapeutics have not yet provided
sufficient therapeutic effect [98,120]. Only CCX872 prolonged OS of patients with metastatic
pancreatic cancer [121] in clinical trials in combination with Folfirinox. Recently, a CCR2
small molecule antagonist, propagermanium (PG), an approved therapeutic agent for
hepatitis B, was used in a clinical trial in oral and gastric cancer patients. PG induced
apoptosis of cancer cells and prolonged OS of refractory oral and gastric cancer patients
(Table 1). However, PG also has immunomodulatory functions. Therefore, it is not clear
whether it acted only via the CCR2 pathway [122].

Additionally, it was shown that other pathways are involved in the mediation of CCL2
secretion and TAM recruitment, e.g., upregulation of CtBP1 promoted activation of CCL2
secretion and, as a result, infiltration of TAMs in non-small cell lung cancer (NSCLC) [123].
Therefore, targeting other pathways may have a secondary effect on the inhibition of the
influx of macrophages in the tumor.

CCL5/CCR5 signaling plays an important role in the inflammatory response by direct-
ing immune cells to the site of inflammation. In the TME, high levels of CCL5 result in the
accumulation of macrophages and lymphocytes with high CCR5 expression. Besides its
role in the recruitment of immune cells, it is also involved in the process of tumor growth,
induction of drug resistance, cancer stem cell expansion, cancer cell invasion, neoangio-
genesis, and immunosuppressive polarization of macrophages (reviewed in [124]). In the
preclinical studies in pancreatic and prostate cancer mouse models [125,126], CCR5 an-
tagonists reduced tumor growth, adhesion, and invasion. CCR5 is targeted by several
antagonists: Humanized monoclonal antibodies like PRO 140 (Leronlimab), small molecule
inhibitors like Maraviroc, Vicriviroc, BMS-813160, or TAK-779 [127]. All these drugs were
developed for the treatment of HIV infections [128]. However, they are potential candidates
to target TAMs in cancer therapy. Recently, Maraviroc was used in Phase 1 clinical trial in
combination with Pevrolizumab in the treatment of metastatic colorectal cancer with a good
toxicity profile [99] (Table 1) and is currently used in a clinical trial with nivolumab and
ipilimumab for the treatment of metastatic colorectal and pancreatic cancers (clinical trial:
NCT04721301). Leronlimab is currently studied in Phase 1 in combination with carboplatin
in the treatment of triple-negative breast cancer [101] and in Phase 2 for the treatment of
solid metastatic tumors (NCT0450494). The safety and efficacy of Vicriviroc in combination
with pembrolizumab is studied in Phase 2 in patients with advanced metastatic colorectal
cancer (reviewed in [124]). Other approaches to target the CCL5/CCR5 pathway are also
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developed, e.g., short-interfering RNA (siRNA) [129] or zinc finger nuclease [130]. In one
study, a saponin, DT-13 reduced CCR5 expression and gastric cancer cell migration in a
preclinical model [131].

CCL20, also known as macrophage inflammatory protein-3α (MIP-3α), is a chemokine
ligand for the CCR6, expressed on dendritic cells, regulatory T cells, T helper lymphocytes,
neutrophils, and macrophages that stimulates their migration and function [132]. It was
shown that CCR6 was upregulated on TAMs and promoted the recruitment of proinflamma-
tory macrophages in the mammary tumor microenvironment. TAMs recruitment via CCR6
facilitated the onset of neoplasia in vivo [133]. Moreover, high CCL20/ CCR6 levels relate
to stage and prognosis in many cancer types, including breast cancer [134], glioma [135],
colorectal cancer [136], and non-small lung cancer [137]. Several monoclonal antibodies,
small molecule inhibitors, and CCR6 targeting peptides are being developed. Although
most of them are developed to treat various types of inflammatory diseases, e.g., CCX9664,
a small molecule antagonist of CCR6, is being studied in rheumatoid arthritis [138], they are
also potential candidates for the treatment of cancer [138] (Figure 3).

CXCL12/CXCR4. CXCL12 is another chemokine, which regulates the migration of
monocytes [139]. Elevated CXCR4 is correlated with the tumorigenesis of NSCLC [140].
It was shown that CXCL12 secretion could be induced in response to radiation therapy
and cause accumulation of TAMs in the tumor [72]. Of note, CXCL12 works synergisti-
cally with CCL2 to enhance the migration of human monocytes and macrophages [141].
One of the CXCR4 antagonists is Plerixafor (AMD3100). It was approved in 2008 for
mobilization of hematopoietic stem cells for autologous transplantation, and it is being
studied in clinical trials in various cancer types. For example, it is used in combination
with chemo-radiotherapy for the treatment of glioblastoma and studied for its ability to
prevent recurrence of glioblastoma after radiation treatment (clinical trial: NCT03746080).
Another CXCR4 antagonist, BL-8040 (motixafortide), showed efficacy in combination with
pembrolizumab and chemotherapy in pancreatic ductal adenocarcinoma [142].

4.3. Repolarization and Re-Education of TAMs against Cancer Cells

Many therapeutic strategies focus on the depletion of TAMs. However, many of these
approaches were not fully successful in clinical studies, especially as single-agent ther-
apy [80,81]. TAM depletion may be effective as a combination therapy with chemo, radio,
or immunotherapy. Moreover, recent findings suggest that re-education of TAMs rather
than depletion may represent a more effective strategy.

CD40 is a member of the tumor necrosis factor receptor (TNFR) superfamily and
is broadly expressed on APCs, including monocytes, macrophages, and dendritic cells,
and is upregulated on macrophages upon activation. Upon interaction with its ligands
(CD40L or CD154), CD40 induces the production of IL-12 and costimulatory molecules B7-1
and B7-2, which are necessary for the activation of effector CD8+ T cells [143]. Therefore,
the most attention for CD40 agonists was focused on the induction of adaptive immune
responses. However, upon CD40 costimulation, macrophages secrete NO, IL-12, and IFNγ,
which are characteristic for proinflammatory M1-like activation state that leads to apoptotic-
destruction of cancer cells in vitro [144] and in vivo independent on T cell activity [144,145].

Several formats of therapeutics targeting CD40 have been designed, including recom-
binant human CD40 Ligand (CD40L) and its fusions, CD40L gene therapy using adenoviral
vectors expressing CD40L, and agonistic CD40 antibodies (Figure 3). However, some solu-
ble ligands are not fully effective because the costimulation of CD40 requires cross-linking.
Therefore, the second generation of CD40-targeting drugs is being developed, containing
an Fc-domain to provide cross-linking via FcγR and improve efficacy. Tumor-targeted
bispecific molecules like ABBV-428, a mesothelin-CD40 bispecific are also developed and
may provide cancer-targeted activation of macrophages. ABBV-428 is currently being
studied in Phase 1 clinical trial as monotherapy or in combination with nivolumab for
the treatment of patients with advanced solid tumors (clinical trial: NCT02955251). Re-
cently, CAR T cells secreting CD40 antibodies showed efficacy in a human ovarian cancer
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xenograft model in vivo [146]. Currently, at least ten therapeutics targeting CD40 are being
studied in clinical trials. Some of them entered Phase 2, including ChiLob7/4 for the
treatment of pancreatic cancer and head and neck cancer (NCT01561911), APX005M for the
treatment of non-small cell lung cancer (NCT03123783), soft tissue sarcoma (NCT03719430),
or advanced melanoma or renal cell carcinoma (NCT04495257), and CDX-1140 [147] for
the treatment of melanoma and advanced tumors (NCT03329950, NCT04364230) [103]
(Table 1). Most of the drugs are studied as monotherapy, in combination with PD-L1/PD-1
targeting antibodies or chemotherapy. APX005M has recently been approved by FDA for
the treatment of esophageal and gastroesophageal junction cancer and pancreatic cancer
with an orphan drug status.

Toll-like receptors (TLRs) sense conserved molecular patterns, like pathogen-associated
molecular patterns (PAMPs) or DAMPs. Their activation could initiate an immune re-
sponse. TLRs play many roles in the activation of macrophages: They regulate cytokine
production, survival, play a role in recognition of self and non-self antigens, and invading
pathogens [148]. Many therapeutics are designed to target TLRs to repolarize macrophages
from M2-like to M1-like activation state [149] and boost the immune response against
cancer cells. One example of such an immunostimulatory drug targeting TLR7/8 is re-
siquimod (R848), which showed an immunomodulatory effect in patients with melanoma
and cutaneous T cell lymphoma with topical application of the drug [106,150] (Table 1). Ad-
ditionally, soluble R848 or in nanoparticle-formulation was effective in several preclinical
tumor models, resulting in improvement of survival in the murine pancreatic model [151],
improvement of the efficacy of chemotherapy [152], repolarization of M2 into M1, and
enhancement of antibody-dependent cellular phagocytosis [153], and reshaping of the
myeloid compartment in TME leading to tumor regression [154]. Targeting other TLRs also
results in the stimulation of macrophages and dendritic cells. For example, Pam3CysSK4
peptide, a ligand for TLR-2, activated dendritic cells and primed CD8+ T cells in a mouse
model [155] and improved the efficacy of CTLA-4 immunotherapy in the melanoma mouse
model [156]. TLR-3 was targeted with TLR-3 ligand (TLR-3L) and resulted in reprogram-
ming of M2 macrophages towards M1 activation and inhibition of tumor growth [157].
Treatment with TLR-4 agonist, E6020, increased efficacy of trastuzumab and protected
mice after re-challenge with HER2-positive cancer cells [158]. Recently, it was shown that
Paclitaxel (a cytostatic drug used in cancer treatment) also acts via TLR-4 to reprogram
TAMs toward M1 phenotype [159]. Many therapeutics are being in the developmental
stage, and TLR-targeted therapy can be effective alone or can boost immunotherapy with
monoclonal antibodies and immune checkpoint inhibitors (Figure 3).

MARCO. Another target molecule is the Macrophage Receptor with Collagenous
Structure (MARCO). MARCO is expressed on M2 macrophages in the TME with an
immunosuppressive gene profile [160]. The presence of MARCO-expressing TAMs is corre-
lated with an increased number of regulatory T cells and anti-inflammatory cytokine IL-37
and diminished activity of CD8+ T cells, and decreased the number of NK cells [161]. Tar-
geting MARCO with monoclonal antibody reduced tumor growth and impaired metastasis
in a murine model of melanoma, colon, and breast cancer [162].

Zoledronic acid (ZA) is an approved medication used to treat various bone diseases
and to prevent skeletal fractures in patients with some types of cancer. In vitro analysis
revealed that ZA decreased the expression of M2 macrophage markers CD206, TGFβ,
and Arg-1 [163] and inhibited differentiation of monocytes to macrophages in mesothe-
lioma [164]. However, the exact mechanism of action of ZA on macrophages is not well
understood.

PI3K.Using human and syngeneic animal models, Kaneda et al. showed that macrophage
PI3Kγ/Akt signaling inhibits NFκB activation and promotes immune suppression during
inflammation and tumor growth. Conversely, inhibition of macrophage PI3Kγ stimulates
NFκB activation and promotes an immunostimulatory transcriptional program that restores
cytotoxic T cell activity and induces tumor growth inhibition [165]. Selective PI3Kγ inhibi-
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tion using drug IPI-549 is now under investigation in several clinical trials for anticancer
therapy (NCT03961698, NCT03980041, NCT03795610).

Another promising approach is to induce an anticancer immune response by a ge-
netic modification of macrophages. This approach was used by Brempelis et al., where
macrophages were transduced using lentivirus to express IL-12 [166]. Adoptively trans-
ferred engineered macrophages infiltrated experimental tumors and decreased their size,
activating T cells and IFNγ production [166]. An alternative approach was executed by
Zhang et al. using transient genetic modification of TAMs. In that study, lipid nanocarriers
were used in vivo to deliver stabilized mRNA to express IRF5 and IKKβ. Specific deliv-
ery was achieved by coating nanocarriers with mannose, a ligand for CD206 that is an
M2 surface marker. This treatment resulted in the induction of anti-tumor immunity and
promoted tumor regression in models of ovarian cancer, melanoma, and glioblastoma [167].

4.4. Induction of Phagocytosis

The main approach to re-activate TAMs, which will result in the direct destruction
of cancer cells, is the induction of phagocytosis. Cancer cells express both pro- and anti-
phagocytic signals that can either induce or inhibit phagocytosis. Often, cancer cells
overexpress both types of signals. The balance between pro and anti-phagocytic signals in
the tumor microenvironment results in the level of cancer cells engulfed by macrophages.
Pro-phagocytic signals can originate from cancer cells and are “eat-me” ligands like SLAMF,
calreticulin, or Phosphatidylserine (PtdSer), or external factors like opsonizing antibodies.
“Don’t eat me signals” are proteins that are upregulated on cancer cells and help them
avoid the immune response, among which the best studied are CD47, PD-L1 but also CD24
and MHC-I [168].

CD47-SIRPα interaction is the first discovered ‘don’t eat me’ signal in cancer. CD47 is
upregulated in several solid tumor types [169,170], and hematological malignancies [171,172]
and such overexpression is correlated with poor patient survival or poor response to the
therapy. The binding of CD47 expressed on cancer cells to SIRPα expressed on macrophages
inhibits phagosome formation preventing the engulfment of cancer cells. CD47 antagonists
enhance not only phagocytic uptake of cancer cells by macrophages but also antigen
presentation, which further triggers cross-priming of T cells [173]. At least 10 therapeutics
that block CD47:SIRPα interaction have been developed and are being studied in clinical
trials, including magrolimab with completed Phase 1/2 in solid tumors and hematological
malignancies and has entered Phase 3 in combination with Azacitidine for treatment
of Myelodysplastic Syndrome (MDS) (clinical trials nr NCT04313881) [3,108] (Table 1).
Another promising therapeutic is SIRPα-Fc (TTI-621) with completed Phase 1 in B cell
non-Hodgkin Lymphoma [109]. Other drugs are summarized in a recent review with a
detailed description of outcomes from clinical trials [3]. Since the first successful outcomes
reached by magrolimab, many therapeutics targeting CD47-SIRPα have been developed,
including monoclonal antibodies, SIRPα fusions [174], bispecific antibodies and molecules,
and small molecule inhibitors, which directly block the interaction between CD47 and
SIRPα (Figure 3). An interesting example is RRx-001, which downregulates CD47 on
cancer cells and SIRPα on monocytes and stimulates TAMs against cancer cells. It has
reached Phase 3 clinical trial in small cell lung cancer [175–178] (NCT03699956). RRx-001
is also studied in clinical trials for the treatment of patients with small cell carcinoma,
neuroendocrine tumors, or ovarian epithelial cancer who have failed a platinum based
doublet regimen (clinical trial: NCT02489903).

CD24-Siglec-10. CD24 is a mucin-like GPI-anchored molecule with a very broad role
in the development of cancer. CD24 is often overexpressed in cancer, and its overexpression
is correlated with poor prognosis in various cancer types [179]. Moreover, CD24 regulates
cell proliferation, migration, and invasion, e.g., CD24+ cells promote invasion and metasta-
sis in osteosarcoma [180]. It is also a putative marker for cancer stem cells [181]. Moreover,
its role in the inhibition of macrophages was recently discovered. It was shown that upon
interaction with Siglec-10, expressed on TAMs, CD24 serves as an immune checkpoint and
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inhibits phagocytosis [22]. Therefore, it serves as a new ‘don’t eat me’ signal in cancer.
Several antibodies [182], and antibody fusions (for example, with CD30 or CD20 [183]) that
target CD24 have been developed. However, most of them aim to target CD24 on cancer
cells and were not studied as immune checkpoint inhibitors to reactivate phagocytosis
by TAMs.

Another approach to induce phagocytosis of cancer cells is the use of macrophages
engineered to express chimeric TCR that is directed to a cancer-specific antigen. This ap-
proach was used by Carisma Therapeutics to produce CAR macrophages (CAR-Ms) that
showed antigen-specific phagocytosis and tumor clearance in vitro. CAR-Ms demonstrated
expression of proinflammatory cytokines and chemokines, recruited, and presented anti-
gen to T cells. Notably, a single infusion of human CAR-Ms decreased tumor burden and
prolonged overall survival in two tumor xenograft mouse models [4].

5. Future Perspectives

Targeting macrophages to treat cancer is a young but rapidly developing area of
research and therapy. Despite great interest, the optimum therapeutic approach has yet
to be identified. The reason for that is that TAMs represent the heterogeneous popula-
tion, and their role in the tumor varies depending on many environmental conditions.
The other difficulty arises from TME that is a very dynamic tissue and contains various in-
filtrating immune cells and external factors that influence tumor progression, macrophage
polarization, and response to therapies. Some of the macrophage-targeting therapeutics
were effective as monotherapy. However, more evidence exists that targeting TAMs could
improve the efficacy of conventional therapies and immunotherapeutics. Currently, two
main approaches that target TAMs with apparent opposite effects are developed. One is
to deplete macrophages; another is to re-educate them to kill cancer. Depending on the
macrophage infiltration status and chosen therapy as a combination treatment, various
approaches will be chosen. For example, through their Fcγ receptors, macrophages were
shown to uptake therapeutic antibodies like anti-PD-L1, limiting the efficacy of such thera-
peutic modalities in animal models. In fact, in several recent studies, it was shown that
depleting macrophages with the use of CCL2/CCR2 antagonists improves the efficacy of
PD-L1 targeting antibodies and possibly other immune checkpoint inhibitors [184,185].

Interaction of antibodies with Fc receptors from macrophages must be taken into
consideration in the development of antibody-driven therapeutic modalities, particularly
when these will be combined with approaches that deplete or inhibit macrophage infiltra-
tion (e.g., targeting CCR2 or CSF1R). The use of CAR-M opened a completely new avenue
of adoptive macrophage therapies that may bring new developments in cancer treatment.

In addition, if TAMs antagonists are being used to overcome resistance to immunother-
apy, then more clinical data that correlate macrophage infiltration and/or their phenotype
with patient and therapeutic outcomes must be developed to guide patient selection and
improve the use of macrophage-targeting combination therapies. Despite these difficulties,
there is still a great potential in harnessing macrophages biology to improve therapies in
oncology.
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