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Simple Summary: Over the past few years, radiomics-based tissue characterization has demon-
strated its potential for non-invasive prediction of the genetic profile and grading in cerebral gliomas
using multiparametric MRI. The aim of our study was to investigate the feasibility and diagnostic
accuracy of a fully automated radiomics analysis based on a simplified MR protocol derived from
various scanner systems to prospectively ease the transition of radiomics-based non-invasive tissue
sampling into clinical practice. Using an MRI with non-contrast and post-contrast T1-weighted
sequences and FLAIR, our workflow automatically predicts the IDH1/2 mutation, the ATRX expres-
sion loss, the 1p19q co-deletion and the MGMT methylation status. It also effectively differentiates
low-grade from high-grade gliomas. In summary, the present study demonstrated that a fully auto-
mated prediction of grading and the genetic profile of cerebral gliomas could be performed with our
proposed method using a simplified MRI protocol that is robust to variations in scanner systems,
imaging parameters and field strength.

Abstract: Objective: The aim of this study was to investigate the diagnostic accuracy of a radiomics
analysis based on a fully automated segmentation and a simplified and robust MR imaging pro-
tocol to provide a comprehensive analysis of the genetic profile and grading of cerebral gliomas
for everyday clinical use. Methods: MRI examinations of 217 therapy-naïve patients with cerebral
gliomas, each comprising a non-contrast T1-weighted, FLAIR and contrast-enhanced T1-weighted
sequence, were included in the study. In addition, clinical and laboratory parameters were incor-
porated into the analysis. The BraTS 2019 pretrained DeepMedic network was used for automated
segmentation. The segmentations generated by DeepMedic were evaluated with 200 manual seg-
mentations with a DICE score of 0.8082 ± 0.1321. Subsequently, the radiomics signatures were
utilized to predict the genetic profile of ATRX, IDH1/2, MGMT and 1p19q co-deletion, as well
as differentiating low-grade glioma from high-grade glioma. Results: The network provided an
AUC (validation/test) for the differentiation between low-grade gliomas vs. high-grade gliomas of
0.981 ± 0.015/0.885 ± 0.02. The best results were achieved for the prediction of the ATRX expression
loss with AUCs of 0.979 ± 0.028/0.923 ± 0.045, followed by 0.929 ± 0.042/0.861 ± 0.023 for the
prediction of IDH1/2. The prediction of 1p19q and MGMT achieved moderate results, with AUCs
of 0.999 ± 0.005/0.711 ± 0.128 for 1p19q and 0.854 ± 0.046/0.742 ± 0.050 for MGMT. Conclusion:
This fully automated approach utilizing simplified MR protocols to predict the genetic profile and
grading of cerebral gliomas provides an easy and efficient method for non-invasive tumor decoding.
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1. Introduction

Recent developments in radiomics based image analysis have enabled new possibili-
ties to non-invasively determine the histopathology and/or genetic profile of a number
of different tumor entities [1]. This is especially important for cerebral gliomas, as the
latest WHO classification of 2016 puts the focus on the genetic profile to classify tumors
precisely and plan personalized therapy regimens accordingly [2]. While this change in
tumor classification aims to improve patient management and treatment, it implies the
requirement for invasive tissue sampling to the detriment of potentially severe biopsy
and/or surgical complications, resulting in a mortality rate of 2.8% [3]. As a result, there
is a high demand for non-invasive tissue analysis to initiate adequate therapy regimens
without potential biopsy-associated side effects. In particular, this is true for inoperable
tumors that would be solely biopsied. Over the past few years, a number of studies
demonstrated the great potential of MRI-based image analyses for the tumor decoding of
gliomas [4]. Here, various approaches to image analysis for predicting the genetic profile
of gliomas have emerged in recent years [5–7]. On the one hand, radiomics features can
be extracted from segmentations and be used to train machine learning algorithms [8–11].
On the other hand, the features can be extracted from a segmentation using convolutional
neural networks. Here, Guta et al. were able to show that features extracted using CNN
lead to better predictions for the grading of cerebral gliomas than features extracted using
Radiomics [5]. Third, various networks have been established for direct image analysis
of cerebral gliomas utilizing a variety of deep learning networks [6,12]. All approaches
come with their own advantages and disadvantages. While the traditional approach with
radiomics has traceable features, allowing them to be replicated in studies [13], the segmen-
tation required and the often poorer prediction compared to CNN approaches is a major
point of criticism [5]. In contrast, feature extraction by means of CNN often delivers better
results [5], but these are less comprehensible and cannot be compared in studies to the
same extent; simultaneously, the often manual or semi-automatic segmentation is a major
point of criticism here as well. Direct image analysis using deep learning does not require
manual segmentation and is therefore probably the easiest to use in day-to-day business.
Still in this case there is only limited understanding of how the prediction is made. In
addition to these major differences between methods of image analysis, there are common
limitations that hinder the clinical use of these systems.

Most studies put the focus of the analysis on a limited number of mutations instead of
providing a comprehensive analysis of the genetic profile [9,10,14]. Furthermore, whilst
some recent studies show excellent accuracies for the prediction of mutations [4,14,15], the
study protocols entail high-profile, dedicated multiparametric MR imaging as imaging plat-
forms. These protocols can be challenging to perform and, moreover, difficult to generalize
for common clinical practice. Lastly, there has been a shift from manual segmentation [16]
to semi-automatic [14] to fully automated algorithms [17]. Nevertheless, there is still a great
number of recent publications that apply manual/semi-automatic segmentation, again
impairing the generalization and clinical applicability of radiomics.

Hence, to address the above-mentioned limitations, the aim of this study was to
establish a radiomics analysis based on fully automated segmentations and a simplified
and robust MR imaging protocol to provide a comprehensive analysis of the genetic profile
and grading of cerebral gliomas for everyday clinical use.
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2. Methods
2.1. Ethics Statement

This study was performed in adherence to all of the guidelines defined by the ap-
proving institutional review board of the investigating hospital. Written informed consent
was waived by the Institutional Review Board due to the retrospective nature of the study.
Complete anonymization of all of the data was performed prior to their inclusion in
the study.

2.2. Study Design and Cohort

217 MRI studies of 217 patients with histopathologically confirmed therapy naïve
cerebral gliomas were included in the study. The collective comprised 28 low-grade gliomas
(WHO 2) and 187 high-grade gliomas (WHO III + WHO IV). Two cerebral gliomas could not
be conclusively classified and were excluded from the analysis. The distribution of genetic
parameters on the training and test collective, as well as the age and sex distribution, are
shown in Table 1. Exclusion criteria were previous brain surgery, pretreatment of the brain
tumor or lack of histopathologic confirmation. The following sequences were included
in the radiomics analysis: (1) FLAIR, (2) non-contrast T1-weighted sequence and (3) a
contrast-enhanced T1-weighted sequence. All patients with incomplete MRI examinations
were excluded from the study. The distribution of genetic parameters in the collective is
shown in Table 1. In addition to the MRI data, clinical and laboratory parameters were
included in the analysis (please refer to the clinical feature section). Prior to the inclusion
of MRI data and clinical features, all data were anonymized. Subsequent to this, the
preprocessing of the MRIs was performed, including co-registration and skull stripping.
Thereafter, the data were used to segment the gliomas in an automated process using
DeepMedic [18]. Example results of the automated segmentation are shown in Figure 1.
Radiomics features were subsequently extracted from the segmented data and used in
conjunction with the clinical features to predict the genetic profile and grading of cerebral
gliomas using machine learning. The workflow is shown in Figure 2.
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Table 1. Initial patient collective: Distribution of the training, testing and total cohort of the respective genetic parameters,
age and gender. A positive label is defined as having an IDH1/2 mutation, an ATRX expression loss, a 1p19q co-deletion
and a positive MGMT methylation status. For the WHO label, LGG is defined as positive and HGG as negative. The gender
distribution is expressed as the percentage of females in the collective.

Label Total (pos/neg) Train (pos/neg), %Female,
Mean Age + SD

Test (pos/neg)
%Female, Mean Age + SD

MGMT 164 (81/83) 131 (65/66), 45.0%,
57.0 ± 14.3 years

33 (16/17), 30.3%,
60.6 ± 13.1 years

IDH1/2 145 (34/111) 116 (27/89), 37.9%,
55.5 ± 16.9 years

29 (7/22), 41.4%,
50.2 ± 17.8 years

1p19q 30 (5/25) 24 (4/20), 45.8%,
45.3 ± 14 years

6 (1/5), 33.3%,
56.7 ± 6.9 years

WHO 215 (28/187) 172 (22/150), 41.9%,
56.0 ± 16.2 years

43 (6/37), 41.9%,
52.6 ± 15.4 years

ATRX 67 (13/54) 53 (10/43), 32.1%,
56.8 ± 13.3 years

14 (3/11), 64.3%,
56.9 ± 9.5 years
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Figure 2. Automated virtual biopsy workflow.

2.3. Magnetic Resonance Imaging

The MRI examinations were performed at a single center on assorted 1.5 T and 3 T
MR-machines (MAGNETOM Symphony, MAGNETOM Sonata, MAGNETOM Avanto,
MAGNETOM Aera, MAGNETOM Skyra) from a single vendor (Siemens Healthineers,
Munich, Germany). The distribution among the different MR scanners is shown in Table 2,
and the distribution of the train and test set among the different field strengths is shown
in Table 3.
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Table 2. Distribution of examinations among MR scanners (all scanners are from Siemens Healthineers).

Scanner
1.5 T

Magnetom
Aera

3 T
Magnetom

Skyra

1.5 T
Magnetom

Espree

3 T Bio-
graph_mMR

1.5 T
Magnetom

Avanto

1.5 T
Magnetom

Sonata

1.5 T
Magnetom
Symphony

n 68 57 35 19 19 12 10

Table 3. Distribution of the train and test among magnetic field strength.

Labels Magnetic Field Strength
Genetic Profile

MGMT IDH1/2 ATRX 1p19Q WHO_HIGH

0 (train) 1.5 45 53 21 11 15
3.0 21 36 22 9 7

1 (train) 1.5 38 14 6 2 76
3.0 27 13 4 2 74

0 (test) 1.5 14 15 7 3 3
3.0 3 7 4 2 3

1 (test) 1.5 10 4 2 0 26
3.0 6 3 1 1 11

2.4. Preprocessing

Prior to executing the preprocessing, a brain extraction was performed to ensure
an anonymized data set and to clean the image from unneeded structures. Due to its
state-of-the-art performance, the publicly available HD-BET artificial neural network-
based algorithm was used [19]. To spatially align the different series of a study, the
SimpleITK extension SimpleElastix was used to co-register the series of a study as part of
the preprocessing pipeline. A rigid registration, which is a form of a linear transformation,
was carried out for all images using the post-contrast series as a fixed reference. The fully
automated segmentation of the tumor regions was carried out using DeepMedic trained
on the BraTS 2019 dataset, a Convolutional Neural Network (CNN) based algorithm [18].

2.5. Train Test Split

The full dataset was split into a training set and a test set with a ratio of 80:20, resulting
in the number of studies in each set as stated in Table 1.

2.6. Clinical Features

The clinical features included gender, hemoglobin, c-reactive protein (CRP), sodium,
calcium, total protein, platelets, aspartate aminotransferase (ASAT), lactate dehydrogenase
(LDH) and bilirubin (total). The laboratory values were obtained within a time frame of
4 weeks prior to the MR examination. Listed laboratory data were available for all patients.

2.7. Radiomics Feature Extraction

To extract radiomics related features from the brain tumor images, the PyRadiomics
package was used [20]. The extracted features comprise first-order statistics features,
shape-based features, Gray Level Cooccurence Matrix (GLCM) features, Gray Level Run
Length Matrix (GLRLM) features, Gray Level Size Zone Matrix (GLSZM) features, Neigh-
bouring Gray Tone Difference Matrix (NGTDM) features and Gray Level Dependence
Matrix (GLDM) features. Relevant features were additionally extracted from filter trans-
formed images using Wavelet transformation, Laplacian of Gaussian (LoG) transformation,
Local Binary Pattern 3D (LBP3D) transformation and Gradient transformation. In total,
1562 features were extracted for each series, adding up to a total of 4686 features per study.
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2.8. Feature Selection

The number of extensive features leads to the necessity of selecting a subset of features
with the highest predictive power to reduce the noise added by redundant features. For
that purpose, the Boruta algorithm was utilized—a wrapper method that was combined
with the Gradient Boosting algorithm XGBoost [21,22]. Subsets of features were selected
with Boruta tuned to different thresholds, resulting in a relaxed selection process. Two
different approaches of the Boruta Algorithm were used, one utilizing the permutation
importance and the other based on the SHAP importance of the features in the underlying
tree method. Table 4 shows the distribution of the three important features—volume,
flatness and surface area—among the respective genetic profiles.

Table 4. Lesion-specific features for positive and negative samples and the Bonferroni corrected Mann-Whitney U statistics
grouped by label.

MGMT WHO IDH 1/2 1p19q ATRX

Volume

neg: 9.9 × 104 ±
5.5 × 104

neg: 1 × 105 ±
5.8 × 104

neg: 9.9 × 104 ±
5.8 × 104

neg: 9.1 × 104 ±
7 × 104

neg: 1.1 × 105 ±
6.5 × 104

pos: 1.1 × 105 ±
6.3 × 104

pos: 5.8 × 104 ±
6.8 × 104

pos: 9.1 × 104 ±
8.2 × 104

pos: 1 × 105 ±
1.2 × 105

pos: 9.2 ×104 ±
6.4 × 104

p = 0.340 p < 0.0001 p = 0.070 p = 0.434 p = 0.194

Flatness
neg: 0.59 ± 0.12 neg: 0.58 ± 0.12 neg: 0.59 ± 0.13 neg: 0.57 ± 0.13 neg: 0.59 ± 0.13
pos: 0.58 ± 0.12 pos: 0.65 ± 0.1 pos: 0.63 ± 0.11 pos: 0.65 ± 0.091 pos: 0.62 ± 0.1

p = 0.276 p = 0.002 p = 0.013 p = 0.110 p = 0.177

Surface Area

neg: 2.1 × 104 ±
9.9 × 103

neg: 2.2 × 104 ±
1.1 × 104

neg: 2.1 × 104 ±
1.1 × 104

neg: 2.1 × 104 ±
1.5 × 104

neg = 2.2 × 104 ±
1.2 × 104

pos: 2.2 × 104 ±
1.2 × 104

pos: 1.3 × 104 ±
1.4 × 104

pos: 1.8 × 104 ±
1.6 × 104

pos: 2.2 × 104 ±
2.4 × 104

pos: 1.9 × 104 ±
1.2 × 104

p = 0.358 p < 0.0001 p = 0.012 p = 0.348 p = 0.177

2.9. Parameter Optimization

The XGBoost parameters were tuned using the Tree-structured Parzen Estimator
(TPE) sampler of the Optuna framework [23]. Each optimization run comprised 200 initial
iterations with parameters picked randomly from a given parameter space before the
final 2000 TPE steps were conducted. Each iteration of the optimization contained a
bootstrapping-based cross-validation maximizing the logloss score of the validation data.
The XGBoost model used with the Python API was initialized using the gbtree booster and
the binary logistic objective within the parameter space given in Table 5.

Table 5. Parameter space used for hyperparameter optimization with the Tree-structured Parzen
Estimator (TPE).

Hyperparameter

n_estimators [100, 1500] stepsize: 100
max_depth [1, 6] stepsize: 1

learning_rate [0.05, 0.03] stepsize: loguniform
gamma [0, 20] stepsize: uniform

min_child_weight [1, 20] stepsize: 1
subsample [0.5, 1.0] stepsize: 0.05

colsample_bytree [0.1, 1.0] stepsize: 0.05
reg_landa [1 × 10−8, 1.0] stepsize: loguniform
reg_landa [1 × 10−8, 1.0] stepsize: loguniform

2.10. Model Evaluation

For each label, the best result after the parameter optimization in terms of the AUC
score of the validation set was picked. All model performance relevant metrics pre-
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sented in this paper were calculated in a 1000fold bootstrapping cross-validation to ob-
tain uncertainty intervals of the model performance. As the XGBoost algorithm returns
an uncalibrated probability of a data point being of a given class, the sensitivity and
specificity—depending on discrete outcomes—were calibrated using the geometric mean.

2.11. Validation of Segmentations

The performance of the DeepMedic segmentation Model was evaluated on 200 manu-
ally segmented patients. The cerebral gliomas were segmented manually by two radiology
residents and inspected—and corrected—by the consensus of two radiology consultants.
This resulted in a mean DICE score of 0.8082 ± 0.1321.

3. Results

Overall, all of the genetic parameters could be predicted with a good performance.
The ROC curves of the predictions are shown in Figures 3 and 4, while the AUC values,
accuracy, precision, sensitivity and specificity of the train, validation and test set for each
genetic parameter and grading (LGG vs. HGG) are shown in Tables 6 and 7. All predictions
were compared with the prediction of a dummy classifier in order to avoid possible errors
due to an unbalanced collective.
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ATRX-Validation 0.981 ± 0.028 0.914 ± 0.048 0.844 ± 0.193 0.721 ± 0.089 0.955 ± 0.060
ATRX-Test 0.923 ± 0.045 0.810 ± 0.066 0.593 ± 0.174 0.656 ± 0.059 0.853 ± 0.086
1p19q-Validation 0.999 ± 0.005 0.889 ± 0.032 0.521 ± 0.497 0.271 ± 0.260 0.999 ± 0.012
1p19q-Test 0.711 ± 0.128 0.611 ± 0.094 0.000 ± 0.000 0.000 ± 0.000 0.733 ± 0.113
IDH1/2-Validation 0.929 ± 0.042 0.888 ± 0.045 0.751 ± 0.131 0.798 ± 0.087 0.913 ± 0.059
IDH1/2-Test 0.861 ± 0.023 0.769 ± 0.053 0.544 ± 0.113 0.689 ± 0.095 0.795 ± 0.091
MGMT-Validation 0.854 ± 0.046 0.786 ± 0.044 0.807 ± 0.076 0.756 ± 0.094 0.815 ± 0.091
MGMT-Test 0.742 ± 0.050 0.699 ± 0.046 0.705 ± 0.077 0.684 ± 0.125 0.714 ± 0.117
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Figure 4. ROC curves of the prediction of the ATRX expression loss (A), the 1p19q co-deletion (B), the IDH1/IDH2 mutation
(C) and the MGMT-status (D) in the validation data set (left) and the test data set (right).

The results of the dummy classifier are interpreted as the best results that can be
achieved without training a model by guessing the prediction based on the class imbalance.
A classifier was chosen that predicts the data by randomly classifying each data point
as positive or negative while taking a possible class imbalance into account (stratified).
Overall, all predictions of the dummy classifier were very close to an AUC of 0.5 (0.497,
0.498, 0.513, 0.500, 0.503), and, therefore, no capability of separating the classes from each
other was observed.

3.1. Radiomics Analysis to Predict Grading

Grading in this study was limited to the clinically highly relevant differentiation
between LGG (WHO 2) and HGG (WHO 3 + 4). Following the feature selection, 56 features
were selected for the predictions. All in all, with an AUC of 1.0 ± 0.000/0.981 ± 0.015/
0.885 ± 0.02 (training/validation/test), the network showed a good performance in differ-
entiating between LGG and HGG. The performance in predicting grading in the validation
and test datasets are shown in Table 6, while the ROC curves for the predictions of the
validation and test datasets are shown in Figure 3.

3.2. Radiomics Analysis to Predict the Genetic Profile

The analysis of the genetic parameters showed overall good to very good results. In
detail, the network performed well in predicting the ATRX expression with an AUC of
1.0 ± 0.000/0.979 ± 0.028/0.923 ± 0.045 (training/validation/test). A total of 18 features
were used for prediction, which were selected by feature selection. The performance to
predict the genetic parameters of the validation and test datasets are shown in Table 7. The
ROC curves for the predictions of the validation and test datasets are shown in Figure 4.

For the prediction of the 1p19q co-deletion, the network showed a heterogeneous perfor-
mance, with an AUC of 1.0 ± 0.000/0.999 ± 0.005/0.711 ± 0.128 (training/validation/test).
The ROC curves for validation and test dataset predictions are plotted in Figure 4B. The
predictions were based on 11 features, which were selected by feature selection.

The networks performance in predicting IDH1/2 mutation was quite good, with an
AUC of 1.0 ± 0.000/0.929 ± 0.042/0.861 ± 0.023 (training/validation/test). The ROC
curves for the validation and test dataset predictions are shown in Figure 4C. For predic-
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tions, a number of 36 features were used. For the prediction of the MGMT methylation
status, the network performed well, with an AUC of 1.0 ± 0.000,0.854 ± 0.046, 0.742 ± 0.050
(training/validation/test) using 25 features, which were previously selected using feature
selection. The ROC curves for the validation and test dataset predictions are shown in
Figure 4D.

4. Discussion

In recent years, radiomics-based tissue characterization has demonstrated its potential
for non-invasive prediction of the genetic profile and grading in cerebral gliomas using
multiparametric MRI [9,17,24]. The benefits of this innovative tissue characterization form
include its non-invasive nature and whole-tumor assessment when compared to focal
stereotactic biopsy sampling, with an associated mortality rate of 2.8% [3]. Nevertheless,
a number of challenges have remained: the majority of published studies are limited
to the prediction of a genetic parameter and/or grading, lacking the convenience and
comparability to an extensive invasive workup [9,25–27]. Additionally, previous studies
are predominantly based on manual or semi-automatic segmentation methods, which
significantly limits reproducibility and inter-study comparability [28]. Furthermore, these
studies generally require a complex MRI protocol and standardized sequences and are
mainly based on specific field strengths or specific scanners, impeding the transition from
local unicenter radiomics-based tumor assessment to a more universal approach.

Hence, the main aim of our study was to address the majority of these limitations
to prospectively ease the transition of radiomics-based non-invasive tissue sampling into
clinical practice. Thus, our study comprised a collective of 217 patients acquired on seven
different MRI scanners, entailing both 1.5 as well as 3 Tesla scanner systems. The radiomics
analysis was based on a basic imaging protocol consisting of three universally applied
sequences: a FLAIR, a non-contrast and a contrast-enhanced T1-weighted sequence with
variable imaging parameters. Previous publications indicate a direct correlation of the
performance power of radiomics to the homogeneity and complexity of MR protocols [4].
Nevertheless, neither homogeneous imaging parameters nor complex protocols reflect the
global clinical approach to MR imaging. Thus, to understand whether radiomics-based
tumor assessment can be applied in a broader scope and more universal approach, we took
a potential loss in predictive power into account.

To account for reproducibility and to remove potential human bias or influence of
any kind, we applied DeepMedic for the automated segmentation of cerebral gliomas,
which had been pretrained with the BraTS 2019 dataset [18,29–31]. On this basis, feature
selections of radiomics parameters were performed and used for training machine learning
algorithms. During the feature selection, gender and laboratory parameters dropped out
because of their poor predictive power, so only imaging parameters were used to train
the final model. While gender is certainly a risk factor for cerebral gliomas [32], this
feature does not appear to be relevant for differentiating genetic parameters and grading
in our study collective. No data on association with grading and genetic parameters are
available for the laboratory parameters used. Nevertheless, there are various studies on
the improvement of predictive power in a variety of other tumor entities by laboratory
parameters [33], so we wanted to test the predictive power for our study setting.

One of the most compelling challenges for radiomics-based tumor assessment is the
comparability to the extensive invasive work up, as the majority of previously published
studies focused on single parameter analyses [9,14]. Therefore, we included an extensive
work up including the differentiation of high-grade versus low-grade gliomas and ATRX,
IDH1/2, 1p19q, MGMT in our analysis. The clinical management of a patient is crucially
dependent on the genetic profile and the differentiation of LGG vs. HGG [34,35]. For
this purpose, in this study, the network was able to differentiate LGG from HGG with an
AUC of 1.0 ± 0.000/0.981 ± 0.015/0.885 ± 0.02 (train/validation/test), yielding very good
results, which are on a similar level or even better compared to other studies with more
complex protocols and more homogeneous collectives [8,36]. Overall, good results were
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obtained in predicting the genetic parameters, although these varied depending on the
type of genetic parameter, as described previously in the literature [4,9,27,37].

For the predictions of ATRX, IDH1/2, 1p19q and MGMT, this resulted in an AUC
(train/validation/test) of 1.0 ± 0.000/0.979 ± 0.028/0.923 ± 0.045 (ATRX), 1.0 ± 0.000/
0.929 ± 0.042/0.861 ± 0.023 (IDH1/2), 1.0 ± 0.000/0.999 ± 0.005/0.711 ± 0.128 (1p19q)
and 1.0 ± 0.000, 0.854 ± 0.046, 0.742 ± 0.050 (MGMT). Our results for the grading and
prediction of ATRX and IDH1/2 are comparable and equally good in comparison to a
previously published study on a highly-complex 18F-FET-PET/MRI study involving MR
Fingerprinting as a new relaxometry technique [4]. This could be due to the fact that, in
our current study, the collective was significantly larger. Thus, the predictive power of
the ATRX expression loss and IDH1/2 mutation is similar to or higher than other recent
publications, although fewer sequences were used in our study [9,27,38].

However, following the excellent accuracies for prediction of 1p19q co-deletion and
IDH1/2 mutation, our results reveal a substantial drop as well as noticeably strong variation
in the prediction of the 1p19q co-deletion in our test and validation collective. This is
probably due to the fact that the 1p19q co-deletion is the least present mutation in the
collective. Hence, this issue should be further investigated in a larger collective, entailing
more patients with the 1p19q co-deletion.

Overall, the small number of patients with a 1p19q co-deletion in our collective reduces
the predictive power. To address this, we performed a 1000fold bootstrapping cross-
validation inside the hyperparameter optimization on all predictions. Overall, however,
this remains a limitation, particularly regarding the 1p19q co-deletion, which can only be
fully addressed in larger follow-up studies.

Furthermore, a substantial drop from the test to the validation collective is often
observed in radiomics studies [27]. In our study, this might have been caused by the very
heterogeneous collective consisting of scans from seven different MRI scanners. While some
might see this as a limitation, it is also an advantage, as it improves transferability. Never-
theless, this can also be a sign of overfitting. To avoid overfitting, we used early stopping of
the training process based on the validation score (early_stopping = 10), restricted the tree
depth to a max of 6 and used a cross-validation inside the hyperparameter optimization.

Alternatively, according to the literature, additional T2 mapping may significantly
increase the predictive power for the 1p19q co-deletion [4]. Lastly, in line with current
literature, our network only enabled a moderate prediction of the MGMT mutation with
AUCs of 0.742, hence, deeming the prediction of this parameter as non-clinical [39].

Overall, despite our promising results, our study is not free of limitations. One
limitation is that, while our study was performed on different MRI scanners with 1.5 and
3 T, there is a lack of diversity from different manufacturers, which may alter the results.
In addition, recent studies have shown that different methods of data normalization
can improve the robustness of radiomics predictions in a heterogeneous collective, a
technique that may further increase the efficiency of our workflow in the future [40].
Further limitations are the retrospective setting and the partly small sample size, e.g.,
for the 1p19q co-deletion, which was addressed by our extensive validation using the
train/validation/test collective. These issues could be easily addressed in a follow-up
multi-center setup using the proposed fully automated workflow.

Finally, a biopsy cannot be waived if a requirement to use the network is that a glioma
is present. Although this is the largest group of primary cerebral neoplasms, other rarer
entities must be differentiated from this. Therefore, further networks should be used
to differentiate important differential diagnoses such as cerebral lymphoma. Although a
biopsy in the setting of initial diagnosis of cerebral neoplasm cannot be avoided without the
help of additional networks, the prediction of the genetic profile could help to early detect
mutations from low-grade gliomas to higher-grade gliomas in follow-up examinations.
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5. Conclusions

In summary, the present study demonstrated that a fully automated prediction of
grading and the genetic profile of cerebral gliomas could be performed with our proposed
method using a simplified MRI protocol that is robust to variations in scanner systems,
imaging parameters and field strength.
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