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Objectives: Evaluating structural changes in oral epithelium can assist with the diagnosis of cancerous lesions.
Two-dimensional (2D) non-invasive optical coherence tomography (OCT) is an established technique for this
purpose. The objective of this study was to develop and test the diagnostic accuracy of a three-dimensional (3D)
evaluation method.

Methods: The oral lip mucosa of 10 healthy volunteers was scanned using an 870-nm spectral-domain OCT device
(SD-OCT) with enhanced depth imaging (EDI). Four raters semi-automatically segmented the epithelial layer
twice. Thus, eighty 3D datasets were created and analyzed for epithelial thickness. To provide a reference
standard for comparison, the raters took cross-sectional 2D measurements at representative sites. The correlation
between the 2D and 3D measurements, as well as intra- and inter-rater reliability, were analyzed using intraclass
correlation coefficients (ICC).

Results: Mean epithelial thickness was 280 + 64pm (range 178-500 pm) and 268 + 49um (range 163-425 pm) for
the 2D and 3D analysis, respectively. The inter-modality correlation of the thickness values was good (ICC: 0.76
[0.626-0.846]), indicating that 3D analysis of epithelial thickness provides valid results. Intra-rater and inter-
rater reliability were good (3D analysis) and excellent (2D analysis), suggesting high reproducibility.
Conclusions: Diagnostic accuracy was high for the developed 3D analysis of oral epithelia using non-invasive,
radiation-free OCT imaging.

Clinical significance: This new 3D technique could potentially be used to improve time-efficiency and quality in the
diagnosis of epithelial lesions compared with the 2D reference standard.

1. Introduction

Evaluating structural changes in oral epithelia can help with the
detection of cancerous lesions [1,2,3]. Monitoring epithelial changes
might also help to improve cancer treatment [1,4] and manage thera-
peutic side effects, such as mucositis [5,6,7]. Optical coherence tomog-
raphy (OCT) is a radiation-free, high-resolution method to quantify
epithelial thickness in vivo [8,9,10]. A good correlation has been
confirmed between OCT and histopathological measurements of
epithelial thickness [11]. OCT enables non-invasive imaging of multiple
sections and can thus be considered an optical biopsy [12].
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Currently, two-dimensional (2D) OCT cross-sections are measured at
several sites in multiple sections to gain a representative overview of
epithelial thickness [1,4,13]. The logical next step is to analyze the entire
scan on a three-dimensional (3D) basis. Compared with the 2D approach,
a 3D method offers two key advantages. First, it enables time-efficient 3D
visualization of the entire scanned area. Second, it allows for advanced
geometric analysis, such as volumetric evaluation of objects across
multiple 2D sections.

The aim of the present study was to investigate the prerequisites for
3D analysis of epithelial scans. More specifically, the objective was to
develop an efficient and reproducible 3D segmentation and analysis
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procedure, and to compare its diagnostic performance with that of the
current reference standard, the traditional cross-sectional 2D approach.

2. Materials and methods

The oral lip mucosa of 10 healthy volunteers was scanned by use of a
modified, commercially available 870-nm SD-OCT device with EDI (HRA
+ OCT Spectralis, Heidelberg Engineering) (Figure 1). Informed consent
was obtained from all volunteers, and all procedures were performed in
compliance with relevant laws and institutional guidelines (ethical
approval: S-370/2015). To adapt the optics for mucosal imaging, the
front lens was removed, and the intermediate image plane was imaged
onto the sample by means of a one-to-one telescope, as described pre-
viously [14]. The volume scanning mode was used to acquire multiple
(~49) cross-sectional B-scans over a 15-mm region on the inner side of
the lower lip. The device used a broadband super-luminescent diode
(center wavelength: 870 nm) as a low coherent light source. The axial
and lateral optical resolution was 7 pm and 14 pm, respectively [15].
Imaging was performed using a proprietary software package (Heidel-
berg Eye Explorer, Version 1.9.13.0; Heidelberg Engineering). OCT
measurement results were corrected by the refractive index of the sub-
strate, human gingiva [16].

The OCT scans were exported as DICOM datasets (Figure 2). Using
opensource software (3D Slicer), semi-automatic segmentation of the
epithelial layer was performed by four raters with different levels of
experience in dental imaging (1-8 years). The semi-automatic segmen-
tation tool “segmentation based on local seeds” was used, which is
implemented in 3D slicer. The four raters segmented the scans during two
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Figure 1. A. Lower lip mucosa of healthy volunteer. B. OCT surface image (left) and OCT scan (right) of oral epithelium.
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separate sessions, yielding a total of 80 non-invasively acquired 3D maps
of human epithelium. The reconstructions were exported as STL data and
imported into computer-aided design software (Geomagic, Design X). To
remove segmentation artifacts, volume surfaces were re-meshed with a
triangle edge length of 0.02 mm. The volume (V) was then calculated.
Mean epithelial thickness (t) was calculated using the formula tyean = V/
A, in which A is the area of the OCT scan (A = 6.4769 mm?). In addition
to this 3D evaluation, the four raters measured epithelial thickness by
means of the traditional cross-sectional 2D approach. They were able to
freely scroll through the stacks of OCT scans, measuring epithelial
thickness at five representative sites chosen at random [4]. This 2D
measurement was repeated for a second round. For the 2D reference
approach, mean epithelial thickness was calculated from the two rounds
of measurement for every OCT scan. Inter-modality correlation and intra-
and inter-rater reproducibility were assessed using intraclass correlation
coefficients (ICC) and interpreted according to Koo and Li [17].

3. Results

To ensure a time-efficient and intuitive assessment of the entire
scanned surface, an automated calculation of epithelial thickness plots
was programmed (Figure 2). The distance between the upper and lower
side of the epithelial layer was calculated in relation to a base plate.
These thickness plots depict local epithelial thickening and thinning in
different colors, thus enabling any abnormalities to be easily detected.

The traditional 2D measurements resulted in a mean epithelial
thickness for the scanned lip mucosa of 280 + 64 pm (range 178-500
pm). For the 3D analysis, mean epithelial thickness was 268 + 49 pm
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Figure 2. A. Oral lip mucosa was scanned using optical coherence tomography. The white bar indicates epithelial thickness. B. Semi-automatic segmentation was
performed. Green: detected epithelium; brown: no epithelium. C. 3D volumes were exported (STL format). D. Re-meshed surfaces of the 3D file for the upper (yellow)
and lower (blue) side of the volume, as well as the projection area (red). E. Thickness plot for distributed distance measurements perpendicular to the projection area,
visualized in a color-coded image. Local epithelial thickening (red) and thinning (blue) can be subjected to closer examination. The mean thickness for such an

evaluation is given by tpean = V/A.

(range 163-425 pm). The inter-modality correlation of thickness values
was good, with an ICC value of 0.76 (0.626-0.846). This indicates that
3D analysis of epithelial thickness produces valid results. Mean values for
intra- and inter-rater reliability were higher for the 2D than for the 3D
analysis (Figure 3, Table 1), whose reliability was excellent and good,
respectively. These findings indicate that 2D and 3D analysis both pro-
vide reproducible measurements, but that the 2D method is superior in
this regard.

4. Discussion

Structural changes in oral epithelia can be caused both by oral pa-
thologies and their treatment. Abnormal cell proliferation is a funda-
mental mechanism of oral squamous cell carcinogenesis [18]. Radio- and
chemotherapy can also cause oral mucositis, which has been associated
with mucosal atrophy, i.e., the loss of the rapidly proliferating epithelial
cells [19,20]. Measurement of epithelial thickness can, therefore, be used
to objectively classify side effects of cancer therapy even before their
clinical manifestation [5,6,7]. In the field of radiotherapy, OCT moni-
toring during irradiation could potentially be used to adapt radiotherapy
treatment plans [21].

The epithelial thickness of lip mucosa found in this study (280 and
268 pm for the 2D and 3D analysis, respectively) is consistent with that in
the literature: Prestin et al. reported a value of 294 pm for buccal mucosa
[13]. The correlation between the 3D and 2D analysis was good, with
high values for intra- and inter-rater reliability. This means the 3D seg-
mentation and analysis method developed was reproducible. The
reproducibility of the 2D evaluation of only five representative sites was
even higher than that of the 3D approach. This is probably because only
healthy volunteers were evaluated. The epithelial thickness of the
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Figure 3. Intra-rater reliability for the three-dimensional (3D) and two-
dimensional (2D) analysis. Intraclass correlations were calculated for the two
rounds of measurement for each of four raters (R1-R4).

participants was relatively consistent, without any pronounced local
changes. In such cases, 2D evaluation of a small number of scan sections
is sufficient to reliably evaluate epithelial thickness, without the risk of
introducing any errors during an additional segmentation step. The 2D
approach might be less favourable in a clinical setting, however, where
local changes in thickness could be overlooked on the basis of only a few
sections. In contrast, 3D mapping provides a quick overview of the
complete dataset.

Several limitations of the presented technique must be discussed.
First, image quality is strongly user-dependent [22]. More specifically,
even slight changes in the orientation of the 870-nm SD-OCT device can
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Table 1. Inter-rater reliability. Intraclass correlations were calculated for the
raters.

Mean inter-rater 3D 2D

1+2 0.8 (0-0.957) 0.919 (0.644-0.980)
1+3 0.884 (0-0.979) 0.862 (0.447-0.966)
1+4 0.918 (0.723-0.979) 0.925 (0.722-0.981)
2+3 0.938 (0.772-0.984) 0.913 (0.706-0.977)
2+4 0.733 (0-0.945) 0.929 (0.743-0.982)
3+4 0.746 (0-0.941) 0.828 (0.472-0.954)
Mean 0.84 0.90

The values in parentheses indicate the upper and lower bound of the 95% con-
fidence interval.

lead to blurring or to greater measurement distances, depending on the
angle of the light [23]. This limits the use of the 3D technique in general
practice. Second, the 870-nm SD-OCT device used was selected because it
is a clinically approved commercial device that is modifiable for dental
imaging [14,24]. However, its size is optimized for ophthalmology, not
for intraoral purposes, which makes examining the oral cavity difficult.
New devices have recently been developed that include pens for intraoral
use [25,26]. Lastly, the inside of the lower lip was investigated in this
study because it is more accessible than the buccal plane or tongue,
which are more susceptible to movement artifacts. Validity and reli-
ability might therefore be lower for oral epithelium in other areas of the
mouth.

5. Conclusions

Diagnostic accuracy was high for the developed 3D analysis of oral
epithelia using non-invasive, radiation-free OCT imaging. This might be
useful for increasing time-efficiency and quality in the diagnosis of
epithelial lesions compared with the 2D assessment standard.
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