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The accumulation of senescent cells has been shown 

detrimental in many contexts [1–5]. In turn, the analysis 

of senescence in vascular endothelial cells is one of the 

main directions in the field of vascular aging as it plays a 

key role in the initiation, progression, and advancement 

of cardio-vascular diseases [3, 6–9]. While attenuating 

senescence has already been shown to ameliorate several 

pathological conditions, more recent work suggested that 

elimination of senescent cells could be advantageous for 

health and lifespan [4, 10–12]. Removing certain 

senescent cells that can be robustly replaced without 

conferring changes on organ structure or function is 

clearly beneficial. However, accumulating data suggest 

that there are functionally important senescent cell  

types that might not be efficiently replaced under 

physiological conditions, especially in old organisms. 

For example, age-induced senescence has been recently 

described in hypothalamic stem cells [13], while we 

found a significant build-up of senescence in liver 

sinusoid endothelial cells (LSECs).  

 

LSECs are fenestrated endothelial cells that line the 

hepatic sinusoids. These cells have several important 

physiological roles, including facilitating the bi-  

directional transfer of substrates between the blood  

and hepatocytes, endocytosing circulating proteins, 

regulating immunotolerance, and maintaining sinusoidal 

microenvironment [14–24]. LSECs are the main cell type 

responsible for clearing blood-borne macromolecular 

waste [14–16], including most viruses [17–19] and 

lipopolysaccharides (LPS) [20, 21]. Furthermore, LSECs 

are responsible for the selective uptake of high-density 

lipoprotein [20, 22], in this way governing cardiovascular 

risk and all-cause mortality [23, 24]. Among the many 

toxins that are removed by LSECs, oxidized low density 

lipoprotein (oxLDL) [25, 26] is of specific interest as a 

major atherogenic substance [27–29]. Other toxic agents 

endocytosed by LSECs include Advanced Glycation  

End products (AGEs) — heterogenous metabolic by-

products formed by non-enzymatic irreversible protein 

glycosylation/glycoxidation and that are resistant to 

proteolysis [30–32]. The accumulation of AGEs in 

tissues is harmful, observed in several pathological 

conditions [33–35], and thought to result from chronic 

hyperglycemia and increased oxidative and carbonyl 

stress [36–38]. The removal of both oxLDL and AGEs, 

however, is an inefficient process and their build up, as 

seen in several pathological conditions or after a 
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ABSTRACT 
 

Data obtained from genetically modified mouse models suggest a detrimental role for p16High senescent cells in 
physiological aging and age-related pathologies. Our recent analysis of aging mice revealed a continuous and 
noticeable accumulation of liver sinusoid endothelial cells (LSECs) expressing numerous senescence markers, 
including p16. At early stage, senescent LSECs show an enhanced ability to clear macromolecular waste and 
toxins including oxidized LDL (oxLDL). Later in life, however, the efficiency of this important detoxifying 
function rapidly declines potentially due to increased endothelial thickness and senescence-induced silencing of 
scavenger receptors and endocytosis genes. This inability to detoxify toxins and macromolecular waste, which 
can be further exacerbated by increased intestinal leakiness with age, might be an important contributing 
factor to animal death. Here, we propose how LSEC senescence could serve as an endogenous clock that 
ultimately controls longevity and outline some of the possible approaches to extend the lifespan. 
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depletion of LSECs [39], could rapidly overwhelm the 

LSEC clearing capacity. This in turn could cause further 

oxidative stress and has significant negative impact  

both in liver sinusoids and extrahepatic vascular beds  

[25, 39–42]. 

 

There are substantial age-induced changes in the 

structure and function of LSECs which in turn impact 

liver functions contributing to hepatic insulin resistance 

but also have a systemic risk of cardio-metabolic 

diseases [29, 30, 43–45]. Age-induced morphological 

changes in LSECs have been described in several 

species including humans [46], rats [47], baboons [48], 

and wild-type [30] and genetic mouse models of 

premature aging [49]. These morphological changes are 

characterized by pseudocapillarization, which includes 

defenestration (a reduction in the number and size of 

fenestrations), endothelial thickening, and basal lamina 

and collagen deposition [14, 50, 51]. Age-induced 

pseudocapillarization is a sequential process, starting 

with defenestration at a relatively young age and 

progressing towards LSEC thickening and fibrosis later 

in life (Figure 1) [30]. In turn, finding approaches to 

reverse defenestration and pseudocapillarization have 

being actively and successfully pursued in several 

laboratories as a strategy to ameliorate some age-related 

diseases [52–55].  

Pseudocapillarization is accompanied by changes in the 

expression of multiple genes, of which some are 

associated with senescence. Accumulated p16 

senescence marker expression, elevated mitochondrial 

oxidative stress and increased expression of inflam-

matory genes resembling the senescent secretome have 

been recently reported in LSECs [30, 47]. Furthermore, 

LSECs in old animals are considered to be in a 

moderate pro- inflammatory state [30, 47, 51]. We 

further extended this analysis and found that numerous 

markers of senescence are continuously increased in 

mouse LSECs with age (Figure 1) [39]. These findings 

unambiguously confirm that LSECs undergo aging-

induced senescence, which in turn could be a part of the 

pseudocapillarization process. The way in which 

senescence and pseudocapillarization are interconnected 

however warrants further analysis. 

 

Both LSECs [14, 21] and hepatocytes [56] express 

numerous receptors that are essential for removing 

different macromolecules from the bloodstream. Any 

deregulation to this process could trigger compensatory 

mechanisms [57]. If access between the blood content 

and hepatocytes is blocked, as occurs during age-

induced LSEC defenestration [30, 47, 58], this could 

trigger a compensatory upregulation in SR expression 

on the LSEC surface. This effect would in turn result in 

 

 
 

Figure 1. LSEC senescence throughout animal lifespan. The accumulation of p16High senescent LSECs starts gradually and is 
characterized by an increased expression of scavenger receptors (SRs) and endocytic activity in middle (1-year) age animals. This increase 
well-compensates for the loss of clearing functions by hepatocytes potentially due to LSEC defenestration. Later in life, however, the 
expression of SRs and LSEC endocytic activity are significantly reduced resulting in build up of blood-born macromolecular waste. This in turn 
contributes negatively to lifespan. 
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enhanced oxLDL and AGE intake, further inducing 

oxidative stress and eventually senescence. 

 

In our own analyses of middle-aged mice (1 year old), we 

observed a substantial increase in SR expression on 

p16High senescent LSECs, further supporting this 

mechanism as a starting point for LSEC senescence [39]. 

Increased SR expression on early senescent cells fuels a 

further intake of toxic substances, thus creating a positive 

feedback loop to drive mitochondrial oxidative stress and 

deeper senescence. Once senescence progresses, it 

triggers heterochromatin silencing, which in turn can 

suppress the expression of numerous SRs and 

endocytosis genes to reduce endocytic LSEC activity 

both in vivo and in vitro [31, 32]. A downregulation in 

LSEC endocytic activity was previously observed in old 

rats and mice when using FSA/BSA and AGEs as 

substrates [30–32]. A “traffic jam hypothesis” was put 

forward to explain this downregulation: here, the 

decreased LSEC endocytic capacity in old animals is due, 

at least in part, to increased endothelial thickness, which 

in turn slows down the transport of internalized ligands to 

endo/lysosomal compartments [32]. Our recent results 

argue that reduced LSEC endocytic activity with older 

age could also be a consequence of transcriptional 

suppression that is common to senescent cells due to 

widespread heterochromatin silencing (Figures 1, 2) [59]. 

In fact, some SRs are indeed downregulated in older 

animals [39, 47, 51]. It would be important, however, to 

investigate the level of expression of SRs and 

endocytosis genes in very old animals (for example in 

2.5-3 year-old mice) where the mechanism of 

senescence-induced transcriptional silencing could be 

especially relevant. Ultimately, the inability of LSECs to 

clear numerous dangerous substances from the blood 

could be a significant contributing factor to various age-

related pathologies [58]. Furthermore, an accumulation of 

macromolecular waste and toxins, which is further fueled 

by increased intestinal permeability with age [60, 61], 

could create a “death cross” (Figure 2) leading to the loss 

of the animal once the level of clearance drops below the 

threshold required for survival.  

 

Based on proposed model, several approaches could be 

considered to target senescent LSECs in order to 

ameliorate some age-related diseases and potentially to 

extend lifespan. 

 

Delaying LSEC senescence 
 

A list of drugs that might efficiently block and/or delay 

senescence is still in the making. However, possible 

candidates could come from the ongoing analysis of 

compounds that reduce or reverse LSEC defenestration, 

as both events seem to be interconnected in vivo. A 

recent study indicated that by targeting the nitric oxide 

pathway and inducing actin remodeling, it is possible to 

attenuate defenestration in old mice [52]. In another 

study, activating AMPK signaling and autophagy with 

either acute fasting (which increases the diameter of 

 

 
 

Figure 2. LSEC senescence as an endogenous aging clock. Senescent LSECs loose the ability to clear numerous dangerous substances 
from blood resulting in an age-induced accumulation of macromolecular waste and toxins. This in turn is further exacerbated by increased 
intestinal permeability, which induces further increase in the level of endogenous toxins. Once the level of clearance drops below the 
threshold required for survival (“death cross”), the animal dies. 
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fenestrations) or chronic caloric restriction over a 

lifetime reversed the age-related loss of fenestrations 

[62]. In a similar manner, metformin, which acts on the 

AMPK nutrient-sensing pathway [55, 63], increased 

fenestration porosity in old mice and improved insulin 

sensitivity [53]. Finally, there have been reports that 

resveratrol, which acts on the sirtuin-mediated nutrient-

sensing pathway [64], increases fenestrations in a 

Werner Syndrome mouse, which is a model for 

premature aging [65]. While many of the above-

mentioned compounds could potentially attenuate 

LSEC senescence in vivo, to achieve their maximal 

effect, these compounds should be taken continuously 

which somewhat diminishes their overall utility. 

 

Reversing transcriptional silencing of SRs 
 

It is not fully understood how enhancer chromatin, 

epigenetic marks, transcription factor recruitment, and 

the organizational principles of transcription factor 

networks drive the senescence program. Recent studies 

showed that the senescence program is predominantly 

encoded at the enhancer level [66, 67] and that the 

enhancer landscape is dynamically reshaped at each  

step of the senescence transition [68]. A deeper 

understanding of the underlying mechanisms might help 

identify ways in which enhancer regulation could be 

manipulated to overcome potential SR and endocytosis 

gene transcriptional silencing in senescent LSECs, 

which express enhanced levels of heterochromatic marks 

such as macroH2A and Histone H9Me2 [39]. In turn, 

reversing the transcriptional suppression of several SRs 

and endocytosis genes in the later stages of LSEC 

senescence could contribute positively to lifespan. 

 

Reprogramming senescent LSECs 
 

Another approach to target and rejuvenate LSECs could 

lie in senescence reprogramming [67, 69]. This approach 

represents a broader direction that is not restricted just to 

reversing transcriptional silencing of SRs but to changes 

of entire transcriptional network to a younger non-

senescent state. Pioneer transcription factors (that 

directly bind condensed chromatin) are critical in 

establishing new cell fate competence: they grant long-

term chromatin access to non-pioneer factors and help 

determine cell identity by opening and licensing the 

enhancer landscape [68, 70, 71]. In addition, DNA 

methylation could play an important role in establishment 

of senescence as recently was shown for a DNMT1-

dependent downregulation of BRCA1/ZNF350/RBBP8 

repressor complex in the course of oncogene-induced 

senescence [72]. Thus, efforts to identify different 

factors and the signaling pathways that they control 

could be critical in understanding the feasibility of 

rejuvenating senescent LSECs as a therapeutic strategy. 

Removing and replacing senescent LSECs 
 

Removing and replacing senescent LSECs is perhaps 

the most challenging approach of all those described 

here. LSEC removal will instigate an immediate fibrotic 

response [39], which must be suppressed before any 

active replacement mechanism takes place. 

Furthermore, replacement of senescent LSECs seem to 

be challenging and could be divided into (i) stimulating 

the proliferation of remaining LSECs (perhaps via the 

hyperactivation of VEGF signaling) [73] or (ii) 

repopulating damaged sites with hepatic and 

extrahepatic LSEC progenitors [74]. The latter approach 

however requires further investigation, as the nature of 

LSEC progenitors is highly debated. 

 

Preventing an age-induced “leaky gut” 
 

Although not directly related to targeting senescent 

LSECs, finding ways to ameliorate intestinal health to 

improve health and extend the lifespan seem justified 

[61, 75]. An increasingly leaky intestine that ultimately 

increases the toxic load with age will counteract any 

benefits of blocking LSEC senescence. While the 

approaches to pharmacologically address this problem 

are still incomplete, some dietary recommendations 

could be considered. For example, there is emerging 

evidence that heavy alcohol use, stress and even the 

Western pattern diet, which is low in fiber and high in 

sugar and saturated fats, might initiate intestinal 

deterioration [75–77]. As such, balancing your diet and 

controlling your gut flora could not only improve your 

intestinal health but also positively contribute to the 

efforts of reducing the senescent LSEC load. 
 

Identifying the full repertoire of senescent cells in vivo is 

critical in understanding how their removal might affect 

a healthy lifespan. There is no doubt that eliminating 

some senescent cells is beneficial for healthy aging and 

overall lifespan [78–80]. However, there are abundant 

p16High senescent cell types in the aging organism that 

are structurally and functionally important while their 

removal could have detrimental consequences. 

Specifically, we recently showed that senescent LSECs 

are not replaced by non-senescent neighbors, but instead 

their removal activates another type of regenerative 

response — fibrosis [39]. As such, non-selective 

senescent cell removal should be considered with great 

caution as it could have a serious negative health impact 

in older organisms. This problem however could be 

partially solved by using drugs that selectively remove 

defined senescent cell types. While such selective 

elimination could be beneficial in age-related diseases, 

this approach as a life-extension strategy has its 

limitations as non-removed senescent cells will continue 

to accumulate with age, ultimately debilitating the 
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organism. We recently found that LSECs undergo a 

noticeable aging-induced senescence in mice and this 

provides significant advantages in terms of their 

targeting due to a relatively easy accessibility and high 

endocytic activity. We thus propose that delaying 

senescence, reprogramming or replacing senescent 

LSECs could represent a powerful tool to retard aging.  
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