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Abstract
Background: Protein structures have conserved features – motifs, which have a sufficient
influence on the protein function. These motifs can be found in sequence as well as in 3D space.
Understanding of these fragments is essential for 3D structure prediction, modelling and drug-
design. The Protein Data Bank (PDB) is the source of this information however present search
tools have limited 3D options to integrate protein sequence with its 3D structure.

Results: We describe here a web application for querying the PDB for ligands, binding sites, small
3D structural and sequence motifs and the underlying database. Novel algorithms for chemical
fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural
motif associations searches are incorporated. The interface provides functionality for visualization,
search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated
system where a results page is also a search form. A set of motif statistics is available for analysis.
This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence
of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and
Ramachandran plots for each residue. The binding statistics are presented in association with
properties that include a ligand fragment library. Access is also provided through the distributed
Annotation System (DAS) protocol. An additional entry point facilitates XML requests with XML
responses.

Conclusion: MSDmotif is unique by combining chemical, sequence and 3D data in a single search
engine with a range of search and visualisation options. It provides multiple views of data found in
the PDB archive for exploring protein structures.

Background
Small sequence or structure protein fragments with highly
conserved properties that may have important biological
functions and have been used in tertiary structure and sec-
ondary structure prediction processes [1,2]. Although the
application of structure motifs to a sequence where the
structure is unknown requires additional information
such as a global energy function, structure motifs in com-
bination with sequence motifs can be mapped onto struc-

tures [3,4]. In addition, sequence and structure motifs
have an application in drug design [5] when motifs map
to active-sites and ligand binding sites. We have created an
integrated resource of information about motifs and their
environment from all Protein Databank (PDB) [6] entries.
MSDmotif is organised using a number of categories to
distinguish three general types of motifs: sequence motifs,
small 3D structural motifs and super-secondary structure
motifs.
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Sequence motifs can be defined as a pattern without or
with probabilistic preferences; for the latter use of hidden
Markov models (HMM) [7] is often made. Sequence motif
identification tools such as BLAST [8], FASTA [9], CLUS-
TALW [10] are available together with new emerging
methods such as MEME [11]. In the MSDmotif database
sequence motifs from the PROSITE [12] database have
been incorporated.

Small 3D structural motifs consisting of up to 8 residues
such as the beta-turn, are common in protein structures
where they cover approximately 50% of the residues.
These motifs can play a role in determining the conforma-
tion and specificity of enzyme active sites [13] and
enzyme binding sites [14,15]. In addition they can have a
role in protein folding and protein stability [16,17]. Small
3D structure motifs are classified through properties of
hydrogen bonding, ϕ/ψ and χ angles independent of the
sequence. These motifs have been classified into 13 dis-
tinct motifs: alpha-beta-motif, asx-motif, asx-turn, beta-
bulge, beta-bulge-loop, beta-turn, catmat, gamma-turn,
nest, schellmann-loop, st-motif, st-staple, st-turn
[14,15,18-22] (see Additional file 1). We have mapped
these motifs onto all PDB entries. MSDmotif contains a
summary for each motif and provides a tool for the inter-
active analysis of their properties along with the ability for
new motif discovery.

A previous study of super-secondary structure pat-
terns[23] detailed eleven common such motifs through
partial replacement of loops with a residue conformation
identifier. These included the helix hair-pins [24] and beta
hair-pins [25]. We have extended this method with a
search method for secondary structure sequences by using
the PROSITE format with additional restrictions on loop
lengths between secondary structure moieties together
with the ability to specify hydrogen and disulphide
bonds.

MSDmotif contains integrated details about sequence,
structure, the relative position and the neighbour environ-
ment of many motif types. The data are derived from the
PDB and stored in a relational database, accessible
through an interactive service. Search criteria can combine
sequence motifs, structure motifs, protein sequence, 3D
properties (like ϕ/ψ and χ angles, Cα and side-chain posi-
tions), secondary structure elements, 3D associations
between motifs, protein side-chain and main-chain bonds
and protein-ligand interactions. We also provide multiple
sequence and multiple structure alignment tools.

Implementation
Phi-Psi ϕ/ψ search
The PDB can be queried using Phi-Psi angles (ϕ/ψ) frag-
ments where the sequences of ϕ/ψ angles are a sequential

representation of protein geometry and are directly com-
parable to coordinates. This type of search uses a sequen-
tial geometrical descriptor that results in linear
dependency of the search task complexity from the
number of elements. The challenge here is to look for sim-
ilarity rather than an exact match through selecting the
most likely allowed deviations and flexibility in length of
the search fragment. The approach used is a refinement to
our previously published method [26] for pattern
searches based on an optimised database design and a
web-application query generator to produce optimal SQL
queries. The database consists of two tables, the first is
indexed with each row representing a single amino-acid in
3D. This table has bi-tree indexes by unique residue iden-
tifier. The second contains sequential triples of amino-
acids and is bitmap indexed on ϕ/ψ columns for each of
the three residues. The query consists of multiple self joins
of these tables.

Sequence search
Sequence searching may be carried out on the complete
PDB chains or more specifically on just the loop
sequences where a loop is a non-helical, non β-strand
fragment. Complex searches combining sequence and
geometrical criteria are possible. We have used an imple-
mentation of PSI BLAST [27] integrated with the Oracle
database engine, by parsing XML output from BLAST and
streaming it into an Oracle transaction table.

Super-secondary structure patterns search
Super-secondary structure patterns with associated geo-
metrical characteristics queries are possible. The sequence
pattern can be input using the PROSITE pattern notation
where "or" can be specified as: [HE]LEL [HE], i.e. first ele-
ment can be Helix or Strand, the second element is Loop,
the third element is Strand, the fourth element is Loop
and the fifth element is Helix or Strand. This simple pat-
tern use may be combined with other constraints to build
complex search criteria. For example an overlap of a sec-
ondary structure pattern with a protein sequence fragment
can be constructed. The method is the same as we use for
protein sequence pattern search described in [26].

Small 3D motif associations search
Searching for associated 3D motifs is based on a relational
database approach. We encode the search criteria in a sep-
arate dictionary table and then create a table for storing
distances between all motifs within a protein chain. For
~50,000 PDB entries and with ~50% of the all residues
involved in a motif gives a distance table of 300 million
rows. The number of rows in the dictionary table is only
~30,000. The cardinality in this case is about 0.01%. For
fast data access by a column with a low cardinality we cre-
ate a bitmap index on this column and order the records
in the distances table in accord with the indexed values.
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The SQL query is generated through path analysis on the
graph of the motifs association where the target is to pick
a path with the lowest cost. A similarity scoring system
was introduced to order hits. A geometrical characteristic
for each motif was defined using an alternative to RMSD
[28]. We calculate (i) a vector from the first Cα to the last
Cα for each motif, and (ii) the geometrical centre of all
C,Cα,N atoms within the motif. Scoring is then calculated
as the sum of the deviation of the geometric centre dis-
tances: abs(1-distance/original distance), and the cosine
of the angle between each motif vector. The score is nor-
malised to the total number of paired motifs. This scoring
system counts only common features and has a good pro-
jection in 3D regardless of motif length, and is readily
specified in SQL.

3D motifs regardless sequence
This search is based on Cα coordinates or end of side-
chain coordinates. The end of side chain calculation is
based on a 2D graph of an amino-acid to find the most
remote atoms of the side-chain from the Cα, then the 3D
coordinates of these atoms are averaged. The search is lim-
ited to a radius of 16 Angstrom. Scoring is calculated from
the deviation of the base coordinates, and a residue direc-
tion vector going from Cα to the end of side-chain.

Interactions
The PDB contains about 8000 unique small molecules
[29], and we use this information to derive ligand, water,
nucleic-acid and protein interactions based on the previ-
ously reported algorithm [26]. For better performance
protein-protein interactions are separated into several
database tables on the basis of main-chain/side-chain
interactions, interactions within a chain and interactions
between chains. We distinguish the following bond types:

• Covalent bonds (include disulphide bonds)

• Ionic bonds

• Hydrogen bonds (include salt bridges)

• van-der-Waals bonds

• Plane-plane (π electron) interactions

• Plane-atom interactions

• Unidentified interactions within 4.25 Angstroms.

Plane-plane interactions occur between chemical planar
structures and between rings, similarly plane-atom inter-
actions involve the above groups and an atom. In plane-
plane interactions the preference is given to those where
the planes or rings are parallel whether the second inter-

action with an atom is stronger when the atom
approaches the plane orthogonally.

Query generator
Creation of an optimal query is a crucial task for a com-
plex system like MSDmotif where many different sub-que-
ries can be combined into a search. The cost of each sub-
query can be relatively high, for instance, protein
sequence scanning using the N-glycosylation pattern –
n{p} [st]{p}, has a high cost and gives many hits. Use of
a standard SQL query would take an unacceptable time.
Efficient queries require incorporation of Oracle instruc-
tions covering the execution plan and query assignment to
the best index table. Such a complex query cannot rely on
the Oracle cost optimiser and the database engine needs
to be guided by Oracle optimiser hints. A popular solu-
tion for this problem is parameterisation of the query and
tuning it manually to reach an acceptable performance.
Assignment of optimiser hints is difficult. Design of an
efficient general query system is challenging when com-
bining chemical search, 3D motifs and sequences into a
single query where the approach with pre-tuned queries
leads to an exponential number of these queries. To
achieve fast queries we developed a JAVA package that
generates SQL with the necessary structure and optimiser
hints leading to an optimal execution plan for the Oracle
RDBMS. The approach wraps each search element into a
sub-query, then the query generator applies a set of rules
and uses preloaded statistics about the cost of a sub-query.
First of all it selects a leading sub-query on the basis of the
minimal number of expected rows. Then it decides which
sub-queries must be executed independently. These sec-
ond sub-queries will be combined using Cartesian or hash
join where the latter is preferable. The rest of the sub-que-
ries are assigned as dependant and they will be merged
into the query using index access inside nested loops. A
path analysis is carried out on the query graph making use
of pre-determined table weighting and index weighting.

Database and retrieval system
The database is derived from the PDB archive as a compo-
nent of the Macromolecular Structure Database (MSD)
[30] and is updated weekly with new entries. The design
aim was to have a table structure optimised to serve que-
ries. Therefore all features of motif definitions were
reflected in the database scheme. For fast access motif
tables are preloaded. The database was designed to cope
with multiple table self-joins by the use of table normali-
sation and of duplicate tables storing both the data and
the index. Textual information is stored in separate dic-
tionary tables which are used for the on the fly hits anno-
tation. The core PDB data is organised into four trees:
proteins, nucleic-acids, bound-molecules and solvents.
These trees span from chain to atomic levels, they are cross
referenced by interaction tables on each level.
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In the retrieval system operations such as sorting and
grouping on the Oracle server can alter the execution plan
and make it ineffective. To overcome such a challenge the
client web-application orders, groups and normalises the
hits, it uses numeric codes for retrieval and decodes these
through cached dictionaries. The normalisation can be
carried out on the basis of either CATH [31] or SCOP [32]
or PFAM [33] families or by EC number [34], or by
sequence identity. The importance of the normalisation
flows from vast groups of closely related coordinate
entries like NMR models, x-ray experiments with lisoz-
imes, hemoglobinds and myoglobinds.

The hit list has a number of options to download sets of
PDB structures and those fragments while individual
structures can be downloaded from the corresponding
links. Detail pages represent a number of views on the par-
ticular PDB entry with respect of the protein sequences,
motifs, ligands and interactions. They provide facilities to
download the structure in XML and PDB formats.

Sequence alignment
The hit-list provides pseudo multiple sequence alignment.
The sequences in the hit-list are aligned to the target
sequence using PSI-BLAST pair-wise alignment. A variety
of output formats for further visualisation of sequences
alignment are given. Provisions for multiple visualization
in Jalview [35] and Blixem [36] are available. Sequences
may be aligned by either presenting the complete
sequence aligned by the hit fragments, or by presenting
alignment with the searched fragment only.

Another feature is sequence alignment based on a search
pattern target. Patterns can be flexible, e.g. the Cytidine
and deoxycytidylate deaminases zinc-binding region sig-
nature, [CH]-[AGV]-E-x(2)-[LIVMFGAT]-[LIVM]-
x(17,33)-P-C-x(2,8)-C-x(3)-[LIVM], has two flexible
regions x(17,33) and x(2,8). We align matched fragments
leaving gaps corresponding to these flexible regions. An
example of alignment for this pattern is given in the
Figure 1.

3D alignment
3D alignment is carried out by aligning the search ele-
ments. When the search includes an amino acid sequence
then it is made of the BLAST alignment while when a
motif is used then a residue correspondence is explicit in
the hit list and an iterative alignment matrix is calculated
until a minimal RMSD is reached.

DAS server
The MSDmotif service includes DAS component that
allows the facilities to be used by clients other than an
internet browser. DAS, the Distributed Annotation Sys-

tem, is a simple client-server network protocol for
exchange biological data [48,49,51].

Through the DAS registration server http://www.dasregis
try.org MSDmotif provides DAS access to small 3D struc-
ture motifs. We have previously mapped the PDB protein
chains to the corresponding UniProt [37] entries and
MSDmotif uses these mapping to provide a dual access
DAS server. In DAS terms the MSDmotif DAS server sup-
ports two coordinate systems: PDB structure and UniProt
sequence, such that our data can be presented in the DAS
clients DASTY [50], ENSEMBL [38] and SPICE [39].

Results and discussion
We discuss how to apply MSDmotif tools for sequence
and 3D structural motifs determination through an exam-
ple. Consider the Calcium-binding loop found in PDB
entry 1gci [42], a member of the Subtilases SCOP family.
It is shown in the Figure 2. Calcium binding has been the
subject of a number of studies [40,41]. MSDmotif pro-
vides an extensive analysis of a binding site and its envi-
ronment, together with annotation of protein ligand
interactions, PROSITE patterns, MEROPS [43] sites, Cata-
lytic sites [44], and motifs as shown in Figure 3 for PDB
entry 1gci. An example of using MSDmotif is to take the
1gci calcium binding residues, LNNSIGVL, and represent
this simply as the non-specific eight residues "xxxxxxxx",
but keep the condition that the residues 1,3,5,7 bind the
ion. A query can be built using the sequence, the small
molecule and the interaction interfaces from the search
tab as shown on the Figure 4. Submitting this query gives
aligned sequence fragments in CLUSTALW format. The
alignment can be viewed with Jalview and clustered using
the average distance determined by the BLOSUM62
matrix. As shows the Figure 5 there is a division of the
clusters into major groups with one starting with
hydrophilic amino-acids (D-Aspatic or N-Asparagine)

Patterns multiple alignmentFigure 1
Patterns multiple alignment. Extract of a results page 
using the Cytidine and deoxycytidylate deaminases zinc-bind-
ing region signature, showing a pattern multiple alignment. 
The residue colour corresponds to a protein-ligand interac-
tion.
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and the others starting with hydrophobic amino-acids (A-
Alanine, L-Leucine, I-Isoleucine and V-Valine).

Iterating the "xxxxxxxx" pattern with [DN]xxxxxxx or with
[AILV]xxxxxxx results in the following patterns:

•  [DN]{GYW}[DQNTS]G[DQNTS]G{GPW}[ACGHILV]

• [AILV][DILNQS][DGNPV][ACDGST][DEGITV][GARW] 
[EDFSV] [EILNVW]

The starting sequence contained an Asx-turn and although
the subsequent search did not use this information the
derived patterns contain either an Asx-turn or its twin the
ST-turn. The first pattern: [DN]{GYW}[DQNTS]G
[DQNTS]G{GPW}[ACGHILV] has an Asx-turn at posi-
tions 1, 3 and 5. This pattern is similar to PROSITE
PS00018 [47] pattern for the EF-hand calcium-binding
domain. The second pattern: [AILV][DIL-
NQS][DGNPV][ACDGST][DEGITV][GARW][EDFSV][EIL
NVW] has an ST-turn at positions 2,3 and 5. Both patterns
can be analysed for ligand binding preferences as shown
in Figure 6.

The derived patterns show a high sensitivity and specifi-
city to bind Calcium and other ions and can be further
queried as regards their 3D conformations. The Calcium
binding loop in PDB 1gci is associated with Asx-turn, res-
idues 77–79. The motif is shown in the Figure 7 and is
highlighted in a sample structure in the Figure 3. It is pos-
sible to start searching with the Asx-turn. This is a com-

mon motif found in about 2200 (70%) SCOP families.
The definition and statistics for asx-turn motifs found in
the PDB archive can be viewed by selecting the corre-
sponding link on the PDB entry sequence detail page in
Figure 3. The statistics include ligand binding sensitivity
to chemical fragments as presented in the Figure 8. It
shows the Calcium ion as a frequently observed ligand
interacting with residues 1 and 3. The asx-turn motif
appears to have a high binding sensitivity to Calcium ions
with the interaction occurring mostly between residue 1
and 3. The interaction chart shown in Figure 8 can be used
as a query interface to give a new hit-list. The subsequent
matches can be aligned in 3D as shown in Figure 9 giving
the distribution of Calcium ions about the motif.

Further queries made by correlating SCOP family data,
Asx-turn presence and Calcium ions, show that 40% of
the SCOP families, have this motif interacting with the
ion. Interestingly extending the query by removing con-
straints that the first residue must be Aspatate acid or
Asparagine acid and applying instead restrictions on the
ϕ/ψ angles for all three residues using the ϕ/ψ search
option. This approach takes the starting ϕ/ψ values from
the resulting web page (Figure 3) for residues 77 and 79
with the constraints that the angles deviate by ± 60 degrees
and we limit matches to be from different SCOP families
only. This gives ~2350 (76%) SCOP families and shows a
good 3D alignment [see Figure 10]. The figure shows
main-chain only of top 20 hits by PDB resolution. Here
THR is the most common first residue suggesting a simi-
larity between the ST-turn and the Asx-turn. However
there is no overall sequence commonality and the first res-
idue is variable indicating that the sequence specific ST-
turn and Asx-turn's have a common 3D conformation that
is non-specific for sequence.

Summary of the MSDmotif features
Search elements
• Small molecules – draw a chemical fragment using JME
or use a molecules code

• Sequence patterns – submit a PROSITE format pattern

• Sequences – submit a protein sequence to NCBI PSI-
BLAST integrated search

• ϕ/ψ sequences – submit a sequence of dihedral angles
with a given tolerance

• PROSITE motifs – submit a motif by PROSITE code

• MEROPS sequences – submit a preloaded MEROPS
sequence by its code

1gci PDB entryFigure 2
1gci PDB entry. 1gci PDB entry, a member of Subtilases 
SCOP family with the Calcium binding loop in the red circle. 
The picture was taken from EBI-AstexViewer TM+ [45,46].
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• Catalytic sites – submit a preloaded Catalytic site by its
code

• Small 3D structural motifs – choice from the gallery of
3D structural motifs

• Super-secondary structures – submit a sequence or a pat-
tern made of secondary structure elements.

• Small 3D motif associations – submit a group of motifs
where relative position in 3D is fixed.

• 3D motifs by Cα or end of side-chain coordinates –
sequence unrelated 3D search by atom coordinates.

Constraints on search elements
• Interactions between ligands, proteins, nucleic-acids
and solvents.

• Relative position of motifs in a protein sequence

Statistics search
• Molecule binding statistics where the distribution is
done over:

m PROSITE motifs

m Small 3D structural motifs

m Secondary structure elements

m Protein amino-acids, Nucleic-acids and water mole-
cules. This statistics are available on residue and on
atomic levels

m Sets of environment amino-acids

• Sequence pattern, PROSITE, 3D structural motifs, sec-
ondary structure elements binding statistics with respect

m Ligands

m Modified amino-acids

MSDmotif PDB detail pageFigure 3
MSDmotif PDB detail page. shows part of the MSDmotif PDB entry page for 1gci giving the sequence annotation with the 
Calcium binding loop highlighted in red as residues 75–82 (LNNSIGVL) of chain A. The Calcium ion binds residues 75,77,79,81 
which contain an Asx-turn (residues 77–79). Vertical bars (|) represent the start and end of a particular motif while the aster-
isk's (*) represent the extent of the motif and underline the sequence. http://www.ebi.ac.uk/msd-srv/msdmotif/sequence?acces-
sionCode=1gci.
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m Nucleic-acids

m PROSITE motifs

m Small 3D structural motifs

m Secondary structure elements like helix, strand, loop

• Small 3D motif Ramachadran plots for each residue

• Small 3D motif sequence distributions

• Small 3D motifs parameter distributions and correla-
tions

Supported desktop visualisation tools
• 3d structure visualisation – RasMol, Jmol, EBI-Astex
viewer

• Multiple sequence alignment – JalView, Blixem

• Chemical fragments – Java Molecule Editor (JME)

Conclusion
The service brings together many aspects of protein struc-
tures. It can be used by crystallographers to search whether
interesting fragments of those structures have been crystal-
lized and what were the experiment details. Scientists can
use it to understand interconnection between protein 3D
structure and the sequence. Multiple views on the data
help to navigate in multi-dimensional space made of
chemical 2D structures, protein sequences, tertiary and
quaternary structures. Structural biology PHD students
can complete thesis in shorter terms with a higher quality
and scientific content.

Availability and requirements
Project name: MSDmotif

Clustering sequences from the search resultFigure 5
Clustering sequences from the search result. Jalview 
presentation of the search results. To the right there is a 
fragment of 8 residues long sequences and to the left there is 
the clusters hierarchical tree. The red line trims the tree into 
two brunches where the top one consists of sequences start-
ing with A, I, L, V and the largest one of sequences starting 
with D,N.

Search interfaceFigure 4
Search interface. Search interface with calcium binding site search criteria where the ligand is Calcium, the sequence pattern 
is xxxxxxxx and residues 1,3,5,7 of the pattern coordinate the ion. In the right column, the highlighted interfaces were used to 
form the query.
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Project home page: http://www.ebi.ac.uk/msd-srv/msd
motif

Operating systems: Platform independent

Programming languages: C++, Java, JSP, SQL, PL/SQL

Other requirements: Internet Browser IE 6.x or Mozilla
4.0, for in house installation:Tomcat 5.x, Oracle 9.x

License: GNU GPL

Database documentation: http://www.ebi.ac.uk/msd-srv/
docs/searchdb

Case studies: http://www.ebi.ac.uk/msd-srv/msdmotif/
help/help?topic=eg

Authors' contributions
AG developed the service with the underlying database as
well as wrote the draft of the manuscript.

KH contributed many ideas to the service and take major
role in editing and rewriting the manuscript.
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Asx-turnFigure 7
Asx-turn. 3D structural motif: Asx-turn. Residue(i) is 
Aspartate or Asparagine and the side-chain O of residue(i) is 
H-bonded to the main-chain NH of residue (i+2). There are 
restrictions on the φ,ϕ,χ angles. The definition and statistics 
can be found at: http://www.ebi.ac.uk/msd-srv/msdmotif/asx-
turn.

Ligand binding sensitivity of the new patternsFigure 6
Ligand binding sensitivity of the new patterns. Ligands 
are referred by those three letters code. The charts are 
obtained by the use of "Motif binding statistics" interface. The 
colour of the bars corresponds to the bond types where red 
used for covalent bonds, pink for ionic bonds, blue for hydro-
gen bonds and green for van-dre-Waals bonds. The patterns 
become more selective when the interactions are restricted 
to main-chain only. http://www.ebi.ac.uk/msd-srv/msdmotif/
barchartpat-
tern?pattern1=[DN]{GYW}[DQNTS]G[DQNTS]G{GPW}[
ACGHILV]. http://www.ebi.ac.uk/msd-srv/msdmotif/bar-
chartpattern?pattern1=[AILV][DIL-
NQS][DGNPV][ACDGST][DEGITV][GARW][EDFSV][EILN
VW].
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