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Abstract

Background: We aimed to assess perioperative changes in fibrinogen in the cerebrospinal fluid (CSF), their association

with markers of bloodebrain barrier breakdown and neuroinflammation, and their association with postoperative

delirium severity.

Methods: We conducted a secondary analysis of the Interventions for Postoperative Delirium-Biomarker 2 (IPOD-B2,

NCT02926417) study, a prospective observational cohort study. We included 24 patients aged >21 yr undergoing aortic

aneurysm repair. CSF samples were obtained before (n¼24) and after surgery (n¼13), with some participants having

multiple postoperative samples. Our primary outcome was the perioperative change in CSF fibrinogen. Delirium was

assessed using the Delirium Rating Scale-Revised-98.

Results: CSF fibrinogen increased after surgery (P<0.001), and this was associated with an increase in CSF/plasma al-

bumin ratio (b¼1.09, 95% CI 0.47e1.71, P¼0.004). The peak change in CSF fibrinogen was associated with the change in

CSF interleukin (IL)-10 and IL-12p70. The peak change in CSF fibrinogen was associated with the change in CSF total tau
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(b¼0.47, 95% CI 0.24e0.71, P¼0.002); however, we did not observe an association with postoperative delirium severity

(incidence rate ratio ¼ 1.20, 95% CI 0.66e2.17, P¼0.540).

Conclusions: Our preliminary findings support the hypothesis that fibrinogen enters the brain via blood-brain barrier

disruption, promoting neuroinflammation and neuronal injury. However, we did not observe an association between

cerebrospinal fluid fibrinogen and peak delirium severity in this limited cohort.

Keywords: anaesthesia; cerebrospinal fluid; delirium; fibrinogen; neurocognitive disorders; surgery
Postoperative delirium is a common neurological complica-

tion in patients undergoing major surgery.1 It has been

associated with longer hospital stays, greater mortality, and

higher costs incurred by the health system.2 However, no

pharmacological treatment has definitively shown benefit in

the prevention of postoperative delirium. A key reason for

this is the lack of proven therapeutic targets, which is

underpinned by the absence of a proper understanding of the

pathophysiology.3,4

Recent studies have suggested that neuroinflammation,

secondary to peripheral inflammation induced by a surgical

stimulus, plays a pivotal role in postoperative delirium.4e7

Inflammatory cytokines may promote delirium directly, or

indirectly through facilitating access of deliriogenic agents

into the brain via a breakdown of the bloodebrain barrier

(BBB). One candidate for such an agent is fibrinogen.

Fibrinogen is a blood coagulation factor produced in the

liver and is the protein substrate for the final step of the

coagulation cascade, where it is cleaved by thrombin to fibrin.

Fibrinogen from the blood passes across the disrupted BBB,

where it is deposited in the brain.8 Pathological deposition of

fibrinogen has been noted in patients with Alzheimer’s dis-

ease,9 multiple sclerosis,10 traumatic brain injury,11 and

COVID-19.12 Fibrinogen has also been detected in the cere-

brospinal fluid (CSF) and correlates with biomarkers of BBB

dysfunction and damage.13 Fibrinogen concentrations in the

CSF also correlate with multiple sclerosis and Alzheimer’s

disease progression.14e17

Breakdown of the BBB is associated with delirium inci-

dence,18,19 and our group has previously shown a

doseeresponse relationship between BBB breakdown and

delirium severity.20 BBB permeability was also associated with

CSF concentrations of the inflammatory cytokine interleukin

(IL)-6, linkingneuroinflammationwithdelirium.Accompanying

correspondence by Terrando and Akassoglou highlighted the

need for further explorationof apotential role forfibrinogenasa

pathophysiological link between neuroinflammation, BBB

breakdown, and delirium.21

Herein, we assess evidence for a correlation between CSF

fibrinogen and postoperative delirium severity, and relation-

ships with BBB integrity and neuroinflammation. Our pri-

mary aim was to determine whether perioperative increases

in CSF fibrinogen are associated with disruption of the BBB

(as measured by the CSF:plasma albumin ratio (CPAR),

sometimes referred to as Q-Alb). Secondary aims included

determining whether perioperative increases in CSF fibrin-

ogen are correlated with increases in inflammatory cytokines

or biomarkers of neuronal damage and synaptic dysfunction,

and whether there is a doseerelationship with delirium

severity.
Methods

Interventions for Postoperative Delirium Biomarker-2
cohort

The Interventions for Postoperative Delirium Biomarker-2

(IPOD-B2, NCT02926417) study was a prospective observa-

tional cohort study conducted in the USA, which enrolled

participants aged >21 yr without dementia undergoing elec-

tive open thoracoabdominal aortic aneurysm repair or

thoracic endovascular aortic aneurysm repair under general

anaesthesia and requiring the insertion of a spinal drain that

was predicted to stay in for �2 postoperative days. This study

received ethics approval from the University of

WisconsineMadison Institutional Review board (2015-0960).

The details of this cohort have been published elsewhere.22,23

We used the Strengthening the Reporting of Observational

Studies in Epidemiology (STROBE) guidelines to report the

findings.24
Outcomes

Here, we report secondary outcomes of the IPOD-B2 study: the

perioperative change in CSF fibrinogen and the association of

CSF fibrinogen with biomarkers of BBB breakdown (measured

by the CPAR), neuroinflammation (CSF cytokines), neuronal

injury (neurofilament light [NfL], total tau, phospho-tau

[ptau]), and amyloid pathology (amyloid beta ratio [AbR;
Ab42:Ab40]). We also analysed the association of CSF fibrin-

ogen and cytokineswith delirium severity.We have previously

shown a relationship between some CSF biomarkers of

neuronal injury (NfL, tau) and delirium severity in this

cohort.25
Cerebral spinal fluid analysis

The preoperative (baseline) CSF samples were collected when

the spinal drain was inserted before surgery for vascular sur-

gery as previously reported.25 The timing of postoperative

sample collection varied by when the drain was being used

clinically for CSF pressure relief. In some enrolled participants

a drain was not placed, and not all participants who had a

drain placed before surgery ultimately required postoperative

CSF to be drained. Some participants who required repeated

CSF access also had multiple CSF samples taken for research.

Plasma samples were taken at the same time as CSF samples.

The ‘peak’ (maximal) postoperative result for CSF samples

refers to the highest measured postoperative concentration.

Samples were centrifuged at 3000 rpm for 10 min and then

stored at e80�C. CSF fibrinogen and cytokines were assayed

via enzyme-linked immunoassay according to manufacturer’s
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standard protocol (Abcam (Cambridge, UK) ab108841; 1:200

dilution). CSF and plasma albumin were measured with

immunoturbidimetry using a cobas instrument (Roche Di-

agnostics, Penzberg, Germany). Samples were also sent to the

University of Gothenburg for amyloid beta, NfL, and tau

analysis using an ultrasensitive single-molecule analysis

(Simoa) machine (Quanterix, Billerica, MA, USA).
Delirium assessment

Delirium severity was measured using the Delirium Severity

Score-Revised-98 (DRS). Delirium (yes/no) was diagnosed us-

ing the 3-min Diagnostic Confusion Assessment Method (3D-

CAM). If the patient was intubated at the time of assessment,

the CAM for the ICU was used.26,27 Participants were assessed

for delirium twice a day while they were inpatient in the

hospital by physicians, nurses, and research coordinators

trained specifically to administer these assessments. Training

involved learning the standard operating procedures for each

assessment, observation, practice sessions, and supervised

assessments with comparison of scores between the trainee

and an expert. In addition, assessments were reviewed on a

weekly basis with one of the study physicians to ensure

consistent scoring over time.
Sample size justification

The IPOD-B2 study was powered to observe differences in

frontoparietal feedback effective connectivity using resting

state electroencephalogram recordings. Based on a hypothe-

sized 20% difference in change from baseline in feedback

connectivity between groups, a standard deviation of 20%

observed in previous work with propofol,28 and our local 33%

incidence of delirium, we required 38 subjects (13 delirious

and 25 controls) to achieve 80% power with type I error rate

alpha of 5% based on a two-sample t-test. However, the study

was stopped prematurely owing to the principal investigator

(RDS) leaving the University of Wisconsin and the project be-

ing superseded by the Interventions for Postoperative

Delirium-Biomarker 3 (IPOD-B3) cohort that used evoked re-

sponses to understand feedback connectivity.29 As the ana-

lyses presented here are secondary outcomes of the IPOD-B2

study, an a priori power analysis was not used to determine

sample size. Given the small sample size, we are limited to

observing large effects in the data. For example, if we consider

only paired samples from 13 participants, three predictors,

80% power, and alpha of 0.05 in a fixed effects model, we

would only observe effects with a Cohen’s f2 >0.76. Of note, we

previously have observed large-size effects on BBB disruption

using this dataset.20
Statistical analysis

Visual inspection of raw CSF biomarker histograms demon-

strated strong positive skew, so we log10-transformed all bio-

markers before analysis. Change scores were calculated as the

log10 postoperative valueminus the log10 baseline value. For all

fixed effect analyses, the change value refers to the peak

postoperative (maximal) change from baseline. As our anal-

ysis was exploratory, we excluded outliers for all models. We

defined outliers as data points with a Cook’s distance greater

than four times the mean Cook’s distance. Wilcoxon signed

rank tests were used to compare biomarker concentrations in
two groups if the data were paired. A P-value of 0.05 threshold

for statistical significance was used in all analyses.

We used linear regression with the ordinary least squares

estimator in cases where the dependent variable was a

biomarker concentration. The use of change scores as the

dependent variable is known to be susceptible to regression to

the mean, hence we used multivariable models to predict the

postoperative change values. These models use the post-

operative value as the dependent (outcome) variable, and

control for the corresponding baseline biomarker value. Our

coefficient estimates correspond to the change in the

biomarker concentration when the regressor increases by 1

unit, holding other regressors at their reference value. We

used likelihood ratio tests to compare the more complex

models with the simpler models.

Delirium severity was treated as a count variable. We

aimed to use the simplest distribution to model the DRS score

(the Poisson distribution), so long as the assumptions were

met. We tested model assumptions and model fit using scaled

stimulated residuals.30 If the scaled residuals suggested over-

dispersion, we used a negative binomial model. The incidence

rate ratio (IRR) was used as the effect estimate from these

models.

We conducted both fixed effects andmixed effects analyses

for our multivariable models examining fibrinogen and

delirium severity. Fixed effect models used the peak DRS value

for each patient as the dependent variable and the peak

(maximal) change in the fibrinogen as the independent vari-

able (plus age as a covariable). Mixed effect models used all

available data for patients (peak postoperative or otherwise),

with a random intercept for each patient.

We plotted conditional predictions for multivariable

models, which we defined as the predicted values for the

model conditional on the values of a specified regressor, while

holding unspecified regressors at their mean values. All ana-

lyses were conducted in R, via RStudio (Version 2023.06.1; R

Foundation for Statistical Computing, Vienna, Austria). The

‘DHARMa’ package was used to simulate standardised re-

siduals to assess the fit of count models.31 The ‘margin-

aleffects’ package was used to plot conditional predictions.32
Results

Patient characteristics

In total, 32 participants undergoing thoracoabdominal aneu-

rysm repair with anticipated spinal drain placement were

enrolled in the IPOD-B2 study. Of these, a spinal drain was

ultimately placed in 26 participants, of which 24 had post-

operative delirium assessments. Of these, 16/24 underwent

open repair and 8/24 participants underwent endovascular

repair. A total of 13 participants had both baseline and post-

operative CSF fibrinogen data (their spinal drain was also

accessed for a clinical indication after surgery), and delirium

assessments (Supplementary Fig. S1). Of these, 10/13 under-

went open and 3/13 underwent endovascular repairs. The

characteristics of the cohort are shown in Supplementary

Table S1. The incidence of postoperative delirium was 16/24

in those with preoperative CSF data (15/16 underwent open

repair and 1/16 underwent endovascular repair), and 10/13 in

those with preoperative and postoperative CSF data (all 10

underwent open repair). Participants with postoperative

delirium generally had greater surgical risk and experienced

greater intraoperative blood loss. The timeline of
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postoperative DRS scores in delirious and non-delirious par-

ticipants is shown in Supplementary Fig. S2.
Perioperative change in CSF fibrinogen and
bloodebrain barrier permeability

We analysed the change in CSF fibrinogen for each participant.

For the 8/13 total participants with only one postoperative CSF

sample, this represents the only available postoperative

sample. We observed an increase in CSF fibrinogen after sur-

gery (n¼12; median 601.2 vs 3445.8 ng ml�1, Wilcoxon signed

rank test, V¼91, P<0.001; Fig. 1a).
We observed a positive association between the change in

CSF fibrinogen and CPAR after adjusting for age and baseline

CPAR (n¼12; b¼1.09, 95% confidence interval [CI] 0.47e1.71,

P¼0.004; Supplementary Table S2). Conditional predictions are

shown in Fig. 1b and c shows the coefficient estimates. The

postoperative time course of CSF fibrinogen and CPAR is

shown in Supplementary Fig. S3.
Association of change in CSF fibrinogen with CSF
cytokines

We analysed the association between the change in CSF

fibrinogen and the change in CSF IL-1Ra, IL-1b, IL-6, IL-8, IL-10,
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and IL-12p70 to test the link between fibrinogen leakage and

neuroinflammation. Adjusting for age, we observed an asso-

ciation between the change in fibrinogen and the change in IL-

10 (b¼1.46, 95% CI: 0.25e2.68, P¼0.023) and IL-12p70 (b¼0.76,

95% CI 0.38e1.13, P¼0.002; Fig. 2, Supplementary Table S3). We

did not observe evidence of an association between the change

in IL-1Ra, IL-1b, IL-6, or IL-8 and the change in fibrinogen, in

unadjusted or adjusted analyses (Fig. 2, Supplementary

Table S3).
Association of change in CSF cytokines with delirium
severity

We did not observe evidence of overdispersion in any models

assessing the relationship between the change in CSF cyto-

kines and delirium severity (Supplementary Table S4), hence a

Poisson-family linear model was used in all cases. In models

adjusted for age, we observed evidence of an association of

peak delirium severity and change in CSF IL-1Ra (n¼12;

IRR¼1.98, 95% CI 1.20e3.27, P¼0.007), IL-1b (n¼12; IRR¼1.41,

95% CI 1.04e1.93, P¼0.031), IL-6 (n¼12; IRR¼1.53, 95% CI

1.07e2.20, P¼0.020), and IL-10 (n¼12; IRR¼1.35, 95% CI

1.04e1.74, P¼0.022) (Supplementary Table S5). We observed

little to no evidence of an association between change in CSF

IL-8 or IL-12p70 and peak delirium severity. Conditional pre-

dictions from the adjusted models and plots of the coefficient

estimates from all models are shown in Fig. 3.
Association of the change in CSF fibrinogen with
neuronal biomarkers and delirium severity

Our data showed a positive association between the change in

CSF fibrinogen and change in the neuronal injury and synaptic

dysfunction biomarker CSF total tau (b¼0.47, 95% CI 0.24e0.71,

P¼0.002), after controlling for age and baseline total tau (Fig. 4,

Supplementary Table S6). We did not observe an association

with the change in AbR after adjusting for age and baseline

AbR. Similarly, we did not observe an association between the
change in fibrinogen and the change in the neuronal injury

marker NfL or in ptau (Fig. 4, Supplementary Table S6).

We analysed the relationship between fibrinogen and

delirium severity in a fixed effect model (using the change in

fibrinogen and DRS value for each patient) and in a mixed ef-

fect model (using all available values for change in fibrinogen

and DRS, and including a random intercept for each patient).

In both models, there was no evidence of overdispersion

(Supplementary Fig. S4), and the negative binomial model did

not provide a better fit for the data (Supplementary Table S7);

hence, the Poisson-family model was used.

In both the fixed effect andmixed effect models, we did not

observe evidence of an association between change in CSF

fibrinogen and peak delirium severity in the unadjusted

analysis or after adjusting for age (Table 1).
Association of baseline biomarkers with delirium
severity

We analysed the relationship between baseline CSF bio-

markers and peak postoperative delirium severity. Analysis of

scaled residuals suggested overdispersion in our Poisson-

family model and a negative binomial model provided a bet-

ter fit to the data (Supplementary Tables S8 and S9). We

observed evidence of an association between baseline CSF

fibrinogen and delirium severity after adjusting for age

(IRR¼1.67, 95% CI 1.05e2.69, P¼0.034; Fig. 5, Supplementary

Table S10). We observed a negative association between

baseline CSF IL-10 and peak delirium severity, after adjusting

for age (IRR¼0.65, 95% CI 0.42e1.00, P¼0.041). We did not

observe evidence of an association between baseline CSF

concentrations of any other cytokine and peak delirium

severity (Fig. 5, Supplementary Table S10).
Discussion

Our results suggest that CSF concentrations of fibrinogen

increase in the perioperative period and correlate with

mailto:Image of Fig 2|eps
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markers of BBB disruption, inflammation and neuronal

dysfunction. We demonstrated associations between the

increase in fibrinogen and increases in CSF inflammatory

cytokines IL-10 and IL-12p70, and with increases in the

neuronal injury biomarker CSF total tau. However, in our

small cohort that might be underpowered for many of our

outcomes, we did not observe an association between the

increase in CSF fibrinogen and delirium severity. Although

the size of our cohort limits the strength our findings, our

findings are consistent with a model where fibrinogen enters

the CSF and promotes neuroinflammation and neuronal

injury.

Our evidence that CSF fibrinogen correlates with CPAR is

consistent with studies showing a correlation of CSF fibrin-

ogen with platelet-derived growth factor receptor b
(PDGFRb),33 a marker of BBB dysfunction. Once inside the

brain, the strong correlation between increases in CSF

fibrinogen and CSF total tau suggests a possible role for

fibrinogen in synaptic damage in postoperative delirium.

Mouse models of Alzheimer’s disease have shown that

fibrinogen polarises microglia to a neurodegenerative and

oxidative stress phenotype,34 resulting in loss of dendritic

spines.35 Human studies have shown that plasma fibrinogen

is correlated with CSF total tau in patients with Alzheimer’s

disease but not in healthy controls,15 and that increased

plasma fibrinogen is independently associated with higher

incident dementia risk.14

We have previously shown a correlation of CSF and plasma

total tau and NfL with peak (maximal) delirium severity,7,25,36

suggesting a link between neuronal injury, synaptic alter-

ations, and delirium. In the patient cohort analysed in this

study, we identified correlations of fibrinogen with total tau,

but not with NfL. It is possible that fibrinogen has an effect at

the neuronal synapse that is independent of neuronal injury

relating to postoperative delirium. Furthermore, a relationship

between fibrinogen and other neuronal injury markers and

delirium severity may exist, but the effect size is too small to

be detected in our small cohort. Indeed, synaptic damage may

correlate with delirium, but it may be a relatively small effect

compared with inflammation, such as driven by IL-637 (as

suggested by our data herein).
The lack of an observed association between the change in

CSF fibrinogen and delirium severity may reflect our small

sample size. It may also be explained by the observed asso-

ciations with CSF cytokines; fibrinogen was associated with

increases in IL-10 and IL-12p70, of which only IL-10 was

associated with peak delirium severity. Intriguingly, IL-10 and

IL-12/23p40 are jointly associated as predictors of b-amyloid

load in patients with Alzheimer’s disease and IL-10 sup-

presses microglia phagocytosis and worsens cognitive

behaviour in Alzheimer’s disease mice.38e40 As IL-10 is an

anti-inflammatory cytokine limiting microglial functions with

detrimental effects in Alzheimer’s disease pathology, this

may reflect a broad-based immune upregulation related to

innate immune-mediated neurodegeneration. Meanwhile,

increases in fibrinogen were not associated with increases in

CSF IL-1Ra, IL-1b, or IL-6, all of which were individually

associated with delirium. These proinflammatory cytokines

have been implicated in neuronal dysfunction and

apoptosis.3 Although our data point away from an association

of fibrinogen with IL-1b and IL-6, neuroimmune processes are

highly dynamic and the signals responsible for damaging the

BBB likely precede subsequent CSF changes in proin-

flammatory cytokines, thus future efforts should address

causality in the perioperative context.

There is a paucity of CSF literature with which to compare

our cytokine results as few studies have looked at changes in

CSF cytokines over time. Though a consistent finding is

elevated innate immune cytokines in the CSF in delirious

compared with non-delirious patients in cross-sectional

studies.41 Analysis of plasma is more widely reported. Casey

and colleagues7 observed strong evidence of an association

between postoperative day 1 increases in plasma IL-8 and

delirium severity, but other cytokines (IL-1Ra, IL-1b, IL-6, or
IL-10) did not achieve statistical significance with rigorous

multiple comparison testing. Conversely, another study42

showed an association of plasma IL-6 with delirium (a

finding also consistent across smaller studies43); however,

they did not observe an effect for other cytokines (IL-1Ra was

not tested).44

The discordance between our CSF results and those from

plasma studies, especially for IL-1Ra, and IL-1b, has many

mailto:Image of Fig 4|eps


Table 1 Association of postoperative change in CSF fibrinogen with peak delirium severity, in linear fixed and mixed effect models. A
Poisson-family model is used for both cases. AIC, Akaike information criterion; BIC, Bayesian information criterion; Chg, change; CI,
confidence interval; Cook’s D, Cook’s distance; CSF, cerebrospinal fluid; IRR, incidence rate ratio; LRT, likelihood ratio test; No. Obs.,
number of observations. *Unadjusted model: Log-likelihood¼e32.5; Deviance¼10.7; AIC¼68.9; BIC¼69.9; No. Obs.¼12; No. Obs.
excluded (Cook’s D)¼1. Model adjusted for age: Log-likelihood¼e31.9; Deviance¼9.55; AIC¼69.8; BIC¼71.3; No. Obs.¼12; No. Obs.
excluded (Cook’s D)¼1; P-value from LRT comparing fit of two adjusted models ¼0.292. yUnadjusted model: Log-likelihood¼e45.1;
Deviance¼13.7; AIC¼96.1; BIC¼98.3; No. Obs.¼15; No. Obs. excluded (Cook’s D)¼2. Model adjusted for age: Log-likelihood¼e44.7;
Deviance¼15.4; AIC¼97.4; BIC¼100; No. Obs.¼15; No. Obs. excluded (Cook’s D)¼2; P-value from LRT comparing fit of twomodels¼0.394.
zP<0.05; P<0.01; P<0.001.

Fixed effect model: Peak change per
patient*

Mixed effects model: All data points
per patienty

Characteristic IRR 95% CI P-valuez IRR 95% CI P-valuez

Unadjusted
Postoperative Chg Log 10 CSF fibrinogen 1.38 0.82, 2.34 0.234 0.87 0.37, 2.08 0.760
Adjusted for age
Postoperative Chg Log 10 CSF fibrinogen 1.20 0.66, 2.17 0.540 0.71 0.28, 1.82 0.475

a

Negative
association

Positive
association

Baseline CSF biomarkers ~ peak
delirium severity. Unadjusted models

IRR, 95% CI
1 2

Baseline IL-1Ra
Model

Baseline IL-1B
Baseline IL-6
Baseline IL-8
Baseline IL-10
Baseline IL-12p70
Baseline FNG

b

Negative
association

Positive
association

Baseline CSF biomarkers ~ peak delirium
severity. Models adjusted for age

IRR, 95% CI
1 2

Fig 5. Association of baseline biomarkers with delirium severity. (a) The IRR for the baseline CSF concentration of each biomarker to

predict delirium severity. (b) The IRR for each biomarker additionally adjusted for age. A negative binomial model was used for all bio-

markers. The coefficient point estimates and 95% confidence intervals are shown. No outliers were excluded for IL-1Ra, whereas one

outlier was excluded for IL-1b, IL-6, IL-8, 10, IL-12p70, and fibrinogen, based on Cook’s distances. Full details of the models are provided in

Supplementary Table S10. CSF, cerebrospinal fluid; IL, interleukin; IRR, incidence rate ratio.
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possible explanations. Given delirium is thought to be medi-

ated partly by ‘primed’microglia exhibiting an exaggerated IL-

1 response to inflammation,3 it is plausible that pathophysi-

ological elevations of IL-1Ra and IL-1b in delirium are more

likely to be detected in the CSF than in the plasma. Indeed,

Cape and colleagues45 showed that the preoperative CSF:se-

rum ratio of IL-1b was increased in those who went on to

experience postoperative delirium. There is strong biological

plausibility for an association of increases in IL-1b and IL-1Ra

with delirium: mouse models suggest a damaging cerebral

metabolic effect of IL-1b (via hypoglycaemia),46 and a sickness

behaviour phenotype effect of IL-1.47

The association of baseline CSF fibrinogen with post-

operative delirium is likely reflective of baseline vascular risk

factors, given all patients were undergoing vascular surgery.

Fibrinogen is not present in healthy brains, and participants in

our vascular surgical cohort with more permeable BBBs at

baseline likely reflect a sicker patient cohort who are at greater
risk of delirium. Indeed, breakdown of the BBB has been

hypothesised to be a pathophysiological link between vascular

risk factors and Alzheimer’s dementia,48 and vascular pa-

thology is a comorbidity accelerating disease progression in

multiple sclerosis.49

A strength of this study is our focus on delirium severity.

Many studies of biomarkers in the field use a dichotomous

delirium incidence, which sacrifices the power needed to

study doseeresponse relationships. Another strength of this

study is our analysis of perioperative change in CSF bio-

markers. Many studies are capable of correlating outcomes

with baseline CSF biomarkers (given the relative ease of

obtaining CSF samples in consenting patients when the pre-

operative spinal anaesthetic is placed)45,50; however, post-

operative samples are less widely available. The most

important limitation of this study is the low number of par-

ticipants. This is an ongoing issue for all studies that require

postoperative CSF sampling,51 as they usually rely on patients

mailto:Image of Fig 5|eps
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needing CSF sampling for other indications. Therefore, we

were conservative in fitting our statistical models, and report

unadjusted and adjusted models. The study only recruited

patients who underwent invasive vascular surgery. Although

this was integral to the collection of CSF samples, it limits the

generalisability of our results to other types of surgery. Other

limitations include a relatively large number of analyses that

did not control for multiple comparisons in this exploratory

study, and the variable number of CSF samples that were

collected for each patient. Moreover, the removal of outliers

might have impacted our conclusions, hence the need for

further work in larger samples that are more robust to indi-

vidual data points.
Conclusions

Our preliminary findings in this limited cohort support

important concepts underlying the pathology of delirium

where fibrinogen enters the cerebral spinal fluid via blood-

brain barrier disruption and promotes neuroinflammation and

neurodegeneration. The correlation of fibrinogen with total

tau in the cerebral spinal fluid suggests a role in synapse loss,

in accordance with studies in Alzheimer’s disease animal

models. Fibrinogenmight also contribute to some components

of a neuroinflammatory response, a putative driver of

delirium. However, we did not observe an association of

fibrinogen with delirium severity. Given the limited size of our

cohort, the potential role of fibrinogen in delirium will require

further evaluation in larger patient cohorts.
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