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ABSTRACT
Although in recent years the study of gene expression variation in the absence of genetic
or environmental cues or gene expression heterogeneity has intensified considerably,
many basic and applied biological fields still remain unaware of how useful the
study of gene expression heterogeneity patterns might be for the characterization of
biological systems and/or processes. Largely based on the modulator effect chromatin
compaction has for gene expression heterogeneity and the extensive changes in
chromatin compaction known to occur for specialized cells that are naturally or
artificially induced to revert to less specialized states or dedifferentiate, I recently
hypothesized that processes that concur with cell dedifferentiation would show an
extensive reduction in gene expression heterogeneity. The confirmation of the existence
of such trend could be of wide interest because of the biomedical and biotechnological
relevance of cell dedifferentiation-based processes, i.e., regenerative development,
cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here,
I report the first empirical evidence consistent with the existence of an extensive
reduction in gene expression heterogeneity for processes that concur with cell
dedifferentiation by analyzing transcriptome dynamics along forearm regenerative
development inAmbystoma mexicanum or axolotl. Also, I briefly discuss on the utility of
the study of gene expression heterogeneity dynamicsmight have for the characterization
of cell dedifferentiation-based processes, and the engineering of tools that afforded
bettermonitoring andmodulating such processes. Finally, I reflect on how a transitional
reduction in gene expression heterogeneity for dedifferentiated cells can promote a
long-term increase in phenotypic heterogeneity following cell dedifferentiation with
potential adverse effects for biomedical and biotechnological applications.

Subjects Developmental Biology, Genomics
Keywords Gene expression heterogeneity, Regenerative development, Cell dedifferentiation,
Chromatin compaction

INTRODUCTION
One of the most intriguing aspects of biological systems is that they are prone to vary even
in the absence of genetic or environmental cues (Ackermann, 2015; Altschuler & Wu, 2010;
Komin & Skupin, 2017; Liu, Francois & Capp, 2016; Symmons & Raj, 2016). Non-genetic,
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non-environmental phenotypic heterogeneity is dependent on the inherent stochasticity
of the physicochemical substrate of biological systems, but also on emergent properties of
biological processes like: (i) the frequent dependence of biological processes on lownumbers
of intervening elements, (ii) the crowded conditions of intracellular compartments, (iii) the
fidelity decrease in the multistep transference of information to de novo synthesize active
genetic products, (iv) the pulsating nature of RNA transcription, or, (v) the slow dynamics
of highly compacted chromatin remodeling needed to grant DNA accessibility to the
transcription machinery (Ackermann, 2015; Altschuler & Wu, 2010; Komin & Skupin, 2017;
Liu, Francois & Capp, 2016; Rivas & Minton, 2016; Symmons & Raj, 2016; Yanagida et al.,
2015). Since some of these factors can vary within single cells temporally or in response
to environmental cues, between cells within single multicellular organisms, or between
unicellular or multicellular organisms within single populations, it would be expected that
non-genetic non-environmental phenotypic heterogeneity was itself variable (Ackermann,
2015; Altschuler & Wu, 2010; Komin & Skupin, 2017; Liu, Francois & Capp, 2016; Rivas &
Minton, 2016; Symmons & Raj, 2016; Yanagida et al., 2015). Thus, the study of variation
patterns for non-genetic non-environmental heterogeneities is of potential interest for the
characterization of biological properties that promoted such heterogeneities.

Recently, Díaz-Castillo proposed that processes that concur with cell dedifferentiation
would show an extensive reduction in gene expression heterogeneity (Díaz-Castillo, 2017b),
i.e., the variation in gene expression detected between cells or organisms with the same
genotype when assayed in the same environmental conditions. Cell dedifferentiation
refers to cases in which well-differentiated, specialized, non-proliferative cells revert to
states characterized by less specialization, the ability of re-differentiating towards different
cellular fates, and/or proliferation (Li & Belmonte, 2017;Merrell & Stanger, 2016; Sugiyama,
2015; Yamada, Haga & Yamada, 2014). Cell dedifferentiation is known to occur in the
initial stages of developmental programs activated in response to injury or regenerative
development in vertebrates, the formation of masses of undifferentiated cells such as
tumors in animals or calli in plants, or the artificial induction of somatic embryogenesis in
plants and human pluripotent stem cells for biomedical applications (Li & Belmonte, 2017;
Merrell & Stanger, 2016; Sugiyama, 2015; Yamada, Haga & Yamada, 2014).

The proposal that an extensive decrease in gene expression heterogeneity is characteristic
of processes based on cell dedifferentiation relies on cell dedifferentiation itself being a
case of cell convergence, and on dedifferentiating cells tendency to show an extensive
relaxation of chromatin (Díaz-Castillo, 2017b). Since cell dedifferentiation represents
the reversal of cell specialization, it would be expected that dedifferentiated cells were
more similar between them than the specialized cells they originated from are. Indeed,
the use of information theory to characterize transcriptomes for diverse types of human
and murine tumors and the organs they originated from showed not only that cancer
transcriptomes become less specialized and more similar among themselves than the
transcriptomes of their original organs are, but also that they become very similar to the
transcriptomes of undifferentiated embryonic stem cells (Martinez & Reyes-Valdes, 2008;
Martinez, Reyes-Valdes & Herrera-Estrella, 2010).
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On the other hand, based on the analysis of chromatin markers and the activation of
genetic elements usually silent because of their location in chromosome regions with highly
compacted chromatin, it has been suggested that both naturally-occurring and artificially-
induced cell dedifferentiation is characterized by an extensive relaxation of chromatin
throughout the nucleus (El-Badawy & El-Badri, 2015; Feher, 2015; Grafi & Barak, 2015;
Jiang, Zhu & Liu, 2013; Krause, Sancho-Martinez & Izpisua Belmonte, 2015; Lee et al., 2015;
Macia, Blanco-Jimenez & Garcia-Perez, 2015; Sosnik et al., 2017; Wang &Wang, 2012; Zhu
et al., 2012a). Ultimately, chromosome regions with high chromatin compaction are
supposed to promote gene expression heterogeneity because of the slow dynamics
of the chromatin remodeling needed to grant DNA accessibility to the transcription
machinery (Liu, Francois & Capp, 2016; Symmons & Raj, 2016). The modulating effect
chromatin compaction has on gene expression heterogeneity is best exemplified by the
phenomenon known as position effect variegation (PEV), and the effect of chromatin
compaction modifiers on gene expression and phenotypic heterogeneities. Originally
discovered in Drosophila melanogaster, PEV refers to the stochastic variation in expression
for genes located close to or embedded within chromosome regions with highly compacted
chromatin or heterochromatin (Elgin & Reuter, 2013). Factors that directly or indirectly
alter chromatin compaction such as temperature, genetic variation in heterochromatin-
forming elements, paternal/maternal chromosome inheritance, or the genomic content
in junk DNA have been shown to modulate gene expression heterogeneity itself and
the phenotypic manifestation of such heterogeneity as PEV (Díaz-Castillo, 2015; Elgin
& Reuter, 2013; Maggert & Golic, 2002). Thus, considering that chromatin compaction
promotes gene expression heterogeneity, it could be inferred that the extensive reduction
in chromatin compaction in dedifferentiating nuclei would cause a reduction of gene
expression heterogeneity for many genes throughout the genome.

Because no formal proof exists yet for the extensive reduction in gene expression
heterogeneity in dedifferentiating cells, I aimed to find preliminary supporting evidence
by focusing on the study of gene expression dynamics along regenerative development
in Ambystoma mexicanum or axolotl. First, although not yet completely understood,
cell dedifferentiation associated to axolotl regenerative development in response
to injury has been and still is an important subject of study (McCusker, Bryant &
Gardiner, 2015a). Second, transcriptomic analyses of regenerative development in axolotl
constitute an ideal model to study gene expression dynamics for processes that concur
with cell dedifferentiation because it would permit studying naturally occurring cell
dedifferentiation-based phenomena from the moment they are elicited until their
completion. Finally, recent years have seen an increase in transcriptomic studies for
axolotl regenerative development models (Bryant et al., 2017; Eo et al., 2012; Gearhart et
al., 2015; King & Yin, 2016; Knapp et al., 2013; McCusker et al., 2015b; Monaghan et al.,
2012; Monaghan et al., 2009; Pai et al., 2016; Ponomareva et al., 2015; Sabin et al., 2015;
Seifert et al., 2012; Sousounis et al., 2014; Stewart et al., 2013; Voss et al., 2015; Wu et al.,
2013). Here, I argue about the adequacy of using one these studies to test the prediction
for gene expression heterogeneity dynamics associated to cell dedifferentiation because
of its temporal design and remarkable replication level. The results of reanalyzing the
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chosen dataset are consistent with the possibility that processes that concur with cell
dedifferentiation might be characterized by an extensive reduction in gene expression
heterogeneity (Díaz-Castillo, 2017b). In addition, I briefly reflect on the usefulness of the
study of gene expression heterogeneity patterns associated to cell dedifferentiation for
biomedical and biotechnological applications.

MATERIALS AND METHODS
Data from the transcriptome study for axolotl regenerative development with the largest
biological replication was used to assess if lower levels of biological replication, 3–6
replicates, could limit the study of gene expression heterogeneity patterns along axolotl
regenerative development (Bryant et al., 2017; Eo et al., 2012; Gearhart et al., 2015; King
& Yin, 2016; Knapp et al., 2013; McCusker et al., 2015b; Monaghan et al., 2012; Monaghan
et al., 2009; Pai et al., 2016; Ponomareva et al., 2015; Sabin et al., 2015; Seifert et al., 2012;
Sousounis et al., 2014; Stewart et al., 2013; Voss et al., 2015; Wu et al., 2013). In 2015, Voss
and coworkers inspected gene expression dynamics for 9–10 biological replicates at 20
timepoints along 28 days following axolotl forearm amputation using custom Affymetrix
GeneChips that include 20,080 probesets and RNA samples obtained from 1 mm of
heterogeneous tissue from the tips of amputated forearms (Voss et al., 2015). The dataset
including normalized transcript abundance for this study, Voss dataset hereinafter, was
obtained from Gene Expression Omnibus database (GSE67118) (Barrett et al., 2013; Voss
et al., 2015). Timepoint, biological replicate, and probeset identifiers from the original
study were maintained here (Voss et al., 2015).

For each probeset and timepoint, transcript abundancemean and coefficient of variation
(CV) were calculated and used as proxies for gene expression level and heterogeneity
respectively (Dataset S1). Next, for each probeset and timepoint, transcript abundance
and CV using three, four, five, or six biological replicates chosen at random were
calculated to simulate the effect lower replication would have for gene expression measures
reproducibility. The similarity of transcript abundance mean and CV for all probesets in
each timepoint in the Voss dataset when calculated using all biological replicates and each
lower-replication simulation was inspected using Pearson r. Lower-replication random
simulations were repeated 1,000 times. Table S1 summarizes Pearson r for each timepoint,
while Fig. S1 represents Pearson r calculated for three timepoints chosen at random.
Increasing biological replication results in a similarity improvement for both transcript
abundance measures when compared to measures calculated using all biological replicates.
However, the similarity of gene expression measures using lower-replication simulations
and all biological replicates is always considerably worse for transcript abundance CV
than for transcript abundance mean. Thus, although low biological replication can still
be appropriate to study changes in the level of gene expression in response to natural or
experimental variables, the study of gene expression heterogeneity dynamics warrants the
use of designs with abundant biological replication. For this reason, in subsequent analyses
I proceed to use only the Voss dataset, which ensures the largest biological replication level
for transcriptomic studies of axolotl regenerative development.
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The Monte Carlo-Wilcoxon matched-pairs signed-ranks test (MCW test hereinafter)
was used to study gene expression temporal dynamics along the regenerative development
of axolotl forearm using the Voss dataset as reference (Díaz-Castillo, 2015;Voss et al., 2015).
In essence, MCW is based on the Wilcoxon matched-pairs signed-ranks test which permits
assessing if matched pairs of quantitative data sampled in two different conditions tend
to be biased in any particular direction (Wilcoxon, 1945). This test proceeds by calculating
a sum of signed ranks assigned to the elements in the dataset in question in virtue of the
subtraction of their matched data. The sum of signed ranks (W ) is sensitive both to the
number of elements with data biased in one or the other direction, and the extent of these
biases. The MCW test variation evaluates the significance of the observed bias for the
dataset under study by comparing W calculated before and after randomly rearranging
data. MCW is very versatile because data can be randomly rearranged with no restriction
or respecting certain aspects of the internal structure of the dataset to simulate the effect
different factors might have on the variation of the measure under study. Here, MCW tests
were used to asses if transcript abundance CV was generally lower in post-amputational
timepoints (TX) than in the day of the amputation (T0), TX vs T0 comparisons hereinafter.
For each TX vs T0 comparison, I calculated a gene expression bias index using transcript
abundance CV for each probeset in the dataset (cvGEBI). Themain steps for the calculation
of cvGEBI are represented in Fig. S2. First, for each probeset in the dataset, I subtracted
transcript abundance CV for the post-amputational timepoint from transcript abundance
CV for the day of the amputation (1CV=CVTX–CVT0). Second, probesets were ranked
after sorting them using the absolute value of 1CV from smallest to largest. Third, ranks
for each probeset were signed using the sign of 1CV. Fourth, the sum of signed ranks (W )
was calculated as

∑
[sgn(1CVi) · rk(|1CVi|)]. Fifth, cvGEBI was calculated as W /Wmax,

where Wmax represents the maximum value W could take. cvGEBIs will range from 1 to
−1 if transcript abundance CV was higher or lower post-amputationally than in the day of
the amputation for all the probesets in the dataset, respectively.

MCW tests evaluate the significance of observed cvGEBIs by comparing them with
simulated cvGEBIs calculated after randomly rearranging transcript abundance CV. Here,
three different MCW test designs were used to simulate the effect chance, factors acting on
the transcriptome as a whole, or the variation in the mean level of expression would have
on transcript abundance CV dynamics along axolotl forearm regenerative development.
These three MCW designs are referred to as unrestricted, timepoint-restricted, and
expression-restricted MCW tests (Fig. S2, and Table S2). Unrestricted MCW tests proceed
by recalculating cvGEBIs after randomly rearranging transcript abundance CV with no
other restriction. Timepoint-restricted MCWs tests proceed by recalculating cvGEBIs after
randomly rearranging transcript abundance CV within each timepoint for each TX vs
T0 comparison. Expression-restricted MCW tests proceed by recalculating cvGEBIs after
randomly rearranging transcript abundance CV within bins of probesets defined by their
corresponding transcript abundance mean values. Probeset bins were defined by rounding
up transcript abundance mean values to two or three decimal digits independently. These
two alternatives differ in the numbers of bins and number of probesets per bin (Table S3).
Random permutations of transcript abundance CV for each MCW test were repeated
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10,000 times. The significance of observed cvGEBIs was estimated by calculating Pupper and
Plower values as the fraction of simulated cvGEBIs that were higher or equal, or lower or
equal than observed cvGEBIs, respectively. Observed cvGEBIs were considered significant
if Pupper and Plower values were lower than 0.05.

The proportional cumulative area under the curve (PCAUC) was used to estimate how
much of the temporal dynamics for gene expression heterogeneity along the regenerative
development of axolotl forearm could be accounted exclusively by chance, factors acting
on the transcriptome as a whole, or the variation in the mean level of expression for each
probeset (Table S4). PCAUC was calculated as the sum of simulated cvGEBIs with the closets
value to observed cvGEBIs for the corresponding TX vs T0 comparison and all precedent
ones divided by the sum of observed cvGEBIs for the corresponding TX vs T0 comparison
and all precedent ones for unrestricted, timepoint-restricted and expression-restricted
MCW tests.

Unrestricted MCW tests were also used to study the dynamics of the mean level of
gene expression along axolotl forearm regenerative development (Table S2). In this case,
gene expression bias indexes for each TX vs T0 comparison were calculated following the
process previously described but using transcript abundance mean for each probeset and
timepoint, and referred to as mGEBIs. The statistical significance of observed mGEBIs was
inspected as previously described for cvGEBIs.

To functionally characterize those genes that contribute to the sharp decrease in
gene expression heterogeneity early in the regenerative development of axolotl forearm,
gene expression heterogeneity fold change between 1 and 1.5 days post-amputation was
calculated for each probeset in the dataset as log2(CVT1.5/CVT1), where, CVT1 and CVT1.5

correspond to transcript abundance CV calculated for T1 and T1.5 timepoints, respectively.
In an attempt to distinguish probesets for which gene expression heterogeneity dynamics
between 1 and 1.5 days post-amputation constituted a clear tendency change from those
that showed erratic fluctuations within a longer timeline, transcript abundance CV data
for 0.5 and 2 days post-amputation were also taken into consideration. For those probesets
for which transcript abundance CV was not higher or lower for both 0.5 and 1 days
timepoints than for both 1.5 and 2 days timepoints, their log2(CVT1.5/CVT1) was set to
0. GOrilla and REVIGO were used to identify significant enrichments for Gene Ontology
(GO) terms (Eden et al., 2009; Supek et al., 2011). GOrilla permits detecting GO term
enrichments for genes in the top of a ranked list when compared with the rest of the list
using a minimum hypergeometric (mHG) test (Eden et al., 2009). GOrilla was used to
find GO enrichments for all probesets in the dataset ranked using the increasing value of
corrected log2(CVT1.5/CVT1), and 10 lists including all probesets in the dataset randomly
rearranged setting the reference GO annotation to Homo sapiens, the running mode to
‘‘single ranked list of genes’’, and, the P value threshold to 10−3 (Table S5). The GO
term enrichment found using randomly rearranged probesets supported by the largest
number of genes was used as the threshold to narrow down observed GO enrichments with
potential biological significance. REVIGO was used to minimize GO term redundancies
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using P values obtained using GOrilla as GO enrichments, and setting allowed similarity to
medium, the database with GO term sizes to whole UniProt, and, the semantic similarity
to SimRel.

The MCW test was also used to study gene expression dynamics for specific subsets of
genes defined by their similar functionality when compared with the whole transcriptome
along axolotl forearm regenerative development (Fig. S2, and Table S2). This new MCW
variation is referred to as functionally-restricted MCW test (Fig. S2). First, genes classified
in human gene ontology classes mitotic cell cycle process (GO:1903047), and chromatin
organization (GO:0006325) were retrieved from the Gene Ontology Consortium database
The Gene Ontology Consortium, 2015). Functionally-restricted MCWs tests proceed by
calculating mGEBIs and cvGEBIs for groups of probesets corresponding to genes classified
in each GO class before and after randomly rearranging functional subset tags for the whole
dataset and each TX vs T0 comparison 10,000 times. The statistical significance of observed
mGEBIs and cvGEBIs using functionally-restricted MCW tests was inspected as previously
described.

RESULTS
An extensive reduction in gene expression heterogeneity is
detectable early after axolotl forearm amputation
The axolotl has been a preferred model system for the study of post-traumatic regeneration
of complex structures for more than a century (Voss, Woodcock & Zambrano, 2015).
During this time, the progress of regenerative development responses has been intensively
characterized macroscopically and microscopically (McCusker, Bryant & Gardiner, 2015a).
Briefly, immediately after a gross insult such as the amputation of a limb, a number of
processes are activated in response to the injury to heal the open wound (McCusker,
Bryant & Gardiner, 2015a). Shortly after that, the amputation plane gets populated with
regeneration-competent progenitor cells, collectively referred to as the blastema, which
will coordinately grow and pattern to restore the missing structure (McCusker, Bryant
& Gardiner, 2015a). A long-held view assumes that dedifferentiating cells are the main
contributor to the formation of the blastema, and evidence of cell dedifferentiation
upon injury have been found for different cell types such as muscle cells, keratinocytes or
fibroblasts (McCusker, Bryant & Gardiner, 2015a).However, recent lineage-tracing analyses
raised some doubts on how many cell types actually dedifferentiate in response to injury,
and for those that do, how they contribute to the regeneration of the different tissues needed
to restore the missing structure (Kragl et al., 2009; Sandoval-Guzman et al., 2014;Wu et al.,
2015). Conversely, the study of heterogeneous samples from post-amputation axolotl limb
blastemas have shown the activation shortly after amputation of genes commonly expressed
in germ line cells, and transposable elements (TE) commonly silent because of their location
in regions with highly compacted chromatin (Zhu et al., 2012a; Zhu et al., 2012b). Since
TE activation is known to occur as a consequence of the extensive chromatin relaxation
in un/dedifferentiated cells (Feher, 2015; Grafi & Barak, 2015; Macia, Blanco-Jimenez &
Garcia-Perez, 2015; Wang &Wang, 2012), TE activations detected in axolotl regenerative
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development responses might be consistent with the possibility that the formation of
the blastema required, at least partially, dedifferentiating cells that undergo extensive
chromatin relaxation. Furthermore, Sosnik et al. (2017) recently developed a new method
to quantify the nuclear condensation using microscopic images and demonstrated that
blastemal cells show a significant reduction in chromatin condensation when compared
with somatic dermal cells. Thus, the use of transcriptomic analyses for axolotl regenerative
development models seems like an adequate place to seek preliminary support for the
hypothesized extensive decrease in gene expression heterogeneity for processes that concur
with cell dedifferentiation (Díaz-Castillo, 2017b).

In recent years, the number of studies of transcriptome dynamics for axolotl regenerative
development models increased considerably (Bryant et al., 2017; Eo et al., 2012; Gearhart
et al., 2015; King & Yin, 2016; Knapp et al., 2013; McCusker et al., 2015b; Monaghan et al.,
2012; Monaghan et al., 2009; Pai et al., 2016; Ponomareva et al., 2015; Sabin et al., 2015;
Seifert et al., 2012; Sousounis et al., 2014; Stewart et al., 2013; Voss et al., 2015; Wu et al.,
2013). A common aspect to many of these studies is that they encompass very low levels of
biological replication, i.e., 1–6 replicates per condition, which can constitute a big obstacle
for the study of gene expression heterogeneity dynamics (see Materials and Methods,
Fig. S1, and Table S1). For this reason, all analyses presented here used the dataset
produced by the transcriptome study for axolotl regenerative development with the largest
biological replication level. In 2015, Voss and coworkers analyzed transcriptome dynamics
during the initial 28 days of axolotl post-amputation forearm regenerative development
using 1 mm of heterogeneous tissue from the tip of amputated and post-amputational
regenerating forearms at 19 timepoints (Voss et al., 2015). More importantly, the study
performed by Voss and coworkers consisted of 9–10 biological replicates per timepoint for
a region of post-amputational regenerating forearms where the blastema is formed and
maintained along the regenerative process (Voss et al., 2015).

To characterize gene expression heterogeneity dynamics along axolotl forearm
regenerative development, transcript abundance coefficient of variation (CV) was used as a
measure of gene expression heterogeneity for each probeset and timepoint in Voss dataset.
Also, a variation of the Monte Carlo-Wilcoxon matched-pairs signed-ranks test (MCW
test hereinafter) was used to calculate the gene expression bias index (GEBI) that quantifies
the bias for gene expression measures for a group of genes between two conditions and
test their statistical relevance by comparing them with GEBIs calculated after randomly
rearranging these measures (Fig. S2) (Díaz-Castillo, 2015). MCW test is particularly suited
to study the existence of an extensive bias for a given quantitative measure between two
conditions because it is sensitive to the number of elements within the studied dataset
with biased measures and the extent of such biases, but also because it considers all the
elements in the studied dataset instead of only those that are deemed significant in virtue
of arbitrary thresholds (Díaz-Castillo, 2015). For this particular case, MCW test was used
to confirm the existence of gene expression heterogeneity biases between each one of the
post-amputational timepoints (TX) and the day of the amputation (T0), TX vs T0 pairwise
comparisons. cvGEBIs, indexes calculated using transcript abundance CV, range from 1
if for all probesets under study transcript abundance CV was larger post-amputationally
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than in the day of the amputation (CVTX > CVT0), and −1 if for all probesets under
study transcript abundance CV was lower post-amputationally than in the day of the
amputation (CVTX <CVT0). To ascertain if observed gene expression heterogeneity biases
for each TX vs T0 comparison were significantly different from those expected for pairwise
comparisons with the same number of elements and value distribution just by chance,
cvGEBIs were recalculated after randomly rearranging transcript abundance CV 10,000
times with no restriction. Since later on MCW tests with different designs will be used to
address different proximate questions, the design with unrestricted permutation of gene
expression measures will be referred to as unrestricted MCW tests.

Blastemas typically form 6–12 days after amputation depending on the animal size
and age (Voss et al., 2015). If the blastema formation indeed encompassed intervening cell
dedifferentiation, and this concurred with an extensive relaxation of chromatin, we would
expect that cvGEBIs became negative and significantly different from those expected by
chance from day 6–12 onwards. Somehow surprisingly, not only cvGEBIs were significantly
different for the expected timepoints, but they started being significantly negative as early
as 1.5 days after amputation (Fig. 1, and Table S2).

An intriguing aspect of gene expression heterogeneity dynamics along the regenerative
development of axolotl forearm is that it is considerably variable itself (Fig. 1, and
Table S2). Interestingly, cvGEBI variation is reminiscent of the progression of axolotl
forearm regenerative development stages defined morphologically (Voss et al., 2015).
In general, while significantly negative cvGEBIs tend to be higher for timepoints that
correspond to the transition between regenerative development stages, and lower for
intermediate timepoints for each stage (Fig. 1, and Table S2). For example, an increase
in cvGEBIs can be observed in the transition between pre-bud and early bud stages, or
medium and late bud stages, whereas the lowest cvGEBIs correspond to intermediate
timepoints for medium bud and pallet stages (Fig. 1, and Table S2).

Voss and coworkers documented that samples corresponding to the same timepoint
can be classified into consecutive morphological stages, and that this staging imprecision
is more accentuated for timepoints corresponding to the transition between stages than
for intermediate timepoints within each stage (Voss et al., 2015). An accentuated variation
in the developmental progression of axolotl regenerative development is well known
even under highly controlled conditions (Tank, Carlson & Connelly, 1976). Thus, the
parallelism observed for cvGEBIs dynamics here and morphological changes in the original
study for axolotl forearm regenerative development suggests that the methodology used
here to analyze gene expression heterogeneity dynamics is sensitive enough to detect the
effect of intrinsic factors contributing to gene expression heterogeneity such as axolotl
regenerative development inherent asynchrony. Most importantly, despite the potential
contribution of regenerative development asynchrony to gene expression heterogeneity,
post-amputational cvGEBIs are significantly negative 1.5 days post-amputation onwards,
as it would be expected if samples encompassing these timepoints were populated by
dedifferentiated cells with extensively relaxed chromatin.

Whether the significant reduction in gene expression heterogeneity here reported truly
reflected the presence of a significant number of dedifferentiated cells with extensively
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Figure 1 Temporal dynamics of the level and the heterogeneity in gene expression along axolotl fore-
arm regenerative development.Generalized changes in gene expression measures along axolotl fore-
arm regeneration was inspected using data originally produced by Voss and coworkers and unrestricted
MCW tests (see Material and Methods for further details). Gene expression bias indexes (GEBIs) mea-
sure generalized biases for transcript abundance CV and mean (cvGEBIs and mGEBIs respectively) when
comparing data for each post-amputation timepoint (TX) and the day of the amputation (T0), TX vs T0
comparisons. Positive GEBIs represent timepoints for which gene expression measures tend to be higher
post-amputationally than in the day of amputation (TX > T0), whereas negative GEBIs represent cases
for which gene expression measures tend to be lower post-amputationally than in the day of amputation
(TX < T0). Simulated GEBIs were obtained after randomly rearranging gene expression measures for all
probesets within TX vs T0 comparison 10,000 times with no restriction. The distribution of simulated
GEBIs is summarized using minimums, 5th and 95th percentiles, and maximums. Observed GEBIs were
considered significant if they outlied the area of the graph defined by 5th and 95th percentiles (P < 0.05).
Grey boxes delimit axolotl forearm regeneration stages defined by morphological changes according to
Voss et al. (2015).

Full-size DOI: 10.7717/peerj.4004/fig-1

relaxed chromatinwithin post-amputational forearmblastemaswould require independent
corroboration using methodologies that go beyond the scope of this article. However,
further analyses of the dataset under study resulted in other observations that favor this
hypothesis over other obvious explanations for the observed decline in gene expression
heterogeneity.
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Gene expression heterogeneity dynamics along axolotl forearm
regenerative development cannot be explained by a generalized
increase in gene expression
In principle, the decrease in gene expression heterogeneity here detected for axolotl
forelimb regenerative development could be explained without assuming that intervening
cells undergo extensive chromatin relaxation. It has been shown that cells participating in
regenerative processes tend to show a generalized increase in gene expression (Percharde,
Bulut-Karslioglu & Ramalho-Santos, 2017). Since, gene expression heterogeneity is known
to negatively correlate with gene expression level (Liu, Francois & Capp, 2016; Symmons
& Raj, 2016), it would be expected that blastemal samples showed a reduction in gene
expression heterogeneity regardless of intervening cells undergoing extensive chromatin
relaxation.

To directly test whether the reduction in gene expression heterogeneity here detected
resulted from blastemal cells generalized increase in gene expression, first, I proceed to
study the dynamics of the level of gene expression for all genes in the dataset under study.
Unrestricted MCW tests using transcript abundance mean per probeset and timepoint as
proxy for their level of gene expression were used to quantify gene expression level biases
across the transcriptome for TX vs T0 comparisons. GEBIs calculated using transcript
abundance means are referred to as mGEBIs. Consistent with the possibility that blastemal
cell showed a generalized increase in gene expression, mGEBIs become positive and
significantly different from mGEBIs expected by chance 2 days after amputation (Fig. 1,
and Table S2). In other words, genes tend to become significantly overexpressed post-
amputationally starting 2 days after amputation. Furthermore, at a first glance, cvGEBI
and mGEBI temporal dynamics are quasi-specular, underscoring the possibility that gene
expression heterogeneity decrease along axolotl forearm regenerative development were
just a consequence of blastemal cell generalized increase in gene expression. However,
mGEBIs become significantly positive 2 days after amputation, with a small delay with
regard to cvGEBIs becoming significantly negative 1.5 days after amputation. Such delay
is more consistent with the possibility that blastemal cell generalized increase in gene
expression was a consequence of intervening cells extensive chromatin relaxation that
might contribute to the earlier significant decrease in gene expression heterogeneity, than
the latter being a side consequence of blastemal cell generalized increase in gene expression.

To further study the interrelationship of the dynamics for gene expression level and
heterogeneity along axolotl forearm regenerative development, three different variations
of MCW tests for transcript abundance CV and TX vs T0 pairwise comparisons were
used (Fig. S2). Unrestricted MCW tests were used to ascertain if observed biases for
transcript abundance CV were significantly different from those biases expected just
by chance. Timepoint-restricted MCW tests were used to ascertain if observed biases for
transcript abundance CVwere significantly different from those expected if gene expression
heterogeneity was exclusively dependent on factors acting on the transcriptome as a whole.
Finally, expression-restricted MCW tests were used to ascertain if observed biases for
transcript abundance CVwere significantly different from those expected if gene expression
heterogeneity was exclusively dependent on the variation in the mean level of expression
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Figure 2 Contribution of chance, factors acting on the transcriptome as a whole, and the variation in gene expression level to gene expression
heterogeneity dynamics along axolotl forearm regenerative development.MCW tests using transcript abundance CV for each TX vs T0 com-
parison were performed by randomly rearranging transcript abundance CV with no restriction (unrestricted), restricted by timepoint (timepoint-
restricted), or restricted within probeset bins defined according to their transcript abundance mean values (expression-restricted). Two alternative
expression-restricted MCW test designs performed independently are indicated with different superscripts (see Material and Methods for further
description). MCW tests were repeated 10,000 times, and simulated cvGEBIs with closer values to observed cvGEBIs are represented in (A). (B) The
fraction of observed cvGEBI dynamics that could be explained by chance, or factors acting on the transcriptome as a whole, or the variation in gene
expression level were calculated as the proportional cumulative area under the curve (PCAUC).

Full-size DOI: 10.7717/peerj.4004/fig-2

for each probeset. If post-amputational gene expression heterogeneity dynamics was just a
mere reflection of blastemal cell generalized increase in gene expression it would be expected
that observed cvGEBIs were not significantly distinguishable from simulated GEBIs for
expression-restricted MCW tests. On the contrary, if post-amputational gene expression
heterogeneity dynamics was dependent on factors acting on the whole transcriptome,
it would be expected that observed cvGEBIs were not significantly distinguishable from
simulated GEBIs for timepoint-restricted MCW tests.

Observed cvGEBIs were significantly different from simulated ones for all timepoints
using any of the three MCW test designs (Fig. 2A, and Table S2), suggesting that chance,
factors acting on the transcriptome as a whole, or the variation in the level of expression
cannot explain on their own gene expression heterogeneity dynamics along axolotl forearm
regenerative development. The proportional cumulative area under the curve (PCAUC)
using simulated cvGEBIs with the closest value to observed cvGEBIs for each timepoint and
MCW test design was calculated to estimate how much of gene expression heterogeneity
dynamics could be explained by chance, factors acting on the transcriptome as a whole, or
the variation in the level of expression (Fig. 2B, and Table S4). The fraction of observed
cvGEBIs dynamics that could be explained by the variation in the mean level of expression
of each probeset under study is barely higher than what it could be explained just by
chance alone (18% versus 16%). In stark contrast, factors acting on the transcriptome as
a whole could explain up to 60% of observed cvGEBIs temporal dynamics. Considering
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the multidimensionality of the dataset, the potential interdependencies that might exist
between its elements, i.e., genes that regulate other genes, or the effect of other factors
that contributed to gene expression heterogeneity like developmental asynchrony, the
fact that simulated cvGEBIs obtained using timepoint-restricted MCWs could explain
60% of observed gene expression heterogeneity dynamics is remarkable. These results
strongly suggest that gene expression heterogeneity dynamics along axolotl forearm
regenerative development cannot be easily attributed to blastemal cell generalized increase
in gene expression. Instead, these results are more consistent with the possibility that
axolotl forearm regenerative development concurred with an extensive decrease in gene
expression heterogeneity associated to intervening cells undergoing extensive chromatin
relaxation, which could be conducive for the expression increase of many genes throughout
the genome.

Gene expression heterogeneity decrease for axolotl forearm
regenerative development is consistent with blastemal cell
dedifferentiation
The decrease in gene expression heterogeneity for axolotl forearm regenerative development
here detected could be explained even if no intervening cell dedifferentiated. Whichever is
the origin of blastemal cells, they are expected to encompass a more homogenous pool of
cell types than those represented in samples taken at the moment of the amputation, and,
immediately after that, when a diverse number of processes are elicited to heal the wound
(McCusker, Bryant & Gardiner, 2015a). If the decline in gene expression heterogeneity
here documented was caused by the relative enrichment of cells from a reduced number
of cell types, it would be expected that genes supporting the earliest decline in gene
expression heterogeneity resembled the transcriptional profile typical of the few cell types
there represented.

To ascertain whether the extensive decrease in gene expression heterogeneity here
detected was dependent on the relative enrichment in one or few cell types, I proceed
to functionally characterized those probesets that better resemble the sharp decrease
in gene expression heterogeneity between 1 and 1.5 days post-amputation (Fig. 1, and
Table S2). Probesets in the dataset were ranked with regard to transcript abundance CV
fold change for 1 and 1.5 days post-amputation timepoints. The genes corresponding
to this prioritized list of probesets and 10 more lists of genes generated by randomly
permutating probesets in the dataset with no other restriction were used to identify
significant Gene Ontology (GO) enrichments using GOrilla and REVIGO (Eden et al.,
2009; Supek et al., 2011). Only GO terms ‘‘mitotic cell cycle process’’ (GO:1903047) and
‘‘chromatin organization’’ (GO:0006325) appeared significantly enriched for probesets
with a decrease in gene expression heterogeneity between 1 and 1.5 days post-amputation
(Table 1, and S5). Also, just 10 genes were found supporting the enrichment of both terms
out of the 155 genes that support either enrichment, suggesting that the sets of genes
supporting each GO enrichment are largely different.

To further characterize the temporal dynamics of transcripts associated to ‘‘mitotic
cell cycle process’’ and ‘‘chromatin organization’’ GO terms with regard to the whole
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Table 1 Gene Ontology (GO) enrichment for genes prioritized with regard to their change in gene expression heterogeneity between 1 and 1.5
days after axolotl forearm amputation. Probesets in Voss et al. (2015) dataset were prioritized upon their transcript abundance CV difference be-
tween 1 and 1.5 post-amputation timepoints, and randomly rearranged 10 times. GOrilla and REVIGO were used to perform gene ontology (GO)
enrichment analyses on prioritized and random lists. The GO term enrichment found using random lists supported by the largest number of genes
was used as a threshold to narrow down observed GO enrichments with potential biological significance. See Materials and Methods for further de-
tails, and Table S3 for the complete list of GO term enrichments found for prioritized and random lists. Bold names represent genes found support-
ing both GO term enrichments.

GO term Description P value Enrichment Genes

GO:1903047 mitotic cell cycle process 0.00014 1.54 [SEPT7, KLHL42, CDK5RAP2, CHAMP1, PAPD5, GSPT1,
ORC4, CD2AP, SPDL1, MUS81, GSG2, KIF2A, MAP4,
PIBF1, CNOT11, PPM1D, USP16 , SPAST, ESPL1, ID2,
PSMB3, CDCA5, EIF4E, PSMA5, PBRM1, SMC5, EML4,
PSMB6, CHMP5, PSMC5, MAP10, RAD17, CACUL1,
PSMC1, NOLC1, FBXW11, CEP152, DYNLT3, PSMD7,
INTS3, LMNA, SMC4, PSMD2, PSMD12, CEP250,
PSMD11, CUL5, MSH2, RAN, PSMD13, TAF10 , FBXL15,
NIPBL, TUBA1A, MYH10, MIS12, CCNG2, CEP70, MAP9,
CCNG1, VPS4B, MYBL2, TOP2B, TFDP2, TOP2A, CLTA,
TUBB4B, HMGA2, RPS6KB1, CDK6, DYNC1H1, RBBP8,
DYNC1I2, BABAM1, RAB11A, CDK7, DNM2, OFD1,
STAG2, CEP192, NDC80, NDC1, NR3C1, HELLS,
RUVBL1, CSNK1A1, CCNB1, KIF23, NUDC, CDCA2,
HMMR, NUP153, ZNF207]

GO:0006325 chromatin organization 0.00025 1.61 [ZMYND8, SMARCAD1, VPS72, GSG2, ARID5B, TLK1,
BAHD1, NCOR1, PRMT6, KDM5B, SUPT5H, SIRT5,
MTA1, USP16 , BPTF, DOT1L, KAT2A, BRD8, CHD2,
USP7, UTP3, WHSC1, PBRM1, TTF1, PER1, TET3,
SCMH1, MTA2, NUCKS1, CREBBP, MORF4L1, CENPP,
WDR82, TAF10 , MTF2, TAF5, SUPT16H, INO80C,
SUPT7L, DNAJC2, HIRA, NFE2, SMARCE1, BRD2,
ATRX, RNF2, ATXN7L3, BAZ1A, BAZ1B, HMGA2,
PHF20, SMARCC1, PRDM2, BABAM1, SRPK1, OGT,
ARID4A, TET2, HIRIP3, CBX3, SMARCA2, NR3C1,
HELLS, RUVBL1, SETD2, TLK2, CCNB1, RBM14,
KAT6B, PRKCD, ZNF462, ELP3]

transcriptome, I used a new variation of the MCW test. Functionally-restricted MCW tests
proceed by calculating cvGEBI and mGEBI for probesets associated to genes classified
in ‘‘mitotic cell cycle process’’ and ‘‘chromatin organization’’ GO terms before and after
randomly rearranging functional subset tags for the whole dataset, respectively (Fig. S2).
For both GO terms, the expected sharp decrease in transcript abundance CV between 1
and 1.5 days post-amputation is followed by a sharp increase in transcript abundance mean
between 2 and 3 days post-amputation (Fig. 3, and Table S2). Consistent with these trends,
the original characterization of the Voss dataset showed significant enrichments for GO
terms related with cell cycle and chromosome organization for probesets with a statistically
significant difference in transcript abundance between 2 and 3 days post-amputation
timepoints (Voss et al., 2015).

‘‘Mitotic cell cycle process’’ and ‘‘chromatin organization’’ GO term enrichment for
probesets better supporting the sharp decrease in gene expression heterogeneity between 1
and 1.5 days post-amputation timepoints, and the transcriptomic dynamics of probesets for
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Figure 3 Temporal dynamics of the level and the heterogeneity in gene expression along axolotl forearm regenerative development for groups
of genes defined by their functionality. The Gene Ontology Consortium database was used to retrieved genes belonging to ‘‘mitotic cell cycle pro-
cess’’ (GO:1903047) and ‘‘chromatin organization’’ (GO:0006325) GO terms (The Gene Ontology Consortium, 2015). The temporal dynamics of
the level and heterogeneity in gene expression for probesets associated to ‘‘mitotic cell cycle process’’ and ‘‘chromatin organization’’ genes with re-
gard to the whole transcriptome were inspected using functionally-restricted MCW tests (A and B, respectively). cvGEBI and mGEBI for each group
of probesets and TX vs T0 comparison were calculated before and after randomly rearranging functional subset tags for the whole transcriptome
10,000 times. The distribution of simulated GEBIs is summarized using minimums, 5th and 95th percentiles, and maximums. Observed GEBIs were
considered significant if they outlied the area of the graph defined by 5th and 95th percentiles (P < 0.05). Grey boxes delimit axolotl forearm regen-
eration stages defined by morphological changes according to Voss et al. (2015).

Full-size DOI: 10.7717/peerj.4004/fig-3

genes associated to these two terms along axolotl forearm regenerative development does
not seem to be consistent with the possibility that early stages of regenerative development
coursed with a relative enrichment in one or few cell types. Instead, these trends seem
to relate better with the possibility that intervening cells undergo the earliest steps of
transformations expected for dedifferentiating cells, namely re-entry in cell cycle and
chromatin reorganization. If a reduction in gene expression heterogeneity followed by an
increase in the expression of those genes thatmight drive the process of cell dedifferentiation
reflected that chromosome regions encompassing these genes were the first to undergo
chromatin relaxation for cells leading regenerative responses suggests that studies focused
on the dynamics of the chromatin context for those genes that show the earliest decline
in gene expression heterogeneity along regenerative development process could be of
great help to better understanding how regenerative development is elicited in response
to injury.

DISCUSSION
In the present article, using already available transcriptomic data for axolotl regenerative
development and the assumption that such regenerative processes concurs with
cell dedifferentiation, very preliminary support is given to the proposal that cell
dedifferentiation concurs with an extensive decrease in gene expression heterogeneity
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(Díaz-Castillo, 2017b; Voss et al., 2015). Although here I used a dataset that has already
been characterized, the analyses here presented differ from the original characterization
of the dataset mostly because they focus on the study of changes in gene expression
heterogeneity; changes to the mean level of expression are used only accessorily.
Another important difference of the present study from the original characterization
and other transcriptomic studies consist in the use of MCW tests, which permits
characterizing extensive transcriptomic trends taking into consideration all the genes
encompassed by large datasets, instead of just those showing differences beyond thresholds
chosen arbitrarily.

An important caveat to the analyses here presented relates with the increasing notion
that commonly used analytical methodologies to study transcriptome dynamics might not
fairly represent cases in which the transcriptional output of all or most genes in the genome
is concertedly increased (Percharde, Bulut-Karslioglu & Ramalho-Santos, 2017). The use of
normalization methods based on the assumption that the expression of ‘‘housekeeping’’
genes or the general transcription output of the nucleus is largely invariable between the
assayed conditions, and the difficulty in precisely controlling the number of cells contained
in samples for complex and very dynamic processes such as regenerative development
represent the main difficulties to ensure a fair consideration of cell transcriptional output
for transcriptomic analyses (Percharde, Bulut-Karslioglu & Ramalho-Santos, 2017). Future
analyses, probably focused on single cells, will be needed to assess the impact of this
methodological caveat for the study of transcriptome dynamics in general, and for these
circumstances that concur with a generalized increase in gene expression in particular.

How many and which, if any, cells dedifferentiate upon injury along regenerative
development processes, and if such dedifferentiation indeed concur with extensive
chromatin relaxation driving to an extensive decrease in gene expression heterogeneity
require independent confirmation. The possibility that changes in gene expression
heterogeneity could approximate changes in chromatin configuration for dedifferentiated
cells might be of wide interest for biomedical and biotechnological areas based on cell
dedifferentiation such as regenerative development, cancer, human iPSCs, or plant somatic
embryogenesis. Here, I proceed to briefly discuss how the study of gene expression
heterogeneity dynamics might help developing methodologies to monitor and/or control
cell dedifferentiation-based processes, and how a transitional reduction in gene expression
heterogeneity for dedifferentiating cells can promote undesired longer-term phenotypic
heterogeneity.

The study of gene expression heterogeneity can be useful for the
characterization of processes that concur with cell dedifferentiation,
and to engineer approaches for their monitoring and modulation
Whole transcriptome analysis is now a common tool to identify relevant changes in
transcript abundance reflecting natural or experimental cues. Often, these analyses are
based on the dubious assumption that significant changes in transcript abundance directly
reflect equally significant changes in the function/effect of the very transcript or the
protein it codes for. However, the study of transcript abundance dynamics permits
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directly addressing only a small fraction of the regulatory mechanisms needed for the
generation of active genetic products. Transcript spatial distribution, and translation,
or protein post-translational modification, folding, spatial distribution, and coordinated
functionality with other genetic products remain largely unapproachable using only
transcriptomic analyses. Since all these steps in the de novo synthesis of active genetic
products are susceptible to be regulated independently from regulatory mechanisms
modulating transcript abundance, it is possible that very obvious changes in transcript
abundance are phenotypically insignificant because they are buffered by the system, or
genes for which no significant change is detected at a transcriptional level had key roles in
certain processes because of regulatory inputs acting at the protein level. This limitation
is particularly troublesome when transcriptomic analyses are used to distinguish genes
that drive a particular process from those that reflect the progression of the process in
question, i.e., drivers versus effectors. While such distinction might be meaningless for
the identification of diagnostic markers for biological processes, it is key for the basic
characterization of such processes and the efficient engineering of strategies that afford in
vivo monitoring or modulating their progress.

Gene expression heterogeneity is not directly informative about the abundance of active
genetic products, and, therefore, its use to infer functional changes in the process under
consideration is also very limited. However, gene expression heterogeneity dynamics might
be highly informative about regulatory mechanisms acting on chromatin accessibility,
transcription, and transcript degradation. In particular, the integration of gene expression
heterogeneity dynamics with proxies for higher order chromatin organization could
be of great value to identify chromosome regions encompassing genes that undergo
the earliest changes along naturally-occurring or induced cell dedifferentiation, and the
characterization of the regulatory elements mediating such changes. Furthermore, the
possibility of identifying chromosome regions showing the earliest changes associated to
cell dedifferentiation would afford using them as target for the insertion of engineered
genetic constructs that help better monitoring or even modulating processes that concur
with cell dedifferentiation. For example, in the context of regenerative development in
response to injury, chromosome regions undergoing the earliest chromatin relaxation along
cell dedifferentiation could be targeted for the insertion of genetic constructs coding for
visible markers that helped identifying which cells within a complex tissue are susceptible to
dedifferentiate in response to injury, or monitoring the progress of regenerative responses
in non-invasive ways. Alternatively, the same regions could be targeted for the insertion of
constructs coding for RNAs of proteins that by stimulating or interfering with key elements
of cell dedifferentiation-based processes permitted modulating the course of such processes
and improve their efficiency or minimize detrimental side effects.

A transitional reduction in gene expression heterogeneity for
dedifferentiating cells could promote a long-term phenotypic
heterogeneity
A troublesome aspect of processes that concur with cell dedifferentiation is the
accentuated heterogeneity detected at genetic, epigenetic, and phenotypic levels
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(Almendro, Marusyk & Polyak, 2013; Burrell et al., 2013; Fossati, Jain & Sevilla, 2016;
Krishna et al., 2016; Ling et al., 2015; Meacham &Morrison, 2013). Such heterogeneities
are of great concern because they can limit the response to treatment of cancerous cell,
or the reproducibility of healthy clonal tissues and individuals derived from animal
and plant induced dedifferentiated cells (Almendro, Marusyk & Polyak, 2013; Burrell et
al., 2013; Fossati, Jain & Sevilla, 2016; Krishna et al., 2016; Ling et al., 2015; Meacham &
Morrison, 2013). Intriguingly, a chromatin relaxation-based extensive reduction in gene
expression heterogeneity for dedifferentiated cells could promote long-term phenotypic
heterogeneities following cell dedifferentiation by increasing genetic and epigenetic
mutagenic potential and the phenotypic relevance of preexisting or newly generated
mutations for dedifferentiated cells.

On one hand, an extensive chromatin relaxation-based surge of DNA accessibility might
result in a larger number of coding or regulatory loci being susceptible to insults that result
in genetic mutations, but also the activation of genetic elements that can directly intervene
in mutagenic events such as those transposable elements populating regions of highly
compacted chromatin. Indeed, abundant reports exist for accentuated genetic variation,
and activities of transposable elements in processes concurring with cell dedifferentiation
(Cooper et al., 2017; Jiang et al., 2011; Ling et al., 2015; Macia, Blanco-Jimenez & Garcia-
Perez, 2015; Wang &Wang, 2012; Zhu et al., 2012a). Furthermore, the increased activity
of repair machineries that help protecting the integrity of the genome in dedifferentiated
cells might evidence their enhanced potential for genetic mutagenesis (Cooper et al.,
2017). Also, 5-methylcytosine (5mC) is highly prone to spontaneously deaminate into
thymine (T), which if uncorrected would cause both genetic and epigenetic mutations
(Bellacosa & Drohat, 2015; Cortazar et al., 2007). The restoration of 5-methylcytosine is not
straightforward and requires a concatenation of enzymes that recognize thymine:guanidine
(T:G) mismatches, excise T, restore the original cytosine (C), and methylate the restored
C (Bellacosa & Drohat, 2015; Cortazar et al., 2007). The key enzyme for 5mC deamination
repair is thymine glycosylase (TDG), which is known to be considerably inefficient
(Bellacosa & Drohat, 2015; Cortazar et al., 2007). The accentuated tendency to deaminate
of 5mC, the complicated way of restoring 5mC, and the inefficiency of some of the elements
required for 5mC restoration suggest that for any given methylated locus in a population
of isogenic cells in the same environment there would be a variable assortment of cells
showing 5mC, T, or C. Since the limiting step for 5mC deamination is DNAmelting (Fryxell
& Moon, 2005), processes more permissive for DNA melting, such as dedifferentiated cells
extensive chromatin relaxation, could result in an accentuated and ultimately stochastic
variation in DNA methylation and 5mC deamination-based mutations.

On the other hand, beyond the direct effect chromatin relaxation in dedifferentiated
cells might have on the genetic and epigenetic mutagenic potential, a transitional
chromatin relaxation-dependent extensive decrease in gene expression heterogeneity
can also promote a long-term phenotypic heterogeneity by enhancing the phenotypic
relevance of pre-existing and newly generated genetic and epigenetic mutations. Genetic
capacitance refers to the accumulation and release of genetic variation in a cryptic
state, i.e., not causing phenotypic variation (Gibson & Reed, 2008; Masel & Trotter, 2010;
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Figure 4 Generalized reduction in gene expression heterogeneity upon cell dedifferentiation might re-
duce genetic capacitance. Cartoon symbolizing how genetic variation can become phenotypically relevant
associated to the chromatin relaxation-dependent reduction in gene expression heterogeneity upon cell
dedifferentiation. Blue shades represent the variation in gene expression for a particular gene in a popula-
tion of cells before and after dedifferentiation. Pre-existing or new genetic mutations might be phenotypi-
cally more distinguishable upon cell dedifferentiation because of the generalized reduction in gene expres-
sion heterogeneity that cause a narrowing of the spectrum of stochastic phenotypes.

Full-size DOI: 10.7717/peerj.4004/fig-4

Paaby & Rockman, 2014). In recent years, it has been suggested that chromatin compaction-
dependent gene expression heterogeneity promotes genetic capacitance because it results
in a spectrum of stochastic phenotypes from which some genetic-based phenotypes
might be indistinguishable (Díaz-Castillo, 2015; Díaz-Castillo, 2017a). Such cryptic genetic
variation would be undetectable for selective forces, and, therefore allowed to fluctuate
randomly within biological populations. Generalized differences in chromatin compaction
modulating gene expression heterogeneity, and, with it, genetic capacitance, have been
proposed to importantly contribute to sexually dimorphic traits in metazoans and
differences in the spatiotemporal dynamics of natural populations from species with
different amounts of junk DNA (Díaz-Castillo, 2015; Díaz-Castillo, 2017a).

If cell dedifferentiation truly concurred with an extensive decrease in chromatin
compaction-dependent gene expression heterogeneity, it could be expected that such
decrease resulted in a reduction in genetic capacitance (Fig. 4). In other words, due
to the extensive decrease in gene expression heterogeneity, the spectrum of stochastic
phenotypes would become narrower, and, consequently, preexisting cryptic or new genetic
and epigenetic mutations would become phenotypically relevant (Fig. 3). Revealed genetic
and epigenetic mutations would contribute to a phenotypic plasticity in dedifferentiated
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cells noticeable in the absence of any other cue, or upon signaling from their environments
or the action of external treatments. The growing literature on the relevance of stochastic
events commonly occurring in early development could support the possibility that
un/dedifferentiated cells showed limited genetic capacitance because, at least in part, their
extensive chromatin relaxation, and, therefore, beingmore susceptible tomanifest plasticity
inherently and/or in response to external cues (Losick & Desplan, 2008; Vogt, 2015).

In summary, an extensive reduction in gene expression heterogeneity for dedifferentiated
cells is not only not conflicting with the multiple reports on accentuated genetic, epigenetic,
and phenotypic heterogeneities for natural or induced processes that concur with cell
dedifferentiation, but it could be argued that the extensive chromatin relaxation typical
of dedifferentiated cells might be the ultimate cause for these apparently opposing
heterogeneity trends.

CONCLUDING REMARKS
The high precision and resolution achieved with modern techniques is providing us
with very large collections of data for all sorts of biological systems and processes. Less
progress has been made analytically to squeeze as much biologically relevant information
as possible from such highly multidimensional datasets. Although the study of biological
variation observed in the absence of genetic and environmental cues and its usefulness for
basic and applied biology is still very much underrated, an appreciation for the study of
mechanisms that cause biological variation and its potential for biomedical applications
is starting to grow (Rosenberg & Queitsch, 2014). That cell dedifferentiation might concur
with an extensive reduction in gene expression heterogeneity might be of great interest
for biomedical and biotechnological processes that depend on cell dedifferentiation, i.e.,
regenerative development, cancer, human iPSCs, or plant somatic embryogenesis. The
study of cell dedifferentiation-based gene expression heterogeneity dynamics opens a
complementary way to characterize these processes, especially in their earliest stages, and
lay the foundation to newer, more precise tools that help monitoring and modulating
them. Furthermore, the possibility that a reduction in gene expression heterogeneity can
promote long-term phenotypic heterogeneity following cell dedifferentiation points to
the possibility of identifying key elements to target in an attempt to minimize the adverse
effect such phenotypic heterogeneity might have for the response to treatment, or the
reproducibility of healthy clonal tissues and individuals. More generally, the utilization of
appropriate analytical methods to characterize gene expression heterogeneity dynamics as
an adjunct to already existing methods might help accessing layers of information buried
in today’s multidimensional datasets and offer a more representative understanding of
biological systems and processes.
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