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Abstract: Researchers have ample reasons to take their experimental studies out of the lab and into
the online wilderness. For some, it is out of necessity, due to an unforeseen laboratory closure or
difficulties in recruiting on-site participants. Others want to benefit from the large and diverse online
population. However, the transition from in-lab to online data acquisition is not trivial and might
seem overwhelming at first. To facilitate this transition, we present an overview of actively maintained
solutions for the critical components of successful online data acquisition: creating, hosting and
recruiting. Our aim is to provide a brief introductory resource and discuss important considerations
for researchers who are taking their first steps towards online experimentation.
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1. Introduction

In midst of the Covid-19 pandemic [1], many researchers are bound to rethink lab-based behavioral
experiments [2]. There is an emerging need for online testing solutions (for a flowchart, see Figure 1)
for day-to-day research activities, thesis work and experimental practical courses alike. Even without a
forced shutdown of physical labs, online experiments have gained popularity [3] in the last decade [4–8].
They offer great advantages in terms of participant diversity (in terms of age, gender, origin, culture
and social status) [9,10], time and resource efficiency [11]. A big strength of online studies is that
they scale very well, as recruiting larger samples does not require a higher workload and particularly
hard-to-reach populations become more readily accessible (e.g., [12–16]; see also Figure 2). This
can be especially useful for reaching clinical samples or for conducting experimental cross-cultural
studies. This article is mainly aimed at cognitive psychology and behavioral neuroscience researchers
who have none or limited prior experience in conducting behavioral experiments within an online
ecosystem. Our focus is on providing a conceptual overview of the critical components of online
experimentation. We further summarize the most well-established tools for implementing these
components and provide information about good starting points on the road to online studies. Finally,
we offer some considerations and rules of thumb for succeeding with online acquisition, mainly
focusing on feasibility and data quality.

2. How to Run Behavioral Experiments Online

The critical procedural pillars of any behavioral study are: (1) programming an experiment in the
preferred software (e.g., E-prime, PsychoPy, PsychToolbox, etc.); (2) setting-up the testing machine
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(e.g., lab-computer, multi-unit testing facility, etc.) and (3) recruiting participants to conduct the study.
The process of bringing experiments online requires the same pipeline but can be more demanding
in terms of harmonizing these steps to ensure that each part of the pipeline is compatible with the
other parts (Figure 1). For comprehensibility, we will outline each of these three steps in the next
section. This will include a conceptual overview, but also specific examples of solutions (providers,
software) which enable the corresponding step in the pipeline. The features and pricing are subject
to change. For this reason, in this overview we discuss the main integrative possibilities, which we
believe, will not change as quickly (for an up-to-date description of the detailed offerings, one should
consult the respective websites). Some of the described solutions are quite modular and specialized
(Table 1: B, C, D) in solving only individual steps of the process, whereas other providers offer a more
holistic integrated-service ecosystem (Table 1: A). In Section 2.4. we will discuss the considerations
one should make when picking an ecosystem, but we will abstain for making strong recommendations
and claims at this point. Notably, we limited this overview to software that appears to be under active
development to ensure steady security updates (with updates in 2019).
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Figure 1. Schematic flow of conducting online experiments. First, experiments are created with an
experiment builder. The compiled experimental files are then uploaded to an online host, which
generates a link, making the study accessible online (potentially with the aid of a study management
system). Participants are recruited through recruitment platforms and access the online experiments on
the host. The data is stored on the hosting server.

2.1. Experiment Builders

Equivalently to studies designed for in-lab testing, the first step in online experimentation is
the programming of the experiment (Table 1: B). In comparison to the hegemony of Java, Python,
C++ and MATLAB libraries for experimental programming of lab-based studies, Javascript (JS) is
the language of choice for online experiments. Even though it is usually ranked as the most popular
programming language in the world, JS has not been a hallmark in behavioral testing. Current
solutions for online-experimental generation often provide a graphical user interface (GUI), enabling
users to drag-and-drop modular components into an experimental sequence. As this rather simplistic,
general solution is sometimes insufficiently flexible for more complex experimental designs, a good
experimental environment should provide the possibility to extend these modular components with
scripts and code-based solutions.

Arguably, the easiest transition from in-lab to online testing is granted by PsychoPy Builder [17–20]
and OpenSesame [21,22]. Both environments are very popular for traditional testing and allow for a
rather straight-forward restructuring towards their online counterparts (PsychoJS and OSWeb), if only
their drag-and-drop modules were used to create experiments. All sections in which scripting was used
(e.g., Python inserts) will need to be rewritten into Javascript by the experimenter. Fortunately, Python
(especially its ‘object-based’ subset) and Javascript generally only differ in terms of syntax and not
programming logic [23], so the rewriting is comparably easy. Additionally, PsychoPy auto-translates
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base-Python to JS (but not functions from specific libraries). There are plenty other experiment builders
available: Gorilla [24], Inquisit Web [25], LabVanced [26] and Testable [27], from the integrated-service
providers (see Table 1: A) and lab.js [28,29], jsPsych [30,31], PsyToolkit [32–34], tatool web [35] from the
function-specific solutions (see Table 1: B). Their advantages and shortcomings should be evaluated on
a lab’s basis depending on individual needs. Generally, as all experiment builders (except for Inquisit)
operate on a Javascript backend, they offer similar flexibility. They differ in available features (example
tasks or modules), but as all builders have online documentations, often with demonstration tasks
available, researchers can quickly see whether they fit their specific needs. We see the most difficulties
in transferring experiments online for Psychtoolbox [36] users, as MATLAB®’s compile-to-Javascript
approach offers no trivial translation of experiments to browser-based software [37].

Table 1. Simplified comparison of actively maintained tools for online studies in respect to their
features, guided integrations (i.e., documentation on website), backends and costs.

Features and Guided Integrations for Platform Cost Per
BackendBuilding Hosting Recruiting Month Participant

A. Integrated-Service Providers

Gorilla.sc 3 3, jsP MTurk, Prolific,
SONA, any - ~$1 visual

Inquisit Web 3 3 3 ~$200 - visual
Labvanced 3 3 3 ~ $387 ~$1.5 visual

testable 3 3 3 n.a. [5] n.a. [5] visual

B. Experiment Builders

jsPsych (jsP) 3 JATOS [1], Pavlovia MTurk free free JS

lab.js 3
JATOS [1], Open Lab,
Pavlovia, Qualtrics MTurk free free visual/JS

OpenSesame
(OS)Web 3 JATOS [1] - free free visual/JS

PsychoPy Builder
(PPB) 3 Pavlovia [2] - free free visual/JS

PsyToolkit (PsyT) 3 3 SONA, MTurk free free visual/JS
tatool Web 3 3 MTurk free free visual/JS

C. Hosts and Study Management

JATOS lab.js, jsP, PsyT, OSWeb (3) [1] MTurk, Prolific, [3] free [1] free website
Pavlovia lab.js, jsP, PPB 3 SONA, Prolific, [3] ~$145 ~$0.30 website

Open Lab lab.js 3 any [3] ~$17 free [6] website
(inst.) webserver lab.js, jsP, OSWeb, PPB JATOS or none any [3] free free -

D. Recruitment Services

Amazon MTurk any - 3 - 40% website
ORSEE any - (3) [4] free free website
SONA any - (3) [4] - n.a. [7] website

Prolific Academic any - 3 - 33% website
Qualtrics Panel Qualtrics/any - 3 - n.a. [7] website

Note. JS: Javascript; [1] JATOS requires to be installed on your own (institutional) server machine; [2] PsychoPy
Builder offers streamlined synchronization with Pavlovia; [3] Links can be shared to any platform or social media
but extensive documentation is not available; [4] no active participant pool; [5] testable offers a mixed payment
model; testable is also free for all departments in 2020 [38]; [6] up to 300 participants and one study; [7] only available
upon request.

2.2. Hosting and Study Management

In lab-based studies, the final resting place of the finished experiment is the testing machine.
For online studies, the experiment needs to be made available for online distribution by hosting it
on a server (Table 1: C). This is potentially the most confusing step in the pipeline of creating an
online study. Some labs with a lot of experience in online experimentation host their studies on their
own servers. This comes with the advantages of low maintenance costs, full control and flexibility.
On the downside, it requires some expertise for setup and continued maintenance. The more feasible
alternative is centralized hosting providers. Here, hosting and study management is a service, and as
such, all providers require a fee. The general idea behind study management systems is to simplify the
hosting and participant handling process, like user management, automated data storage or creation
of unique participation links.
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The whole range of features offered by different providers can be evaluated by visiting their
websites. For example, one of the easier but not especially flexible hosting services is offered by Open
Lab [39]. It takes all studies created with lab.js and tests some participants for free. Their unique selling
point is arguably its integration with Open Science Framework (OSF) [40]. Participant data are directly
uploaded to OSF, which could make it potentially interesting for multi-lab open science initiatives
(it should be noted that there is neither a documentation, nor a privacy policy nor information about
the responsible person or company publicly available.) Another interesting example is Pavlovia [41].
You can upload HTML5/Javascript studies and there is documentation for importing studies created
with lab.js, jsPsych and the PsychoPy Builder (PsychoJS). It offers easy integration with recruitment tools
and a GitLab platform [42] where experimenters can share their complete code. An example for more
easily setting up one’s own hosting platform is Just Another Tool for Online Studies (JATOS) [43,44].
JATOS similarly takes HTML5/Javascript studies and documents how to import studies created via
lab.js, jsPsych and Opensesame Web. It offers a wide range of options and is a very comprehensive study
management tool.

Finally, we want to highlight how important experiment-server compatibility is. In the examples
above, we pointed out that a specific hosting service supports studies programmed by specific
experimental builders. No host supports all experimental builds and no experimental build is
compatible with all hosts. Thus, a decision should always be made on the level of the overall ecosystem
and not on the individual components of the pipeline (building vs. hosting vs. recruiting).

2.3. Recruitment of Participants

The dominant advantage of running experimental studies online lies in its efficiency. It is feasible
to collect responses from hundreds of participants within hours. Thanks to the possibility of world-wide
sampling, data collection can literally be completed over night. Once the experiment is created and
accessible online (usually with a link), participants can be recruited. Due to higher participant numbers
compared to most lab-based studies, handling this process manually is not advisable (for tools see
Table 1: D). ORSEE [45,46] and Sona [47] are participant pool management systems, which offer
comprehensive automation tools. However, both require researchers to maintain their own (usually
limited in size) participant pool. Additionally, only a limited number of participants can be recruited
from the local University, via social media and (institutional) mailing lists. Maintaining an active pool
of potential participants is the main advantage of Amazon Mechanical Turk (MTurk) [48–50], Prolific
Academic [51,52] and Qualtrics Panel [53]. All three providers offer participant recruitment and payment
handling services. Note that there is also CloudResearch [54], which is a recruitment service that uses
the MTurk platform, but unlike MTurk itself, is specifically directed at researchers and offers better
participant handling and targeting tools. As one essentially only needs a link to the study, they integrate
well with the study management systems and experiment builders mentioned above (see Table 1 for
details). While differences in their features are too narrow for the scope of this article, we will discuss
some important points on data quality in Section 3.

2.4. How to Choose an Ecosystem?

Generally speaking, what researchers need for online experimentation is the same as what they
need for lab-based studies (Figure 1): (1) a programmed experiment, (2) a server to host the study and
(3) a recruiting platform which advertises to participants. As outlined in the previous sections, there are
many solutions for each of these steps. Some solutions provide a single and holistic framework for all
three aspects (Table 1: A), whereas other solutions are specifically tailored to one of the aspects and need
to be integrated into an ecosystem by the experimenter. Here, the benefits and drawbacks mirror what
we already know from software solutions in other domains. Integrated-service providers enable time
savings by reducing compatibility issues, providing customer support, and reducing administrative
load. On the flip side, they sometimes lack transparency, lack flexibility (minimal compatibility with
other solutions), and are generally expensive. Non-profit and open-source solutions usually require
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more integration considerations and some of them lack direct customer support. Instead, they provide
forums and community feedback, low or no costs, and more peer-reviewed benchmarks.

Ideally, the decision on which online ecosystem to use, should be made in accordance to the lab’s
capabilities and needs as well as criteria of quality (see Section 3). As all platforms are Javascript-based,
they offer similar functionality and most experimental paradigms should theoretically be realizable
on all platforms. In principal, a wide range of in-lab research questions can be targeted with online
task implementations. The individual journey of a task from in-lab to online, however, can be quite
different, as some tasks might need little adjustment, while others would require a major overhaul in
order to provide informative results. General recommendations about which tasks are suitable for
online testing and which platforms are best for the respective tasks are hard to make, as labs’ use
cases are too diverse. It will ultimately be a question of money, the labs’ know-how and specific
institutional infrastructure. Of note, switching from other software packages to an integrated-service
provider has often the drawback that previously programmed experiments cannot be run anymore
and even slight adaptations to the experiments (for example control studies that reviewer 2 asked for)
are impossible without completely reprogramming the experiment. Therefore, when deciding how to
transfer experiments to the online world, researchers should not only consider what the provider offers,
but also how they can adapt their research to the new environment. From an open science perspective,
it should also be considered, that not all platforms allow experimental scripts to be exported.

The authors personally had good experiences with OSWeb (for building) combined with JATOS (for
hosting) as well as PsychoPy (for building) with Pavlovia (for hosting) [55] and Prolific (for recruitment).
Similarly, the authors would not recommend setting up experimental studies on self-maintained
webservers without the aid of a study management system (e.g., JATOS) because of the need to account
for everything that can go wrong, such as handling data storage, assigning participant codes, assuring
participants do not participate more than once, handling payment and so on.

3. Data Quality Concerns

The dominant concern with running experiments online is data quality. While the most obvious
concerns (e.g., motivation, distractions, stimulus timing) can be dealt with an appropriate design and
incentive strategy, we would like to stress the importance of recording and analyzing dropouts [16].
Unlike laboratory studies, participants may drop out at rates of up to 69%. In a dropout analysis of
88 local studies, Zhou and Fishbach [56] found that 20% had a dropout rate of over 30%. Alarmingly,
the authors of the analyzed studies were unaware of these dropouts. They also found that out of
289 published MTurk studies, only six disclosed dropout rates. Crucially, dropout rates can interact
with the experimental condition [50,56]. To arrive at sound conclusions, it is therefore obligatory to
report and analyze dropout rates.

Further, it is imaginable that stimulus presentation times or response times are unreliable because
of variations in internet speed or display settings throughout the experiment. However, almost all
online solutions operate by downloading (pre-buffering) the entire experiment onto the participant’s
machine. Additionally, modern screen refresh rates are almost exclusively set to 60 Hz (de facto
standard), making certain specifications of online studies a bit more predictable. Among others [57–59],
two recent large studies [60,61] investigated timing precision (unintended variability in stimulus
presentation) of several online and offline solutions. The online-based comparison found good overall
precision for Gorilla (13 ms), jsPsych (26 ms), PsychoJS (−6 ms) and lab.js (10 ms). Notably, these
means are inflated by particularly bad performance using the Safari browser and Mac OS X. The
offline-based comparison, PsychoPy and Opensesame achieved precisions of 1 ms to 4 ms, with only
minor exceptions [60,61], most notably with audio playback.

A study investigating response timing, for example, found an additive timing offset of 87 ms
(similar across conditions) in online recordings compared to lab studies, while reproducing all expected
task-based effects in various tasks (stroop, flanker, visual search, attentional blink) [62]. In addition to
timing, there could be concerns that participants might be less committed when they sit at home and
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are not directly observed by the experimenter. Several studies have shown that decreased attention to
the task is not necessarily found [63,64] and data quality is comparable to lab-based studies [65–73].
For example, in a recent study, participants completed several attention checks (in between outcome
measures) and there was no difference between lab participants and online participants in any of the
measures. However, the study showed that online participants had higher self-reported distraction (use
of cell phone, talking to another person, etc). In any case, experimenters should adjust their experiment
to account for the sample diversity (see the following section) and participants’ motivations [74].
Crump et al. [50] recommend that the latter can be accomplished by giving accuracy as feedback
following each trial; giving prompts to encourage speeded responding when participants do not meet
deadlines; and by giving summary assessments of performance after blocks of trials.

4. Considerations for Successful Online Studies

There are some aspects researchers should consider when starting out with running online studies
or transferring lab-based experiments to online systems [59,75,76] (see Figure 2). To a certain extent,
creating successful online experiments is similar to app development: one needs to think of a coherent
framework and constantly worry about what the users are doing with the ‘product’ and whether they
are using it as intended—without many opportunities for direct feedback. Experimental instructions
should be easy enough to be understood by a more diverse sample that is not necessarily used to
behavioral testing. Further, measures need to be taken to detect and discourage poor performance,
that is ‘fake’ participation. Finally, online studies need to be shorter than classical lab-based studies.

Lab-based studies typically attract young psychology students who are WEIRD (western, educated,
and from industrialized, rich, and democratic countries) [77]. The samples drawn from online
recruitment platforms are more representative of the general (online) population [9,10]. Study
participants have potentially never participated in a behavioral response time experiment. For this
reason, experimenters need to be more thorough when creating experimental instructions and ascertain
that they can stand on their own without verbal explanations (note: this is also a good recommendation
for lab-based studies). It is crucial that the instructions are comprehensible by people of a wider age
range representing many cultures and socio-economic backgrounds [10]. In the authors’ experience,
a pictorial step-by-step instruction leads to less misunderstandings or even dropouts compared to
a single page of text. It is advisable that instructions are forced to stay on the screen for some time
before continuation is allowed or an instruction check is added ([50], Experiment 10). In order to check
whether participants have truly understood the instructions, a test run and online evaluation before
beginning the main experiment is advised. Additionally, study management systems also incorporate
some monitoring functions to check that participants stayed on track. For example, it is possible to
monitor how often the browser tab running the experiment was minimized during the experiment
and viewing distance can be controlled [78]. Notably, on some platforms, explicit measures need to be
taken to prevent participants from completing a study twice [79].

The interaction between experimenter and participant is comparably indirect in online experiments.
Therefore, participants might be less inclined to be attentive simply for the sake of helping the
experimenter with their research. It should therefore be considered to state the relevance of the
research explicitly. It was shown that MTurk participants perform better, when the task is presented as
meaningful [80]. For many participants drawn from recruitment services, the dominant motivation for
participation is monetary compensation. While the amount of payment should be similar to lab-based
studies for ethical reasons, the data quality is not necessarily affected by higher monetary incentives.
In a category learning experiment by Crump et al. [50] (see Experiment 9), participants were paid
either $0.75 (low incentive group) or a base amount of $2 and a bonus of up to $2.50 depending on their
performance (high incentive group). They found that the incentive structure had no effect on learning
or error rates. However, they found that they could collect data more quickly and had fewer dropouts
when payment was higher. Typically, participants are paid a fixed amount after successful completion
of the study—regardless of how long it takes them to complete it. This is why some participants try to
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complete the experiment as fast as possible without sticking to the instructions (‘fake’ participation).
In order to ensure good data quality, the experimenters might need to adapt the experimental design
to discourage such behavior. This implies that the best experiments to run online include a validation
mechanism. Generally, forced-choice paradigms (both RT and accuracy types), in which one of the
alternatives is the correct choice, are especially suitable because the experimenter can evaluate the
participants’ performance during runtime, while judgment studies (e.g., moral dilemma tasks) are
harder to evaluate and objective performance or attention checks might need to be included into the
design. In the authors experience, an easy option for alternative-forced-choice tasks is to repeat the
trial each time participants answered incorrectly. The authors also experienced less dropouts when a
progress bar (comparable to surveys) was added. Gamification of the study in general promises to
yield better results [81].Brain Sci. 2020, 10, x FOR PEER REVIEW  7  of  11 
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Figure 2. Simplified overview of benefits of online experimentation and recruiting (A) as well as
suggestions for building online experiments (B), hosting online studies (C) and recruiting participants
online (D).

Finally, online experimental studies should be short. Participants would possibly not sit 60 min in
front of their screen and produce quality data. Since structured investigations are still missing, we
asked 103 Germans through appinio [82] at which time they would abort an online experiment that
offered minimum wage. Most respondents said ‘after 15 minutes’ (44%), followed by ‘after 30 minutes’
(35%), ‘after 45 minutes’ (10%) and ‘after 60 min or never’ (12%).
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Keeping these considerations in mind, for a certain subset of investigations (certainly not all),
carefully developed online studies have a huge potential. Many of the noise factors can be combated
with a large sample size and intelligent preparatory work. Taking behavioral experiments online is
facilitated by numerous steadily maintained tools ranging from simple libraries to complex ecosystems.
Researchers need to wisely choose the software based on their own prior experience, the lab’s resources
and the requirements of the general area of study.
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