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Loss of microbiota‑derived 
protective metabolites 
after neutropenic fever
Armin Rashidi1*, Maryam Ebadi1, Tauseef Ur Rehman1, Heba Elhusseini1, 
Hossam Halaweish2, Shernan G. Holtan1, Sivapriya Ramamoorthy3, Daniel J. Weisdorf1, 
Alexander Khoruts4 & Christopher Staley2

Neutropenic fever (NF) is a common complication of chemotherapy in patients with cancer which 
often prolongs hospitalization and worsens the quality of life. Although an empiric antimicrobial 
approach is used to prevent and treat NF, a clear etiology cannot be found in most cases. Emerging 
data suggest an altered microbiota-host crosstalk leading to NF. We profiled the serum metabolome 
and gut microbiome in longitudinal samples before and after NF in patients with acute myeloid 
leukemia, a prototype setting with a high incidence of NF. We identified a circulating metabolomic 
shift after NF, with a minimal signature containing 18 metabolites, 13 of which were associated 
with the gut microbiota. Among these metabolites were markers of intestinal epithelial health and 
bacterial metabolites of dietary tryptophan with known anti-inflammatory and gut-protective effects. 
The level of these metabolites decreased after NF, in parallel with biologically consistent changes in 
the abundance of mucolytic and butyrogenic bacteria with known effects on the intestinal epithelium. 
Together, our findings indicate a metabolomic shift with NF which is primarily characterized by a loss 
of microbiota-derived protective metabolites rather than an increase in detrimental metabolites. This 
analysis suggests that the current antimicrobial approach to NF may need a revision to protect the 
commensal microbiota.

Many patients with cancer develop a fever during periods of chemotherapy-induced neutropenia1. In patients 
with acute myeloid leukemia (AML), antibiotic prophylaxis against neutropenic fever (NF) is only modestly 
successful as most patients develop NF despite prophylaxis. In addition, current treatment for NF is based 
on broad-spectrum antibiotics which can disrupt gut microbial communities. Features of microbiota damage 
in these patients include microbiota community domination2,3, diversity loss4,5, and pathogen outgrowth6,7. 
Dysbiosis in these patients has been associated with adverse clinical outcomes including Clostridioides difficile 
diarrhea8, neutropenic fever9, and infections3,10–18.

As the etiology of NF cannot be identified in most cases, the current antibiotic-centered approach to NF 
prophylaxis and treatment is largely empiric. Therefore, the complications arising from antibiotic-induced dys-
biosis are partly a result of our limited understanding of NF pathogenesis19. In our recent work, we proposed that 
an altered crosstalk between the gut microbiota and host may trigger NF9. Our hypothesis in the present study 
was that the serum metabolome is altered after NF and at least some of the altered metabolites are associated 
with the gut microbiota. To test this hypothesis, we conducted a multi-omics analysis of the serum metabolome 
and gut microbiome before and after NF in patients with AML. We identified a major metabolomic shift which 
was unexpectedly characterized by a loss of microbiota-derived protective metabolites rather than an increase 
in detrimental metabolites.

Methods
In a prospective biorepository protocol (ClinicalTrials.gov: NCT03316456) approved by the University of Min-
nesota Institutional Review Board, we collected serum and stool samples from consecutive hospitalized adult 
patients with AML (newly diagnosed or relapsed/refractory) receiving chemotherapy with an expected ~ 4 weeks 
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of hospitalization. No other inclusion or exclusion criteria were used. Sample collection started with hospi-
tal admission and continued twice weekly (Mon/Thu) until day 28 of chemotherapy or discharge (whichever 
occurred first) (Fig. 1a). Serum samples were collected preprandially between 6 and 8 AM in standard red-top 
tubes, split in 250 μL aliquots, and stored at − 80 °C within 2 h of collection. Stool samples were collected in 95% 
ethanol-filled sterile tubes and stored at − 80 °C. NF was defined as an oral temperature of 100.4°F combined 
with an absolute neutrophil count (ANC) ≤ 0.5 × 109/L20. No specific threshold for fever duration was used to 

Figure 1.   Metabolomic changes in the serum after NF. (a) Study timeline. A window of + /− 1 day was 
permitted for each sample. (b) Pathway distribution of metabolites detected in 260 serum samples from 36 
patients with acute myeloid leukemia. 872 metabolites that were detectable in at least half of the samples were 
included. (c) Principal components analysis using metabolite concentrations. Pre-NF and post-NF samples in 
this unsupervised analysis are shown in different colors and shapes. (d) Volcano plot comparing metabolite 
concentrations between sample groups. Each point represents a metabolite. Points above the q = 0.05 line 
represent metabolites significantly associated with sample groups. q values were derived from per-metabolite 
two-sided Welch’s t-tests followed by correction for multiple testing using the Benjamini–Hochberg method. 
Points to the right (left) of the right (left) vertical line represent metabolites with > twofold higher concentration 
in post-NF (pre-NF) samples. These points were magnified for better visualization. Detailed results for 
significant metabolites are provided in Supplementary Data 2. (e) Hierarchical clustering using Euclidean 
distances and the complete agglomeration method for clustering. NF status was superimposed on the heatmap 
after the completion of clustering. Significant metabolites (q < 0.05) in the volcano plot (panel c) were used to 
generate the heatmap. Samples in panels (c–e) were classified into two groups: pre-NF (collected before NF) 
versus post-NF (collected after NF). NF: neutropenic fever.
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define NF. All subjects provided written informed consent and all methods were performed in accordance with 
the guidelines of the declaration of Helsinki.

Serum metabolome was profiled (Metabolon, Morrisville, NC) using untargeted, ultrahigh performance 
liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS). The gut microbiota was profiled by ampli-
con sequencing the 16S rRNA gene (V4 hypervariable region), followed by exact amplicon sequence variant 
(ASV) inference using DADA221 (R package dada2 v1.18.0) and taxonomic assignment using the SILVA non-
redundant v138.1 training set22. Raw sequence reads were uploaded to the NCBI Sequence Read Archive Bio-
Project #SRP141394. Further methodological details for metabolome and microbiome profiling are provided 
in supplementary methods.

Statistical analysis was performed in R 3.4 (R Foundation for Statistical Computing, Vienna, Austria). Metabo-
lites detectable in < 50% of all serum samples were excluded. Missing values of each remaining metabolite were 
imputed with the half minimum of the observed values for that metabolite, plus a small random noise generated 
from the Gaussian distribution to avoid ties in statistical analyses. To compare serum metabolomics before versus 
after NF, serum samples were classified into two groups based on whether they were collected before or after 
NF. Principal components analysis was used as an unsupervised algorithm to visualize metabolomic variation 
(package factoextra). Permutational analysis of variance (PERMANOVA) using Bray–Curtis distances (package 
vegan, adonis test with 999 permutations) was used to determine the contribution of sample groups and patient 
ID to metabolomic variation. Volcano plots were generated (package ggplot2) using the results of a two-sided 
Welch’s t-test comparing metabolite concentrations between the groups. Hierarchical clustering (package gplot, 
function heatmap.2) of serum samples was performed using Euclidean distances and the complete agglomeration 
method for clustering. NF status was superimposed on the heatmap after the completion of clustering. We used 
sparse partial least squares discriminant analysis (sPLS-DA; package mixOmics) to find a set of metabolites that 
maximize group separability of pre- versus post-NF samples23. Parameter tuning was done by tenfold cross valida-
tion. sPLS-DA model performance was evaluated using leave-one-out cross validation. The final set of sPLS-DA 
metabolites were selected using a stability threshold of 90%. These metabolites were used to define the metabo-
lomic signature of each group. All p values were adjusted for multiple comparisons by the Benjamini–Hochberg 
method24 and a threshold of 0.05 for the corrected p values (q values) was used to define statistical significance.

ASVs present in < 10% of the stool samples and samples with < 5000 reads or < 1000 copies/mL of 16S rRNA 
gene were excluded. To estimate alpha diversity (inverse Simpson index25) and compare it between pre- versus 
post-NF samples, we used scaling with ranked subsampling (SRS package)26 with normalization to the low-
est sequencing depth to adjust for sample depth variability. A Wilcoxon’s test was then used for inter-group 
comparison. Beta diversity was estimated using the Aitchison distance and centered log-ratio abundances27. 
Ordination was visualized using principal component analysis of the distance matrix. An adonis test with 999 
permutations was used to determine the partitioning of the distance matrix between pre- and post-NF groups28. 
To investigate the microbiome-metabolome association, we paired each serum sample with its nearest preced-
ing stool sample within 3 days. After combining all ASVs belonging to the same genus, genera present in < 20% 
of the samples were filtered. The final set of metabolites from sPLS-DA were normalized by rank-based inverse 
normal transformation (package FRGEpistasis, function rankTransPheno). A sparse linear log-contrast model29 
was then built to identify genera (predictors) that are associated with each metabolite (response variable). This 
approach preserves the compositional nature of microbiome data by applying a zero-sum constraint on the 
compositional vector. L1 regularization, applied for variable selection, eliminates unimportant features by set-
ting their regression coefficients to zero. We used tenfold cross-validation to optimize the tuning parameter and 
100 bootstraps for stability selection analysis. The final list of important genera included those that remained 
in > 90 of the bootstraps.

Results
Patient characteristics are summarized in Table 1. The most commonly used antibacterial antibiotics were levo-
floxacin (33 patients, 92%), 3rd or higher generation cephalosporins (30 patients, 83%), intravenous vancomy-
cin (21 patients, 58%), piperacillin-tazobactam (17 patients, 47%), metronidazole (12 patients, 33%), and oral 
vancomycin (4 patients, 11%). Since 94% of patients were newly diagnosed, their previous hospitalization and 
antibiotic history was negligible. 13 (36%) patients required parenteral nutrition. All but 3 patients developed NF, 
and no patient had more than one distinct episode of NF. NF occurred at a median (range) of 6 (-3 to 20) days 
after starting chemotherapy. The median (range) duration of NF was 3 (range: 1–19) days. Documented infec-
tions included bloodstream infection in 17 patients (47%), Clostridioides difficile infection in 4 (11%) patients, 
pneumonia in 5 (14%) patients, and a soft tissue abscess in 1 (3%) patient.

260 serum samples (pre-NF: 84, post-NF: 176) from 36 patients were available for metabolomic analysis. We 
detected 945 circulating metabolites, 872 of which were detectable in at least half of the samples and were stored 
for further analysis (Supplementary Data 1). The distribution of these metabolites into metabolic pathways is 
shown in Fig. 1b. Principal components analysis using metabolite concentrations suggested partial clustering 
of samples by NF (Fig. 1c). Over half of the variation in the metabolome was explained by whether the samples 
were collected before versus after NF (PERMANOVA R2 = 0.56, adonis test with 999 permutations). As patient 
ID did not contribute to metabolomic variance (R2 = 0.02), a patient-level factor was not considered in further 
analyses. The level of 396 metabolites was significantly different between pre- and post-NF samples (q < 0.05, 
two-sided Welch’s t-test; Fig. 1d and Supplementary Data 2). Hierarchical clustering using these 396 metabolites 
indicated separability of the groups (Fig. 1e).

Next, we used sPLS-DA to find the optimal linear combination of metabolites that maximized the separation 
of pre- versus post-NF samples. This supervised algorithm identified 20 metabolites on component 1 and 220 
on component 2 as important predictors of pre- versus post-NF status. Metabolite loadings on component 1 are 



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6244  | https://doi.org/10.1038/s41598-022-10282-0

www.nature.com/scientificreports/

shown in Fig. 2a and Supplementary Data 3. All but one metabolite (a sphingomyelin metabolite) were associated 
with pre-NF samples. Ofloxacin, an enantiomer of levofloxacin30, was the metabolite most strongly associated 
with pre-NF samples. Because our institutional antibiotic stewardship recommends levofloxacin prophylaxis 
against NF and its replacement with broader-spectrum antibiotics at the time of NF, this finding supports the 
internal validity of the sPLS-DA approach. Pre- and post-NF samples segregated using the first 2 components of 
sPLS-DA (Fig. 2b). Using the 20 metabolites in component 1, the area under the curve for group classification 
was 91.7% (Fig. 2c). In stability analysis, the stability of 18 of these metabolites was > 90% (Fig. 2a). All but one of 
these metabolites (urate) were significant (q < 0.05) predictors of NF status in the previous analysis using Welch’s 
t-test. Hierarchical clustering using the 18 sPLS-DA metabolites with > 90% stability separated pre- vsersu post-
NF samples, thus providing a minimal metabolomic signature for each group (Fig. 2d).

We performed two additional exploratory analyses. First, we excluded patients with bloodstream infection and 
compared pre- versus post-NF samples for the 18 metabolites in the previous analysis. The goal of this analysis 
(143 samples) was to evaluate whether these metabolites might explain fevers due to reasons other than bactere-
mia. The level of 17 of the 18 metabolites remained significantly different between the groups (p < 0.001). In the 
second analysis, we included only the last pre-NF and first post-NF samples for each patient and compared them 
for the same 18 metabolites. The goal of this analysis was to evaluate the potential effect of repeated measures 
on our results. Although sample size in this analysis was rather small (53 samples) and reduced our statistical 
power, the level of 9 of the 18 metabolites remained significantly different between the groups (p < 0.05). These 
analyses overall supported our main findings.

Inspired by the role of the gut microbiota in regulating circulating metabolites9,31,32, next we used sparse 
log-contrast modeling to identify genera within the gut microbiome that predicted the final set of 18 sPLS-DA 
metabolites within the next 3 days. We assumed that if a causal connection were present between a taxon and a 
metabolite, it would be present irrespective of fever status. Therefore, we included both pre- and post-NF sam-
ples. A total of 410 stool samples were collected, yielding 9,033,498 high-quality sequences and 25,110 ASVs. 
The median (range) number of reads per sample was 16,522 (5,193–114,449). Pre-NF samples had greater alpha 
diversity than post-NF samples (p = 0.04; supplementary Fig. 1). In beta diversity analysis, the first two principal 
components explained only about 20% of microbiota variation. As a result, although NF status (pre vs. post) was 
a significant contributor to microbiota compositional variation (adonis p < 0.001, 999 permutations), this was 
not readily apparent in the 2-dimensional ordination space (supplementary Fig. 1). After filtering rare ASVs, 
low-yield samples, and rare genera, we identified 20 genera in 339 samples. Of these, 220 could be paired with 
serum samples, yielding a total of 220 pairs for sparse log-contrast modeling. This analysis identified a final list 
of 38 stable associations between 13 genera and 13 metabolites (Fig. 3).

Discussion
In this multi-omics analysis, we identified a major serum metabolomic shift after NF. A minimal metabolomic 
signature included 18 metabolites which distinguished pre- versus post-NF samples with a high accuracy. Of 
particular interest among these metabolites were 2 citrulline and 4 indole derivatives, all associated with pre-
NF samples. Citrulline, an amino acid exclusively produced by intestinal epithelial cells, is a biomarker of total 
functioning enterocyte mass33,34. Indole is a metabolite of dietary tryptophan produced by specific commensal 
gut bacteria35 and absorbed into the blood. Indole metabolites augment intestinal barrier integrity and attenuate 

Table 1.   Patient characteristics 7 + 3: Anthracycline + Cytarabine.

Total, N 36

Age, years

 Median (range) 60 (27–80)

Sex, n (%)

 Male 22 (61)

 Female 14 (39)

Disease phase

 Newly diagnosed 34 (94)

 Relapsed/Refractory 2 (6)

Chemotherapy regimen, n (%)

 7 + 3 (with or without additional agent) or Vyxeos 28 (78)

 Clofarabine-based 3 (8)

 Others 5 (14)

Most common antibacterial antibiotics, n (%)

 Levofloxacin 33 (92)

 3rd or higher generation cephalosporins 30 (83)

 Intravenous vancomycin 21 (58)

 Piperacillin-tazobactam 17 (47)

 Metronidazole 12 (33)

 Oral vancomycin 4 (11)
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local mucosal inflammation36,37. The association of citrulline and indole with pre-NF samples suggests a protec-
tive role for gut barrier integrity and commensal microbiota against NF. Sphingomyelin, the only metabolite 
associated with post-NF samples, is a major lipid in the cell membrane. An essential component of sphingomyelin 
is a ceramide, known to mediate the rapid phase of febrile response to interleukin-1ß38. The finding that 17 of 
the 18 metabolites were associated with pre-NF samples and only 1 with post-NF samples suggests the pre-NF 
metabolome is enriched in metabolites that protect against NF. The post-NF metabolome is characterized primar-
ily by a reduction in these protective metabolites rather than an increase in detrimental metabolites. The current 
approach to the prevention and treatment of NF is antimicrobial, neglecting the potential value of protective 
metabolites produced by the commensal microbiota.

By analyzing the serum metabolome in conjunction with the preceding gut microbiome, we found candidate 
gut bacteria that may mediate some of the observed metabolomic changes. The regulatory role of gut microbiota 
on circulating metabolites in healthy individuals has been established31,32. Our analytic approach explicitly con-
sidered the compositionality of microbiota data. In addition, L1 regularization combined with stability selection 
eliminated most spurious associations and produced a short list of stable metabolite-bacteria associations that 
are likely biologically important. With 38 such associations, numerous novel hypotheses may be generated for 
future research. As an example, both citrulline metabolites and 3 of the 4 indole metabolites from sPLS-DA were 
among the metabolites significantly associated with the gut microbiota. Higher abundance of Akkermansia, a 
prototype mucolytic genus, predicted lower levels of all 3 indole derivatives in the blood. We recently reported 
that Akkermansia expansion in the gut in these patients predicted a higher incidence of NF in the next several 

Figure 2.   Sparse partial least squares discriminant analysis. (a) Metabolite loadings on component 1, with 
their stability shown next to each metabolite. Bars to the right (left) show metabolites associated with pre-NF 
(post-NF) samples. (b) Clustering of samples using metabolites on the first 2 components. (c) Receiver operating 
characteristic curve using metabolites on component 1 to predict sample groups. (d) Hierarchical clustering 
using metabolites on component 1 with > 90% stability. NF status was superimposed on the heatmap after the 
completion of clustering. NF: neutropenic fever.
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days and proposed this to be mediated by alterations in the host metabolic response9. Our findings in the pre-
sent work support this hypothesis. Similarly, Alistipes is another genus that lives within or in close proximity 
to the mucus and uses mucin as a nutrient. This genus was inversely associated with 2 indole and 2 citrulline 
metabolites in the present analysis. Intriguingly, Parabacteroides predicted higher levels of 2 indole derivatives. 
If this association is validated, supplementation may be considered as a potential approach to NF prophylaxis, 
especially in patients who have lower levels of this genus. Another interesting association was between Roseburia 
and 2 citrulline metabolites. This genus is one of most potent butyrate producers in the human gut39. Butyrate 
and other short-chain fatty acids provide tonic stimuli for the gut epithelium40.

Patients with NF commonly experience non-specific symptoms including malaise, fatigue, headache, loss of 
appetite, irritability, confusion, sleep alterations, and muscle aches, which often result in prolonged hospitaliza-
tion and poor quality of life41. In addition, fever can influence hematopoietic recovery after cytotoxic damage42. 
Whether the observed metabolomic changes mediate some of the fever-associated symptoms or mediate the 
effects of fever on hematopoietic recovery is subject to further investigation.

As diet is a regulator of the gut microbiome and serum metabolome, lack of granular dietary data is a limita-
tion of the present study. Furthermore, the findings of this study are associational in nature. Although some of the 
significant metabolites have known beneficial or detrimental effects in specific settings, their causal contribution 
to NF in patients with AML cannot be ascertained. Therefore, mechanistic studies are necessary to prove causality. 
Nonetheless, our findings support a model where the gut microbiota and gut barrier cooperate to protect against 
NF. A breakdown of this cooperation occurs because of disruptions to the microbiota (e.g. due to antibiotics) 
and gut barrier (e.g. due to chemotherapy), collectively increasing host susceptibility to pyrogenic stimuli. While 
the current anti-microbial practice implicitly assumes that the main cause of NF is a microbe (whether or not 
documented) or its detrimental products, our findings highlight the importance of the protective metabolites 
produced by the commensal gut microbiota. Therefore, strategies that protect/restore the microbiota and aug-
ment the gut barrier could be novel approaches to the prevention and treatment of NF.
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