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Leishmaniases are neglected diseases, caused by intracellular protozoan parasites

of the Leishmania (L.) genus. Although the principal host cells of the parasites are

macrophages, neutrophils are the first cells rapidly recruited to the site of parasites

inoculation, where they play an important role in the early recognition and elimination

of the parasites. The nature of early interactions between neutrophils and Leishmania

could influence the outcome of infection. Herein we aimed to evaluate whether different

Leishmania strains, responsible for distinct clinical manifestations, could influence ex vivo

functional activity of neutrophils. Human polymorphonuclear leukocytes were isolated

from 14 healthy volunteers and the ex vivo infection of these cells was done with

two L. infantum and one L. major strains. Infection parameters were determined and

neutrophils activation was assessed by oxidative burst, degranulation, DNA release and

apoptosis; cytokine production was measured by a multiplex flow cytometry analysis.

Intracellular amastigotes were rescued to determine Leishmania strains survival. The

results showed that L. infantum and L. major promastigotes similarly infected the

neutrophils. Oxidative burst, neutrophil elastase, myeloperoxidase activity and apoptosis

were significantly increased in infected neutrophils but with no differences between

strains. The L. infantum-infected neutrophils induced more DNA release than those

infected by L. major. Furthermore, Leishmania strains induced high amounts of IL-8

and stimulated the production of IL-1β, TNF-α, and TGF-β by human neutrophils.

We observed that only one strain promoted IL-6 release by these neutrophils. The

production of TNF-α was also differently induced by the parasites strains. All these results

demonstrate that L. infantum and L. major strains were able to induce globally a similar

ex vivo activation and apoptosis of neutrophils; however, they differentially triggered

cytokines release from these cells. In addition, rescue of intracellular parasites indicated

different survival rates further emphasizing on the influence of parasite strains within a

species on the fate of infection.
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INTRODUCTION

Leishmaniases are a complex group of neglected diseases, caused
by the intracellular protozoan parasites of the genus Leishmania.
They are endemic inmore than 98 countries and cause significant
morbidity and mortality worldwide. They are characterized by a
spectrum of clinical manifestations of the disease ranging from
the self-healing skin lesions of cutaneous leishmaniasis (CL) to
the visceral leishmaniasis (VL) that is fatal in the absence of
treatment. The different clinical manifestations depend on the
Leishmania parasite species and on the immune response of
the host among other factors (Herwaldt, 1999; Guizani et al.,
2011; Alvar et al., 2012). An estimated 700,000 to 1 million
new cases and some 26,000 to 65,000 deaths occur annually
(Who, 2019). In addition, the Global Burden of Disease 2017
study estimated the prevalence of leishmaniases to be 4.130
Million (95%Uncertainty Interval 3.515–4.966) (Diseases, 2018).
Maps presenting the global distribution of these diseases and
their local risk factors were recently updated; based on such
maps computer modeling predicted that 1.7 billion are living
in areas at risk for leishmaniases (Pigott et al., 2014). In spite
of sustained efforts, no effective human vaccine is yet available
(Kumar and Engwerda, 2014; Didwania et al., 2017; Seyed et al.,
2018). The mainstay therapy is based on the use of pentavalent
antimonials, which present adverse effects and increasingly
induce drug resistance (Hefnawy et al., 2017; Ghorbani and
Farhoudi, 2018). Studies in animal models have shown that
protection against the disease is associated with the production
of IL-12 by innate cells, which induces the proliferation of CD4+
Th1 cells, which in turn produce IFN-γ to activate macrophages
to kill the parasites (Sacks and Noben-Trauth, 2002; Kaye and
Scott, 2011). Furthermore, it seems that early events that occur
during the establishment of the infection in the skin are very
important to the development of an effective immune response
against Leishmania infection (Peters and Sacks, 2006). Infectious
Leishmania promastigotes are inoculated to the mammalian host
by sand fly bites, then these parasites transform into amastigotes
inside parasitophorous vacuoles within a range of host cells:
macrophages, dendritic cells and neutrophils as result of complex
host/pathogen/ vector interactions (Rodríguez andWilson, 2014;
Martínez-López et al., 2018). Studies on animal models have
shown that neutrophils are massively and rapidly recruited to
the site of infection and are the first cells to encounter the
parasites (Müller et al., 2001; Peters et al., 2008). Neutrophils
constitute the first line of defense against these pathogens.

They participate in their elimination by several mechanisms
including the production of reactive oxygen species (ROS),
the release of azurophilic granules that contain antimicrobial

proteins such as Neutrophil Elastase (NE) and myeloperoxidase

(MPO) (Segal, 2005; Nauseef, 2007). In addition, neutrophils
can release extracellular traps (NETs) composed of histones,
fibrous DNA and granule proteins (Brinkmann et al., 2004),
which can trap extracellular pathogens and in some cases kill
them (Kolaczkowska and Kubes, 2013; Bardoel et al., 2014). The
role of neutrophils in host defense against leishmaniases has
been well studied in animal models. Both protective and non-
protective roles against Leishmania infection have been reported

for these cells, which depend on Leishmania species and host
immune responses (Peters and Sacks, 2009; Charmoy et al.,
2010; Ribeiro-Gomes and Sacks, 2012; Carlsen et al., 2015b;
Hurrell et al., 2016). Indeed, it was shown that at the time
of L. major infection, depletion of neutrophils in susceptible
BALB/c mice reduced the parasite load and induced resistance
to L. major infection (Tacchini-Cottier et al., 2000). In contrast,
at the same time, the depletion of neutrophils in resistant
C57Bl/6 exacerbated parasite load and footpad lesion (Tacchini-
Cottier et al., 2000; Ribeiro-Gomes et al., 2004; Chen et al.,
2005). The use of neutropenic Genista mice that lack mature
neutrophils has provided further information about the role of
neutrophils in disease progression. Indeed, these mice were able
to control parasite load and resolve their lesion after L. mexicana
infection suggesting that neutrophils impaired the development
of effective immune response against this species (Hurrell et al.,
2015). The neutrophils can also influence the development of
the immune response against Leishmania by secreting cytokines
and chemokines. These cytokines can influence the subsequent
T cell differentiation (Tacchini-Cottier et al., 2000). In addition,
the chemokines can attract other innate immune cells to the
site of infection where they interact with neutrophils, which can
influence the early anti-Leishmania response (Ribeiro-Gomes
and Sacks, 2012; Hurrell et al., 2016). Ex vivo studies have shown
that the impact of neutrophils on parasite survival depends
on the Leishmania species. Indeed, L. major can escape killing
by neutrophils, which act as “Trojan horses” providing to the
parasites a silent entry into macrophages (Van Zandbergen
et al., 2004; Ritter et al., 2009). Furthermore, the NETs release
induced in vitro can trap the parasites but could kill them
or not (Guimarães-Costa et al., 2009; Gabriel et al., 2010).
Thus, we believe that understanding the interaction between
Leishmania species and neutrophils could help understanding
the mechanisms controlling these parasites. In this context, as
a first step we aimed to evaluate whether Leishmania strains
that belong to L. infantum and L. major species, responsible for
distinct clinical manifestations in the OldWorld, could influence
ex vivo functional activity of human neutrophils. The interactions
were addressed by the characterization of infection parameters
(percentage of infection, index of infection), by measuring the
oxidative burst, degranulation, neutrophils extracellular traps
(NETs) release and apoptosis. The cytokine production was also
measured by a multiplex flow cytometry analysis. Viability of
intracellular parasites was also assessed by an MTT assay on
rescued amastigotes.

MATERIALS AND METHODS

Ethical Statement
Blood sample collection was done from fourteen informed
healthy volunteers that consented by writing to participate to the
study. The Ethical committee of the Institut Pasteur de Tunis
approved this study (2018/07/I/LR11IPT04).

Parasites
Three laboratory strains were used in this study: Leishmania
(L.) infantum LV50 (MHOM/TN/94/LV50) was isolated
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from a visceral leishmaniasis case, L. infantum Drep-14
(MHOM/TN/96/Drep-14) from the lesion of a sporadic
cutaneous leishmaniasis patient (CL patient only), and L.
major Empa-12 (MHOM/TN/2012/Empa-12) from a zoonotic
cutaneous leishmaniasis case. Virulence of these parasites was
maintained by regular passages through BALB/c mice. Mice were
subcutaneously (s.c.) infected with 1 × 106 L. major (Empa-12)
stationary phase promastigotes. While 1 × 107 L. infantum
strains Drep-14 or LV50 stationary phase promastigotes were
injected intravenously (i.v.) in the lateral tail vein of BALB/c
mice. The L. major Empa-12 strain was isolated from the
infected footpad lesion. While L. infantum LV50 and Drep-14
strains were isolated from the mouse inguinal lymph node.
Samples taken from the lesion (in the case of L. major) or
lymph nodes (in the case of L. infantum) were cultured at 22 ◦C
in RPMI-1640/ Glutamax medium (Gibco BRL, Germany)
containing penicillin (100 U/mL) and streptomycin (100 µg/mL)
supplemented with 10 % heat-inactivated Fetal Bovine Serum
(FBS) (Gibco BRL, Germany). Cultures were monitored every
3–4 days for the presence of flagellated promastigotes forms
by microscope. The growing parasites were cryopreserved to
constitute the stocks used in this study. The growth kinetics
of each strain was established to determine the stationary
growth phase. Promastigotes at this phase were used in the
infection experiments.

Polymorphonuclear Neutrophil (PMN)
Isolation and Purification
Neutrophils granulocytes from fourteen healthy volunteer
donors were isolated based on density gradient centrifugation
using Ficoll-Paque density gradients and dextran sedimentation
as previously described (Kuhns et al., 2015). Briefly, with no
delay between sampling and purification, platelet-rich plasma
was removed from EDTA-anticoagulated (BD Vacutainer, BD
Bioscience, UK) blood by centrifugation at 500 g for 10min.
The blood cells then were overlayed on Ficoll-Paque (GE
Healthcare, Sweden) and the mononuclear cells were aspirated
and eliminated after centrifugation at 500 g for 30min at
+4 ◦C. The red blood cells were separated from the neutrophils
by sedimentation for 35min at room temperature in 6 %
dextran (Sigma, Denmark). The neutrophils rich supernatant
was collected by centrifugation at 300 g at +4 ◦C. The
remaining red blood cells were removed by a hypotonic
lysis Buffer (Sigma, Denmark). Finally, the neutrophils were
collected and washed two times with phosphate buffer saline
(PBS) and centrifuged at 300 g for 5min. The viability counts
of the PMNs were systematically checked by trypan blue
dye exclusion [0.4 % trypan blue solution (Sigma)]; viability
was estimated as > 99 %. The purity of granulocytes was
> 97 % as determined microscopically by morphological
analysis after May-Grunwald-Giemsa staining with RAL 555
Kit (RAL DIAGNOSTICS, France). The Supplementary Table 1

summarizes the contribution of the donors to the experiments.

Leishmania Infection of PMN
2 × 106 PMN were cultured in 24 wells plates for 18 h
at 37 ◦C and 5 % CO2 in RPMI-1640/ Glutamax medium

containing penicillin (100 U/mL) and streptomycin (100 µg/mL)
supplemented with 5 % FBS, in the presence or absence of
stationary phase Leishmania promastigotes at a ratio of 10
parasites per 1 neutrophil (Multiplicity Of Infection (MOI) 10
or otherwise as indicated). After 18 h of incubation, the cultures
were washed to remove extracellular parasites. Cells were then
fixed and stained with RAL 555 kit (RAL DIAGNOSTICS,
France) following the manufacturer’s instructions. The numbers
of infected cells and intracellular amastigotes within infected
cells were quantified by counting at least 100 cells under optical
microscopy. Infection index was calculated as: the percentage of
infected cells x mean amastigotes number per cell.

Measurement of Oxidative Burst
Superoxide anion (O2

−) production was measured using a
colorimetric nitroblue tetrazolium (NBT) assay, in which the
soluble yellow dye NBT is reduced by intracellular O2

− generated
upon activation of phagocytes forming insoluble blue black
formazan crystals. The oxidative burst assay was performed
as described previously (Marques et al., 2015). Briefly, the
neutrophils and the infected neutrophils, or the positive control
neutrophils that were stimulated with 100 nM Phorbol 12-
Myristate 13-Acetate (PMA), were incubated in triplicate in 1mL
of RPMI-1640/ Glutamax medium containing penicillin (100
U/mL) and streptomycin (100 µg/mL) supplemented with 5 %
FBS containing 0.2 % NBT (Sigma, China), at 37 ◦C and 5 % CO2

for 18 h, or at different time points: 1, 2, 3, 4, 5, 6, and 18 h when
we performed a kinetic analysis of O2

− production. Following
this incubation, the cells were washed with warm PBS and the
NBT deposited inside the PMNs was solubilized with 10 %
SDS and 0.1N HCl. Absorbance of dissolved NBT solution was
measured at 570 nm using a microplate reader (MULTISCAN
GO, Thermo Scientific, Finland). Results are expressed as the
mean values of O−

2 production from 14 donors ± standard
deviation (SD).

Degranulation Assays
Myeloperoxidase (MPO) and elastase activity of neutrophils
were measured spectrophotometrically in supernatants of PMN
and PMN infected with Leishmania parasites during 18 h, by
adding specific substrates. Neutrophils stimulated with 100 nM
PMA were used as a positive control. When we did kinetics
of enzymes release, we incubated the cells for 2, 4, 6, and
18 h. The activity of MPO was assessed in the supernatants as
described previously (Kumar et al., 2002). Briefly, 100 µL of
the substrate cocktail containing o-Dianisidine/H2O2 was added
to 100 µL of culture supernatants. The mixture was kept at
room temperature for 10min and the absorbance of oxidized
o-Dianisidine was measured at 450 nm. Elastase activity was
quantified by addition of 100 µL of 1mM elastase substrate [N-
methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide (Sigma, USA)]
to 100 µL of supernatants (Marques et al., 2015). After 3 h of
incubation at 37 ◦C, absorbance of the cleaved p-nitroanilide was
measured at 405 nm in a microplate reader (MULTISCAN GO,
Thermo Scientific, Finland). Results are expressed as mean values
of MPO and elastase production from 14 donors ± standard
deviation (SD).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 May 2019 | Volume 9 | Article 153

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Oualha et al. Leishmania Strains Activate Human Neutrophils

Quantification of DNA Released in the
Culture Medium
Neutrophils were incubated with Leishmania promastigotes as
described above or with 100 nM PMA as positive control, for
18 h. To quantify the release of DNA (hallmark of NET release)
into the culture supernatant, EcoR1 and HindIII (20 U/mL)
restriction enzymes (GE Health care, Amersham, Greece) were
added to the cultures as described (Guimarães-Costa et al., 2009)
to digest any released DNA, and were incubated for additional 4 h
at 37 ◦C. Then, the cells were centrifuged and DNA release was
quantified in the culture supernatants, using the Qubit 1x double
strandedHSAssay kit (Invitrogen, USA), by Qubit 4 Fluorometer
following the manufacturer instructions. Results are expressed as
mean values of NETs DNA release from seven donors± standard
deviation (SD). To visualize the DNA, we also did electrophoresis
on 0.7 % agarose gels in presence of ethidium bromide (0.5
µg/mL) at 40 V/cm, and observation under UV light.

Measurement of Neutrophils Apoptosis
For the detection of apoptotic or necrotic cell death, the
PE-Annexin V / 7-amino-actinomycin D (7-AAD) apoptosis
detection kit (BD Biosciences, San Diego, CA) was used
according to the manufacturer’s protocol. Briefly neutrophils
(1 × 106 cells/mL) were incubated in the presence or absence
of promastigotes (MOI of 10). After 18 h of incubation, the
extracellular parasites were removed as described above. Then,
the PMNs were washed with cold PBS and stained with PE-
Annexin V / PerCP-cy5.5-(7-AAD). After 15min of incubation
in the dark at room temperature, the cells were re-suspended
in 1x binding Buffer and the samples were acquired by flow
cytometry (FACS Canto II, BD Biosciences).

Cytometric Bead Array Assay (CBA)
Interleukin-8 (IL-8), interleukin-1β (IL-1β), interleukin-6 (IL-6),
interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), and
interleukin-12p70 (IL-12p70) protein levels were detected and
quantified in culture supernatants of neutrophils infected or not
by Leishmania promastigotes after 18 h of incubation at 37 ◦C
in the presence of 5 % CO2, by multiplex flow cytometry using
the BD Cytometric Bead Array (CBA): Human Inflammation
Cytokines kit according to the instructions of the manufacturer
(BD Biosciences, San Diego, CA). Briefly, 50 µL of mixed
antibody conjugated capture beads were incubated with 50 µL
supernatants or cytokine standard dilutions containing a mixture
of each recombinant protein, and with 50 µL of phycoerythrin
(PE)-conjugated detection antibodies. After 3 h of incubation, the
mixture was washed, centrifuged and re-suspended in 300 µL
of wash buffer. Finally, fluorescence signals of the beads were
acquired by flow cytometry (FACS Canto II, BD Biosciences, San
Diego, CA). Results were expressed as the cytokine concentration
obtained for each of ten tested donors.

ELISA Quantification of TGF-β
Active form of transforming growth factor beta (TGF-β) levels
were quantified, in culture supernatants of non-infected and
infected cells collected after 18 h of incubation, by Enzyme-linked
immunosorbent assay (ELISA) using Human TGF-β ELISA Sets

(BD Biosciences, San Diego, CA) according to manufacturer’s
instructions. All supernatants were activated by acidification
using 1N HCl and incubated for 60min at +4 ◦C. The activated
samples were then neutralized with 1N NaOH as recommended
by manufacturer’s instructions. The TGF-β concentrations in
the supernatants were interpolated from a standard curve using
known amounts of the recombinant cytokine. Results were
expressed as the mean cytokine concentration of technical
replicates, obtained for each of seven tested donors.

Statistical Assessment and Principal
Component Analysis
Most graphs were prepared using GraphPad Prism version
7.0 (GraphPad Software). Data were shown as mean values ±
standard deviation (SD). The non-parametric Mann–Whitney
test was used to assess the differences between two groups. These
differences were considered significant when the p-value was
< 0.05. ∗p <0.05, ∗∗p <0.01, ∗∗∗p <0.001 on the figures indicate
statistically significant differences at the indicated p-values.

Principal component analysis (PCA) was performed using
R3.4 under the RStudio environment. Since PCA can only be
performed on complete data, we considered through this analysis
data collected from healthy donors, out of the fourteen, for
which data was available for all the observations. Thus, data
collected from ten donors about the infection parameters and
the cytokine production under the non-infected (NI) and the
infected conditions were formatted into a data frame. This
led to 40 individuals (10 donors in 4 conditions) for which
11 variables were observed (infection index, percentage of
infection, Oxidative burst, Elastase, MPO, IL-12p70, IL-8, IL-
6, IL-10, IL1-β, and TNF-α). The observations “TGF-β” and
“NETs” were discarded in the analysis as it only concerned
seven donors and no missing data could be considered for
PCA. An additional observation, called “species,” was used as
a supplementary qualitative variable to generate the groups of
individuals according to the infection condition (NI, Drep-14,
LV50, and Empa-12). The package FactoMineRwas used for PCA
calculation and the package factoextra was used to generate the
corresponding figures.

Measure of Neutrophils Leishmanicidal
Activity Against Intracellular L. infantum
and L. major
To evaluate the impact of neutrophils activity on intracellular
Leishmania survival, promastigotes of each strain were incubated
with an excess of neutrophils at a ratio of 1 parasite per
10 neutrophils to allow efficient parasite internalization as
described previously (Carlsen et al., 2015a). Briefly, 2 × 106

neutrophils isolated from three donors were infected with 0.2
× 106 promastigotes (MOI of 0.1) in technical replicates in 24
well-plates. After 18 h of infection, the cultures were washed
to remove the extracellular parasites. Cells were then fixed
and stained with RAL 555 kit, and the infected cells and
the intracellular amastigotes per infected cells were quantified
by counting at least 100 cells under optical microscope. The
remaining cells were lysed by SDS (0.01 %), and the pellets were
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washed with PBS and resuspended in 100 µL Schneider medium
supplemented with 10 % FBS and cultured at 22 ◦C in 96 well-
plates. Parasites viability was assessed right after the lysis of the
cells and 24 h later, by a Methylthiazolyldiphenyl-tetrazolium
bromide (MTT) assay as described previously (Harigua-Souiai
et al., 2018). Briefly, 20 µL of MTT (5 mg/mL) were added
to each well and incubated at 22 ◦C. After 4 h of incubation,
the MTT is reduced to formazan crystals by the mitochondrial
dehydrogenases of the live parasites, and 150 µL of DMSO
was added to dissolve the formazan crystals. Absorbance was
measured at 570 nm using a microplate reader (MULTISCAN
GO, Thermo Scientific, Finland). A range of serial dilutions of
counted promastigotes (1:2) were performed and submitted to
MTT assays. The resulting linear equation was used to interpolate
the number of parasites recovered from the infected PMNs,
having an active metabolism and thus which are viable. Results
are expressed as mean number of viable parasites ± standard
deviation (SD).

RESULTS

Human Neutrophils Similarly Uptake
Leishmania Promastigotes From Different
Strains
To investigate the interaction between neutrophils and
Leishmania promastigotes, 2 × 106 PMN were infected
with stationary phase Leishmania promastigotes at various
MOI (3, 5, 10, and 15) and incubation times (2, 4, 6, 18, and
24 h). The cultures were washed to discard un-internalized
parasites. PMN were then fixed and stained with May Grunwald
Giemsa and assessed for the percentage of infected cells and
parasite burden. The optimum number of infected PMN and
intracellular parasites were obtained with 10:1 ratio and after
18 h of incubation (Supplementary Figure 1A). Thus, the
experimental conditions at MOI of 10 and 18 h of incubation
were chosen for the rest of our study. Neutrophils isolated

from 14 healthy donors were infected ex vivo with Drep-14,
LV50 and Empa-12 strains and infection parameters were
determined. Their comparison showed that the neutrophils were
similarly infected (Figure 1), according to all parameters tested:
the percentage of infection (Figure 1A), the infection index
(Figure 1B) and the parasite load (Figure 1C). Intracellular
parasites had an amastigote-like morphology and were therefore
designated as amastigotes (Supplementary Figure 1B). The
percentage of infected neutrophils was in average 56 % [50–68]
with Drep-14, 64.2 % [55–72] with LV50, and 60 % [54–67] with
Empa-12. The infection index was in average of 115 [88–177]
with Drep-14, 146 [129–183] with LV50, and 127 [114–142]
with Empa-12. The number of amastigotes within infected cell
(Figure 1C) showed that of the infected cells nearly 66 % [63–69]
carried only one to two parasites, while approximately 34 %
[30–36] of them had multiple parasites (3 to 6 parasites). The
mean amastigote number per cell was also similar for each strain,
in the range of [2.05–2.27]. Therefore, the mean percentage
of infected neutrophils and infection index were similar in
neutrophils infected with each strain (p > 0.05). Taken together
these results demonstrated that in these experimental conditions
there were no differences in the ability of the three tested strains
to infect human neutrophils.

Leishmania Promastigotes Upregulate
Neutrophil Oxidative Burst
Reactive oxygen species (ROS) are a critical component
of the microbicidal activity of neutrophils (Robinson, 2008;
Winterbourn et al., 2016). We investigated the effects of infection
with the different Leishmania strains on superoxide anion (O2

−)
generation in human neutrophils. We incubated infected and
non-infected cells isolated from 14 healthy donors with NBT
as described above. As shown in Figure 2, a significant increase
in O2

− production was observed following infection with the
three Leishmania strains or exposure to PMA as compared
with PMN alone, whereas no differences could be observed in
superoxide anion production by neutrophils infected with the

FIGURE 1 | Leishmania infection of PMNs. Human neutrophils were infected with Leishmania promastigotes (MOI of 10) for 18 h. Then, extracellular parasites were

removed and the cells were fixed and stained with May-Grünwald Giemsa kit. (A) The percentage of infected PMN, (B) the infection index and (C) the percentage of

cells carrying the designated number of amastigotes were quantified using optical microscopy, by counting at least 100 neutrophils. Data are shown as the mean

values from fourteen donors ± standard deviation (SD). Statistical comparisons were performed using the non-parametric Mann-Whitney test.
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FIGURE 2 | Measures of oxidative burst in Leishmania infected neutrophils.

PMNs, PMNs exposed to Leishmania promastigotes, and PMNs stimulated

with 100 nM PMA were incubated in triplicate in 96 well-plates in 100 µL of

RPMI-1640/ Glutamax medium plus penicillin (100 U/mL) and streptomycin

(100 µg/mL) supplemented with 5 % FBS containing 0.2 % NBT solution to

quantify intracellular O2
− production. After 18 h of incubation at 37 ◦C, in

presence of 5 % CO2, blue formazan particles were generated after NBT

reduction in activated neutrophils. Intracellular formazan deposits were then

solubilized by adding 100 µL of 10 % SDS / 0.1N HCl, and the absorbance of

the solution was measured at 570 nm. Data are shown as the mean values of

O2
− production from fourteen donors ± SD. Mann-Whitney test was used to

compare the absorbance of Leishmania infected PMNs to control PMN

cultures, and of the infected PMNs in a pair-wise manner; **p < 0.01 and ***p

< 0.001 indicate statistically significant differences at the indicated p-values.

Drep-14, LV50 or Empa-12 strains (p > 0.05). These results
suggested that the three Leishmania strains induced in the same
manner O−

2 production from human neutrophils. To confirm
that at 18 h after infection the O2

− production did not reach
a plateau, a kinetics of O2

− production (1, 2, 3, 4, 5, 6, and
18 h) was performed for three of the 14 donors. As shown in
the Supplementary Figure 2, the tested parasites were able to
similarly induce significant O2

− production at all times tested.

Leishmania Promastigotes Trigger
Neutrophils Degranulation
Degranulation of vesicles into the phagolysosome or in the
extracellular space is a key event for microbicidal activity.
Contents release of neutrophil granules contributes to the
elimination of pathogens (Kumar and Sharma, 2010). To
evaluate degranulation, we examined the release of MPO and
Neutrophil elastase, which are both azurophilic granule contents,
by neutrophils isolated from the 14 healthy donors in the culture
medium upon their infection by the different Leishmania strains.
Enzymatic activities were measured spectrophotometrically in
supernatants of non-infected and promastigote-infected PMN
through addition of the appropriate substrates (Figure 3). The
MPO (Figure 3A) and elastase activities (Figure 3B) were 2.4
and 2 fold higher, respectively, in the supernatants from

Leishmania- infected neutrophils as compared to the non-
infected neutrophils. We also found greater levels of MPO and
elastase activity in supernatants from PMA stimulated cells in
comparison to untreated neutrophils. Therefore, infection with
each of the three strains triggered in the same manner the
extracellular release of myeloperoxidase and elastase by human
neutrophils. Furthermore, to assess the absence of significant
differences in MPO and elastase production between strains
within the first hours of infection, a kinetics of released MPO
and elastase activities (2, 4, 6, and 18 h) was performed in case of
three of the 14 donors. As shown in the Supplementary Figure 3,
the three strains significantly, and similarly, increased MPO
and elastase release at all-times tested. In conclusion, our data
showed that all the tested strains induced in the same way the
degranulation of human neutrophils.

Leishmania Promastigotes Induce DNA
Release
NETs were described as a host defense mechanism of the innate
immune response. NETs involve the release of DNA into the
extracellular environment associated with nuclear and granular
proteins (Brinkmann et al., 2004; Guimarães-Costa et al., 2009).
To determine whether Leishmania strains trigger the extracellular
release of DNA, neutrophils purified from seven healthy donors
were infected or not with parasites for 18 h. Upon this time,
extracellular DNA was digested with two restriction enzymes
and the DNA released in the supernatants were quantified by
fluorometry on a Qubit.

The results showed that all parasite strains significantly
induced DNA (and thus likely NETs) release, in higher amounts
than non-infected neutrophils and PMA-stimulated neutrophils
(p < 0.01) (Figure 4). Moreover, the two L. infantum strains
induced more DNA release from infected neutrophils than the
L. major strain (p < 0.05). Furthermore, to prove the presence of
DNA in the supernatants, we did electrophoresis on agarose gels.
As shown on Supplementary Figure 4, the supernatants showed
the presence of DNA smears ranging from high molecular weight
DNA (> 10Kb) to lower DNA sizes as observed in other studies
(Sousa-Rocha et al., 2015; Stephan et al., 2016).

Leishmania Promastigotes Infection
Increases Neutrophils Apoptosis Rates
Neutrophils have a very short life span and they rapidly die
via apoptosis. Apoptotic cells express phosphatidylserine (PS),
which could be detected by PE Annexin V. To evaluate the
effect of Leishmania strains on neutrophils apoptosis, neutrophils
purified from three healthy donors (among the 14 selected) were
infected or not with parasites for 18 h. Then, cells were double
stainedwith Annexin V and the vital dye (7-ADD) to differentiate
between viable (PE-Annexin V−/ 7-ADD−), necrotic (PE-
Annexin V−/ 7-ADD+), early apoptotic (PE-Annexin V+/ 7-
ADD−) and late apoptotic and/or already dead PMN (PE-
Annexin V+/ 7-ADD+). The results showed a significant increase
in the percentage of apoptotic cells (PE-Annexin V+) following
exposure to Leishmania strains as compared to PMN alone
(Figure 5). Neutrophils viability was significantly decreased in
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FIGURE 3 | Leishmania promastigotes stimulate the degranulation of human PMNs. PMN cultures were infected with stationary phase promastigotes of Leishmania

strains or incubated with PMA (0 nM & 100 nM, as negative and positive control, respectively) for 18 h, at 37 ◦C in presence of 5 % CO2. Then, supernatants were

collected and tested for the presence of enzymes released in the culture medium. (A) The enzymatic activity of MPO was quantified by an enzyme-substrate reaction

using o-Dianisidine and hydrogen peroxide. The absorbance of oxidized o-Dianisidine was measured at 450 nm after 10min of substrate incubation at room

temperature. (B) The enzymatic activity of neutrophil elastase was determined from the same culture supernatants using a specific synthetic peptide substrate of

elastase that is cleaved to colorimetric p-nitroanilide (pNA). The release of pNA was measured at 405 nm after 3 h of incubation at 37 ◦C. Data are shown as the mean

values from fourteen donors ± SD. Mann-Whitney test was used to compare the absorbance of (PMN) vs. each (PMN-Leishmania strain) or (PMN-PMA)

supernatants, and of the infected PMNs in a pair-wise manner; **p < 0.01 and ***p < 0.001 indicate statistically significant differences at the indicated p-values.

FIGURE 4 | Leishmania promastigotes induce DNA release. Neutrophils (2 ×

105) were infected with Leishmania strains at a 10:1 ratio or with 100 nM PMA

as a positive control (0 nM PMA was the negative control) for 18 h at 37 ◦C in

presence of 5 % CO2. Then, EcoR1 and HindIII (20 U/mL) were added to the

medium to digest the DNA trapped in the released NETs. After 4 h of

incubation at 37 ◦C, the cells were centrifuged and released DNA was

quantified in the culture supernatant by DNA quantification using a dsDNA

High Sensibility Assay Kit on a Qubit. Data are shown as mean values from

seven donors ± SD. Pair wise comparisons of PMN vs. each strain-infected

PMNs or vs. PMN-PMA, and of infected PMNs between each other were

performed using the Mann–Whitney test; *p < 0.05 and **p < 0.01 indicate

statistically significant differences at the indicated p-values.

the presence of all tested Leishmania strains, whereas we detected
low percentages of both necrotic and late apoptotic PMN that
were not affected upon Leishmania infection (Figure 5A). No
statistically significant differences could be observed in apoptosis

of neutrophils infected with Drep-14, LV50, or Empa-12 strains
(Figure 5B). In conclusion, our data showed that the three L.
infantum and L. major strains tested in our study were able to
similarly increase the apoptosis of the tested human neutrophils.

Leishmania Strains Differently Induce
Cytokines Release From Neutrophils
As neutrophils are the first cells to arrive at the sites of
infection, they may influence the development of the anti-
Leishmania immune response by producing cytokines and
chemokines, which in turn can influence the outcome of
disease (Ribeiro-Gomes and Sacks, 2012; Hurrell et al., 2016).
In order to evaluate the immune response triggered by the
three Leishmania strains through the release of cytokines,
neutrophils purified from ten healthy donors were incubated
in the presence (MOI 10) or absence of each Leishmania
strain. Supernatants were then collected 18 h after infection,
and a cytokine multiplex analysis of culture supernatants
was performed by flow cytometry (Figure 6). As shown in
Figure 6A, infected neutrophils with each Leishmania strain
produced approximately 150 fold higher IL-8 amounts than the
non-infected neutrophils (Figure 6A). Additionally, IL-1β and
(active form) TGF-β production by neutrophils were significantly
induced by all strains (Figures 6C,G). Interestingly, we observed
that only Drep-14 strain promoted IL-6 release (Figure 6B) by
the neutrophils. The production of TNF-α was also significantly
induced by all parasite strains (Figure 6D), whereas Drep-14
induced the highest TNF-α amounts as compared to LV50 and
Empa-12. The IL-10 and IL-12p70 cytokines (Figures 6E,F) were
neither produced in the supernatant of the non-infected nor of
the infected neutrophils. All these results demonstrated that the
three Leishmania strains have differently affected the pattern of
cytokines production by the human neutrophils.
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FIGURE 5 | Increased neutrophils apoptosis upon Leishmania promastigotes infection. Neutrophils isolated from three donors were infected or not with Leishmania

parasites (MOI of 10). After 18 h of infection, the cells were labeled with PE Annexin V / 7-ADD and analyzed by FACS. (A) Representative dot plots of non-infected

PMN and PMN infected with Drep-14 (PMN+Drep-14), with LV50 (PMN+LV50) or with Empa-12 (PMN+Empa-12) were labeled with Annexin V vs. 7-ADD. The plots

illustrate the results obtained for one of three donors tested. (B) Percentage of PMN Annexin V+ of non- infected and infected PMN of three donors. Data are shown

as mean percentage of apoptotic PMN ± SD. Pair- wise comparisons of the non-infected PMN vs. each strain- infected PMN were performed using the

Mann–Whitney test; *p < 0.05 indicates statistically significant differences.

Principal Component Analysis Reveals
Strain-Dependent Cytokine Production
Profiles
In order to compare the effect of each donor immune response
to the effect of the Leishmania strain on the cytokine production
profiles by human neutrophils, we generated 3D histograms of
the data (Supplementary Figure 5). The histograms suggested
no donor-specific variability in cytokines production from one
side and a possible strain-specific variability from the other. To
statistically confirm such observations, we performed a principal
component analysis (PCA) using data from ten individuals
(donors) for which 11 observations could be collected under
four conditions (non-infected (NI), infected with Drep-14, LV50,
or Empa-12 strains). This analysis consisted in an orthogonal
linear transformation of the data that led to its projection in
a new coordinates system, composed of linearly uncorrelated
variables called the principal components (PCs). The objective
was to observe a maximum of variance of the data on the
first PCs, and thus to be able to reduce the dimension of
the data while observing the possible variations among the
individuals. Herein, the PCA resulted in 69.6 % of the total
variation on the first two principal components (PC1: 51 %

and PC2: 18.6 %), which indicated reliability of the analysis.
The projection of the individuals on the 2D plot composed by
PC1 and PC2, presented a clear separation of the non-infected
vs. Leishmania-infected individuals (Figure 7A). Observations
on all individuals infected by each strain were presented
in different colors. The centroids of each strain group and

the geometry of the projections suggested that no significant

difference could be observed between the LV50 and the Empa-

12-infected individuals. Both groups were centered and mostly

aggregated in the same plane quarter with a slight diffusion

along PC2. Whereas, the Drep14-infected individuals presented
a more diffuse geometry along PC1 and PC2, simultaneously.

Noticeably, PC1 mostly segregated the non-infected vs. infected

populations (Figure 7B) and PC2 distinguished the infection
parameters (infection index, percentage of infection, oxidative
burst, Elastase, andMPO) vs. the cytokines IL-6, IL-10, IL1-β, and
TNF-α production. This suggested that all three strains induced
the infection in an equivalent manner, whilst Drep-14 induced
different cytokine production profiles as compared to LV50 and
Empa-12. IL-8 production presented the least variation between
the strains. IL-12p70 production appeared as non-correlated
to the infection conditions. Thus, this statistical analysis of all
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FIGURE 6 | Effect of Leishmania strains on cytokines production after ex vivo infection of human PMNs. Neutrophils were infected or not by Leishmania parasites

(MOI of 10). Then, supernatants were collected after 18 h of incubation. The amounts of (A) IL-8, (B) IL-6, (C) IL-1β, (D) TNF-α, (E) IL-10, and (F) IL-12p70 protein

were quantified from (50 µL) culture supernatants using the BD Cytometric Bead Array (CBA) Human Inflammation Cytokines kit. The amount of (G) TGF-β was

quantified from the supernatants (100 µL) by Enzyme-linked immunosorbent assay (ELISA). Results were expressed as the cytokine concentration obtained from

seven (TGF-β) or ten sampled donors. The horizontal bars indicate the median value of cytokine production. Statistical pair- wise comparisons of PMN vs. each strain-

infected PMN, and of strain- infected PMNs were performed using the Mann–Whitney test; *p < 0.05, **p < 0.01, and ***p < 0.001 indicate statistically significant

differences at the indicated p-values.

the results together reveals a strain (and species) dependent
cytokine production.

Leishmania Strain Dependent Survival
Within Infected Neutrophils
Our previous results indicated that the neutrophils differently
responded to the strains tested. So we assessed whether the
neutrophils differently impair intracellular parasite survival using
a model of infection where most parasites would be internalized,
thus leaving very few extracellular ones (Carlsen et al., 2015a).
To this end, 2 × 106 neutrophils purified from three donors
were infected with 0.2 × 106 parasites (MOI of 0.1) for 18 h
and the number of internalized parasites was quantified using
optical microscopy. The percentage of infected cells was similar
for the 3 strains ≈8 % (Figure 8A). The number of intracellular
parasites was estimated to be 0.18 × 106 for the strains Drep-
14 and Empa-12, and 0.19 × 106 for LV50 (Figure 8B). These
values are considered as equivalent. Thus, all strains had a similar
infectivity index in average 28.5 [28–29]. Internalized parasites
were then recovered from the infected PMN after cellular lysis,
and their viability was assessed right after the lysis and after 24 h
of incubation at 22 ◦C, using an MTT assay. The interpolated
number of viable parasites was compared to the intracellular

amastigotes counts by microscope and the percentage of viability
was determined at the 2 time points (Figure 8C). Whereas, 87.8
and 82 % of LV50 parasites were viable at lysis and 24 h later,
respectively, the estimates were significantly reduced in case of
the other two strains, Drep-14 (43.6 % vs. 30.4 %) and Empa-12
(48.2 and 48.3 %). The difference in survival of the Drep-14 and
EMPA-12 strains vs. LV50 was considered to be significant at the
two time points tested.

Therefore, while all strains presented the same infectivity,
the results clearly indicated that their intracellular survival
was different. Noticeably, both dermotropic strains that belong
to two different species: L. infantum and L. major showed
poorer survival rates as compared to the viscerotropic LV50
strain (L. infantum).

In conclusion, our results suggest that intracellular
leishmanicidal ability of the tested human neutrophils will
depend on the Leishmania strains, even for the same species.

DISCUSSION

Our objectives were to assess effect of strains of the L. infantum
and L. major species that cause different clinical manifestations
(VL or CL) on ex vivo human neutrophils. To this end, we
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FIGURE 7 | Principal component analysis results. The PCA was performed using data from ten donors for eleven observations (infection index, percentage of

infection, Oxidative burst, Elastase, MPO, IL-12p70, IL-8, IL-6, IL-10, IL1-β, and TNF-α) under four conditions (NI= Non-Infected, and three infected conditions with

the Drep-14, LV50 or Empa-12 strains). (A) The individuals’ map shows the distribution of the population projected on the 2D plane composed of the first two

principal components PC1 and PC2 (Dim1 and Dim2, respectively). (B) The variable factors map shows the projection on the first two principal components (PC1 and

PC2) of the different observations.

FIGURE 8 | Intracellular Leishmania survival in ex vivo infected neutrophils. Neutrophils isolated from three donors were infected or not by Leishmania parasites (MOI

of 0.1) for 18 h. Then, the extracellular parasites were removed and cells were fixed and stained with May-Grünwald Giemsa kit to determine, under optical

microscope, the percentage of infected PMN (A) and the percentage of cells carrying the designated number of amastigotes (B) by counting at least 100 neutrophils.

The PMN cultures were lysed at 18 h, by 0.01 % SDS, washed with PBS and resuspended in 100 µL Schneider medium supplemented with 10 % FBS and cultured

at 22 ◦C. (C) Parasites viability was assessed right after the lysis of the cells and 24 h later by an MTT assay. Data are shown as mean values of number ± SD. We

performed the non-parametric Mann–Whitney test to compare infection parameters (A,B), and in (C): (i) for each strain, the number of Internalized Parasites (IP) within

the infected cells vs. the number of Viable Parasites (VP) after lysis at each time point, and (ii) between strains, in a pair- wise manner, the number of surviving

parasites at each time point; *p < 0.05 indicates statistically significant differences.

have used neutrophils purified from healthy human donors
and established conditions that allowed optimal infection of the
cells by using stationary phase promastigotes. We reached 65 %
infection upon 18 h incubation at an MOI 10. With a higher
MOI we observed an extensive cell lysis and so we retained
the MOI 10 condition. Previous studies provided evidence that
either human or murine neutrophils internalize promastigotes of

a range of Leishmania species including L. major (Laufs et al.,
2002; Van Zandbergen et al., 2004; Peters et al., 2008; Mollinedo
et al., 2010; Ricci-Azevedo et al., 2016; Ronet et al., 2018) and L.
infantum (Rousseau et al., 2001; Thalhofer et al., 2011; Marques
et al., 2015; Quintela-Carvalho et al., 2017; Sacramento et al.,
2017; Valério-Bolas et al., 2019). Species of the Viannia subgenus
internalized more parasites than those of the Leishmania
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subgenus (L. infantum; L. amazonensis) (Valério-Bolas et al.,
2019). Here we confirmed infection of human neutrophils by
in vitro promastigote forms of strains of the L. major or L.
infantum species. The intracellular parasites had an amastigote-
like morphology and were therefore designated as amastigotes.
This indicated that in our experiments the parasites underwent
morphological transformation within the neutrophils. Previous
studies also observed “amastigotes or amastigote- like forms”
within promastigote- infected neutrophils as soon as after 3 h
incubation (Marques et al., 2015; Quintela-Carvalho et al., 2017;
Valério-Bolas et al., 2019). In addition, we did not observe
any significant differences between the strains in the different
infection parameters measured at two different MOIs (10 and
0.1). Interestingly, with the MOI 10 experiments, 34 % of the
infected cells were found to contain 3 to 6 amastigotes. This
may be correlated with the fact that more than 2 parasites were
uptaken at this higher MOI. Amastigotes were also seen to
replicate within neutrophils (Hurrell et al., 2017) but we cannot
ascertain it was the case here.

Neutrophils, as key component of the innate immune system,
play a pivotal role in first line defense against invading pathogens
through phagocytosis, the release of granule contents (Segal,
2005; Nauseef, 2007) and the production of NETs (Brinkmann
et al., 2004; Guimarães-Costa et al., 2009). Upon phagocytosis,
neutrophils NADPH oxidase is activated and produces the
superoxide anion (O2

−) (Pham, 2006) leading to the production
of antimicrobial molecules such as ROS, which contribute to the
killing of intracellular parasites such as L. donovani and L. major
(Pearson and Steigbigel, 1981; Laufs et al., 2002). Neutrophils
from VL patients displayed impaired effector functions but they
were able to phagocyte L. donovani similarly to neutrophils
from healthy controls, which suggested a role in the survival
and dissemination of L. donovani (Yizengaw et al., 2016). In
contrast, other studies documented differences in the induction
of oxidative burst response depending on Leishmania species.
It was significantly higher in L. braziliensis-infected murine
neutrophils than in those infected by L. amazonensis (Carlsen
et al., 2015a). Herein, we report that the tested L. infantum and
L. major strains similarly induced high oxidative burst in the
infected human neutrophils at different time points.

Release of azurophilic granules that contain antimicrobial
proteins such as NE and MPO, into the phagolysosome
or the extracellular space of infected neutrophils, plays a
crucial role in pathogens elimination (Segal, 2005; Nauseef,
2007). Degranulation was observed in human, murine and in
canine neutrophils infected by different Leishmania species:
L. braziliensis (Carlsen et al., 2015a; Falcão et al., 2015), L.
amazonensis (Tavares et al., 2014; Carlsen et al., 2015a), L.
infantum (Marques et al., 2015; Pereira et al., 2017). Here, we
have observed that the tested L. infantum and L. major strains
induced the neutrophils degranulation with similar NE and
MPO production.

The release of NETs, also known as NETosis, in response to
different Leishmania species has been described in human or
murine neutrophils. These extracellular structures made of fiber-,
web- and tube- like elements emitted by activated neutrophils
are rich in histones (toxic proteins to pathogens), DNA, and

granular and cytosolic proteins such as NE or MPO, and are
able to entrap the parasites (Guimarães-Costa et al., 2009;
Valério-Bolas et al., 2019). In case of L. infantum, it appeared
that tube-like structures could allow coiling phagocytosis of
promastigotes by murine neutrophils (Valério-Bolas et al.,
2019), an unconventional phagocytosis mechanism also used by
macrophages to internalize the parasites (Hsiao et al., 2011). L.
amazonensis induced the formation of NETs by a mechanism
involving surface lipophosphoglycan (LPG) and was killed by
them (Guimarães-Costa et al., 2009). L. donovani and L. infantum
were also shown to induce NETs release but they escaped NETs
killing owing to their LPG (Gabriel et al., 2010) or their 3’-
nucleotidase/nuclease activity (Guimarães-Costa et al., 2014),
respectively. Furthermore, L. mexicana induced the formation of
NETs but was also not killed by them through a not reported
mechanism (Hurrell et al., 2015). We here report that the 3 L.
infantum and L. major strains induced the release of DNA in
the extracellular medium by human neutrophils, suggesting the
presence of NETs. L. infantum released more DNA amounts
than L. major suggesting that the intensity of this release may
be species-specific. A difference between the DNA amounts
released by the two L. infantum strains was also noticed although
not considered significant. In line with this observation, it
was recently shown that murine neutrophils exposed to L.
amazonensis emitted fewer NETs than those exposed to L. shawi
or L. guyanensis (Valério-Bolas et al., 2019). L. infantum also
induced more NETs release than L. major in human neutrophils
(Guimarães-Costa et al., 2009).

Different studies reported that L. major, L. donovani and
L. infantum can delay human, murine or canine neutrophils
apoptosis and prolong the cell’s life span to ensure an intracellular
environment favorable to parasites survival, and their silent
entry in macrophages (Aga et al., 2002; Gueirard et al., 2008;
Sarkar et al., 2013; Marques et al., 2015; Pereira et al., 2017).
In contrast, L. amazonensis and L. braziliensis induced murine
neutrophils apoptosis and accelerated their death (Carlsen et al.,
2013; Falcão et al., 2015). In the present study the tested L.
infantum and L. major strains increased apoptosis in the donors
tested. This difference between our results and those reported in
previous studies for these species could be due to the difference
between strains, the genetic background of the donors and/or
the experimental conditions (MOI, infection time, etc). Further
studies are necessary to further investigate apoptosis induced
by these species and cellular mechanisms involved in death.
Notably L. infantum infected neutrophils were shown to undergo
necroptosis in presence of specific caspase 8 inhibitor (and so
when apoptosis was inhibited) (Barbosa et al., 2018).

In addition to the classical functions of phagocytosis and
killing of invading pathogens, neutrophils can modulate the
immune responses against Leishmania infection by secreting
chemokines that attract macrophages and dendritic cells to the
site of infection (Ribeiro-Gomes and Sacks, 2012; Hurrell et al.,
2016), and also cytokines that influence T cells differentiation
(Tacchini-Cottier et al., 2000). Indeed, the early wave of
neutrophils in L. major-infected BALB/c was shown to express
IL-4, and to induce the development of a Th2 response and the
partial control of the disease (Tacchini-Cottier et al., 2000) or its
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exacerbation (Chen et al., 2005). Furthermore, the interactions
between neutrophils and macrophages or dendritic cells were
shown to influence the outcome of L. major infection in animal
models (Ribeiro-Gomes et al., 2004, 2012). To our knowledge,
the present study is the first addressing the determination of
cytokines produced by human neutrophils exposed to different
Leishmania species using cytometry bead assays (CBA). The
choice of this method rather than more classical ones: ELISA or
real time PCR (RT-PCR), relied on the limited sample volume
needed for the CBA assays, their high sensitivity, the time gain
and the diminution of inter assay variations (Faresjö, 2014).

IL-8 enhances the early recruitment of neutrophils to the
site of infection (Müller et al., 2001) and activates their
functions, such as the phagocytosis (Scapini et al., 2000). IL-8
produced by neutrophils seems to have a limited role in human
leishmaniasis as neutrophils from either asymptomatic or non-
healing individuals produced high and similar levels of IL-8 after
exposure to L. major (Safaiyan et al., 2011). Here, we report
that human neutrophils exposed to L. infantum or L. major also
produced high amount of IL-8 as in previously reported studies
(Laufs et al., 2002; Van Zandbergen et al., 2002; Safaiyan et al.,
2011; Keyhani et al., 2014).

TNF-α produced by neutrophils plays an important role for
leucocytes migration and for DC and macrophages activation
and differentiation (Nathan, 2006). Furthermore, it can induce
the neutrophils degranulation at the site of infection, thus it
influences the development of an efficient immune response
against the parasite (Nathan, 2006). Our results showed that
all Leishmania strains tested induced the production of TNF-
α by the neutrophils of the healthy donors of this study
as previously described in case of L. major exposed human
neutrophils (Safaiyan et al., 2011), or L. braziliensis- exposed
murine neutrophils (Falcão et al., 2015). Notably, TNF-α release
was significantly higher from Drep-14- infected neutrophils than
from LV50 and Empa-12- infected ones.

IL-12 and IL-10, which are important immune modulatory
cytokines known to favor Th1 or Th2 type responses,
respectively, were not induced by the strains tested as reported
in previous studies using human and murine neutrophils (Van
Zandbergen et al., 2006; Falcão et al., 2015). In contrast,
neutrophils from L. major infected C57BL6 mice were able to
induce the secretion of IL-12p70 and IL-10 (Charmoy et al.,
2007). This discrepancy could be due to the host origin of the
neutrophils. In line with this hypothesis, in the same study, L.
major-infected BALB/c neutrophils were unable to induce the
secretion of IL-12p70 and IL-10 (Charmoy et al., 2007).

The production of anti-inflammatory TGF-β was associated
to the development of non-protective response against L. major
infection (Van Zandbergen et al., 2006). Furthermore, it was
shown that TGF-β favors the uptake of apoptotic cells by
macrophages (Fadok et al., 1998). Our observation that human
neutrophils produced high amounts of TGF-β after exposure
to L. infantum or L. major strains is consistent with previous
studies that highlighted the prominent role of neutrophils in the
creation of a microenvironment favorable for parasite survival
and the exacerbation of the disease (Safaiyan et al., 2011; Hurrell
et al., 2015). In contrast to our results and other studies, Keyhani

et al. reported that L. major failed to induce expression of TGF-
β mRNA in human neutrophils (Keyhani et al., 2014). This
discrepancy could be due to the methods used for quantification
of cytokine expression: CBA in our study and RT-PCR in the
mentioned one, and the other experimental conditions.

IL-1β is a pro-inflammatory cytokine that has a controversial
role in murine leishmaniasis. IL-1β promotes the development
of leishmaniasis in L. major infected susceptible BALB/c mice
(Voronov et al., 2010). Furthermore, the inflammasome -derived
IL-1β production was important to develop an efficient immune
response against L. braziliensis, L. amazonensis, and L. chagasi
infection (Lima-Junior et al., 2013) but it failed to induce
resistance against the infection of the resistant C57BL/6 mice
by L. major Seidman strain (LmSd) (Charmoy et al., 2016) or
the hamster infection by L. donovani (Dey et al., 2018). Both
studies highlighted the role of the early production of IL-1β in
sustaining the recruitment of neutrophils and in inducing the
exacerbation of the disease (Charmoy et al., 2016; Dey et al.,
2018). Few studies assessed the production of IL-1β by human
neutrophils. Our results showed that human neutrophils exposed
to L. infantum or to L. major were able to produce IL-1β as
previously described (Keyhani et al., 2014). Contrary to our
results, it was also shown that L. infantum down regulates the
expression of IL-1β in murine neutrophils (Marques et al., 2015).
This discrepancy could be due to the strains, the host origin of
the neutrophils, or the methods used for the detection of this
cytokine: CBA detection of the protein vs. quantitative measure
of the transcript, or to the time of detection: 18 h here and 3 h in
the mentioned study.

IL-6 is a pleiotropic cytokine produced by many cells that is
involved in B cell maturation, macrophages differentiation and
promotion of Th2 differentiation (Kishimoto, 2005; Kopf et al.,
2010). In addition, with TGF-β, IL-6 induces the differentiation
of Th17 cells and inhibits regulatory T cells generation (Bettelli
et al., 2006; Kimura and Kishimoto, 2010). IL-6 plays also a
pivotal role in the regulation of neutrophils trafficking during
inflammation, by regulating the production of chemokines and
by inducing neutrophils apoptosis (Fielding et al., 2008). The role
of IL-6 in leishmaniases has been assessed in animal models. It
was shown that BALB.B mice that are deficient for IL-6 were
still susceptible to L. major infection, and they were not able
to resolve their infection (Titus et al., 2001). In contrast, IL-6
deficient C57BL/6 mice were able to control the infection by L.
major as the wild type corresponding mice (Moskowitz et al.,
1997). Furthermore, multiple studies have shown a correlation
between the high level of some cytokines, including IL-6, and
the severity of visceral leishmaniasis (Ansari et al., 2006; Van
Den Bogaart et al., 2014; Dos Santos et al., 2016; Ramos et al.,
2016) and cutaneous leishmaniasis (Latifynia et al., 2012; Espir
et al., 2014). To our knowledge, this is the first study addressing
the determination of IL-6 protein levels produced by human
neutrophils after exposure to Leishmania species. Our results
showed that only the Drep-14 strain induced the production of
IL-6 by human neutrophils. Notably, this strain also induced
higher levels of TNF-α and IL-1β than the other two strains, LV50
and Empa-12 while the levels were comparable in case of the 4
other cytokines measured.
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Collectively, our results suggest that the response of human
neutrophils in vitro, at least for the production of cytokines
and DNA release, seem to depend on the Leishmania strains
and species. Although, the three Leishmania strains used in
the present study induced very high and comparable levels
of TGF-β, there was a differential production of the other
inflammatory cytokines: TNF-α, IL-1β, and IL-6 according to
the strain and species. Importantly, the statistical analysis of our
results consolidated the fact that the strain (within the same
species) appeared as the main drive in influencing the donors’
cell response to the infection. This is further corroborated by
the measures of parasite survival. In our experiment, while all
strains presented similar infection index, the number of viable
parasites was significantly lower in case of the dermotropic
strains Drep-14 and Empa-12 that belong to two different species,
L. infantum and L. major. Whereas, in case of the viscerotropic
L. infantum (LV50 strain) the number of rescued parasites
was similar to the number of internalized ones. This indicates
that different leishmanicidal mechanisms are may be triggered
within the infected cells according to the parasite strains and
species. Importantly, our results point that in the interaction of
a Leishmania species with human blood neutrophils, the parasite
strains may differently influence the fate of the infection. Taking
account that only three laboratory strains of two species were
used in the present study, it would be interesting to assess the
effect of more strains and clinical isolates of these species on
human neutrophils infection and activation. Interestingly, this
would also open ways to study relationship between clinical
origin or genetic background of the strains (/species) and the
immune response induced.

In conclusion, the present study established an infection
model of human neutrophils to evaluate ex vivo their responses
to L. infantum or L. major strains infection. Our study clearly
demonstrated that the strains were able to induce similar
ex vivo activation and apoptosis of the tested human neutrophils.
However, they differently triggered DNA and inflammatory
cytokines release from the neutrophils suggesting that these
responses are Leishmania species- and strain- specific notably
in case of L. infantum. Intracellular survival of the parasites
also depended on the strains and species. Further study on
the mechanisms involved in the responses triggered by these
strains needs to be developed. Likewise, the effect of these

differentially activated neutrophils and different parasite survival
on macrophage infection needs investigation.
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