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Abstract

Background: With up to 240 million people chronically infected with hepatitis B
worldwide, including an estimated 2 million in the United States, widespread
screening is needed to link the infected to care and decrease the possible
consequences of untreated infection, including liver cancer, cirrhosis and death.
Screening is currently fraught with challenges in both the developed and developing
world. New point-of-care tests may have advantages over standard-of-care tests in
terms of cost-effectiveness and linkage to care. Stochastic modeling is applied here
for relative utility assessment of point-of-care tests and standard-of-care tests for
screening.

Methods: We analyzed effects of point-of-care versus standard-of-care testing using
Markov models for disease progression in individual patients. Simulations of large
cohorts with distinctly quantified models permitted the assessment of particular
screening schemes. The validity of the trends observed is supported by sensitivity
analyses for the simulation parameters.

Results: Increased utilization of point-of-care screening was shown to decrease
hepatitis B-related mortalities and increase life expectancy at low projected expense.

Conclusions: The results suggest that standard-of-care screening should be
substituted by point-of-care tests resulting in improved linkage to care and decrease
in long-term complications.

Keywords: Hepatitis B virus, Screening, Markov modeling, Point-of-care, Standard-of-
care, Testing
Background
With up to 240 million people chronically infected with hepatitis B virus (HBV) world-

wide [1], including an estimated 2 million people in the United States [2, 3], widespread

testing to identify the infected is needed in order to link them to care and decrease the

possible consequences of untreated HBV infection, which include approximately 500,000

to 1.2 million deaths yearly from liver cirrhosis and its complications, including primary

liver cancer [1]. Limitations related to funding and access to commercially available tools

for chronic HBV testing are particularly important in developing countries where the

burden of chronic HBV is heaviest. Success of traditional standard-of-care (SOC) testing

for HBV infection hinges on the existence of a systematic process of following up test

results that return several days after testing, notifying patients of results, and arranging
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for follow-ups to discuss antiviral therapy, a system that requires resources that are

limited in developing regions.

The development of rapid point-of-care (POC) tests for HBV has the potential to

address many of these limiting factors and establish a more effective medical care

model for chronic HBV. In a recent study of patients undergoing HBV screening, the

performance characteristics of NanoSign® HBs POC chromatographic immunoassay

was compared with standard commercial laboratory HBsAg testing (Quest Diagnostics

EIA). The POC tests yielded a sensitivity of 73.7% and a specificity of 97.8% [4]. In a

meta-analysis evaluating the accuracy of POC testing, Shivkumar et al. reported POC

testing sensitivity of 93-98% and specificity of 93–99% [5]. Furthermore, the low cost

($0.50) and rapid turnaround (20 min from phlebotomy to test results) of POC tests

give them the potential to significantly improve the widespread implementation of

HBV screening, especially in resource-limited regions.

Modeling in HBV analysis and treatment is an active research topic and multiple

approaches have been considered recently [6–8]. A variety of mathematical modeling

strategies have been used to address in particular the cost-effectiveness of HBV screen-

ing, using predominantly combinations of decision trees and/or Markov chain models

[9]. In this paper, we propose time-varying Markov chain models of detailed structure,

reflecting disease propagation in individuals to quantify the effects of large-scale

utilization of POC tests to succeed the SOC screening model.
Methods
In comparing effectiveness of POC and SOC screening strategies for HBV, we made

use of two Markov models with identical structure but different transition probabilities.

Each of these models has six states capturing the medical progression of individual

patients and is formed by aggregating states from a more detailed Markov model

describing chronic HBV disease progression of individuals. The two aggregated models

were used to simulate consequences of POC or SOC utilization in HBV screening strat-

egies on large populations of individuals. Before they can be iterated numerically, the

two Markov models rely on the specification of certain numerical values dealing with

the rate of uptake of POC, the rate of infected patients seeking medical care, death

rates, and so on. Some of these numbers can be determined (at least within a range)

from the medical literature, which we did. Others are more hypothetical or might be

the outcome of policy initiatives. The utility of the models is in their low computational

cost and attendant capacity for iteration with many possible candidate values and the

determination of the sensitivity of the observed behavior to the specific parameter

values. Where available, the transition parameters in our models were selected from

the literature. The remaining model parameters were estimated and their effects on the

overall results analyzed in terms of sensitivity.

For the aggregated models, we considered the six patient states depicted in Fig. 1, where

arrows symbolize state transitions admissible in a single time step. At year t, a patient is in

state i with probability πi,t. Arranging these probabilities into a state row-vector, we have

Π t ¼ π1;t π2;t…π6;t
� �

. This vector is then propagated over time via Πt + 1 =ΠtPt, where Pt
denotes the Markov state transition matrix at time t with element pij,t denoting the condi-

tional probability of a patient in state i at year t transitioning to state j at year t + 1.



Fig. 1 State transition diagram for aggregated Markov model. Connections illustrate feasible transitions per
step. Dashed box encloses absorbing states
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Evidently, each row of the state transition matrix sums to one at all times. Special cases are

pij,t = 0 for inadmissible transitions and pij,t = 1 for certain transitions. For instance, a transi-

tion from being immune to having an undetected HBV infection is inadmissible, whereas a

deceased patient is going to remain so.

As illustrated by the connection between States 3 and 4 in Fig. 1, we assume that no

patient starting treatment ever abandons this treatment. This assumption is justified in

that it alters the transition probabilities p36,t and p46,t of dying from HBV with or with-

out medical treatment by a relatively small degree, which is covered by the sensitivity

analysis described below. Model States 3 and 4 in this model are aggregated states from

more detailed Markov models described below. This common model structure for both

SOC and POC screening policies takes Pt of form

Pt ¼

p11;t p12;t p13;t 0 p15;t 0

0 p22;t 0 0 p25;t 0

0 0 p33;t p34;t p35;t p36;t

0 0 0 p44;t p45;t p46;t

0 0 0 0 1 0

0 0 0 0 0 1

2
6666666666664

3
7777777777775

¼

p11;t p12 p13 0 p5;t 0

0 p22;t 0 0 p5;t 0

0 0 p33;t p34 p5;t p36

0 0 0 p44;t p5;t p46

0 0 0 0 1 0

0 0 0 0 0 1

2
6666666666664

3
7777777777775

;

where p12,t = p12 and p34,t = p34 are constant transition probabilities chosen depending

on the screening strategy at hand. The constant transition probability p13 is presumed

independent of the screening policies while p36 and p46 are results of the aggregation

procedure outlined below. Time-variation of the state transition matrix Pt is caused

solely by the varying propensity for death, p5,t as age advances, which is modeled

through linear inter- and extrapolation of annual mortality rates for individuals in the

USA [10]. However, even though all time variations are induced by variations in p5,t,

notice that the changing mortality rates affect the first four transition probabilities on

the diagonal of the state transition matrix, being the probabilities to remain in the

respective non-absorbing states. For illustration, whenever p5,t increases at some time,

p22,t has to decrease by just as much to ensure that the sum of all transition probabil-

ities from State 2 is one at all times t. That is, we require p22,t = 1 − p5,t for all times t.
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These time-adjustments have to be made for all rows of the state transition matrix

corresponding to non-absorbing states (i.e., the first four rows of Pt).

Special cases comprise the third and fourth rows of Pt, which capture transitions

emerging from the two aggregated states corresponding to HBV disease progression in

untreated and treated forms, respectively. We next discuss aggregation of a more com-

plex model capturing the natural history of chronic HBV to estimate the transition

probabilities corresponding to State 3 and 4 of the aggregated model in Fig. 1.

To form the aggregation resulting in State 3, untreated infection, we captured the

disease progression of HBV without treatment using a different Markov model with its

own states and admissible transitions as depicted in Fig. 2. Transition probabilities in

this model are based on a literature review and subsequent weighting of the annual

probabilities reported in the references using the GRADE criteria [11] for assessing the

quality of each study. The resulting transition probabilities are summarized in Table 1,

where HCC connotes hepatocellular carcinoma (liver cancer). We refer to the auxiliary

model corresponding to Fig. 2 equipped with annual transition probabilities summa-

rized in Table 1 as the disease model, while we refer to the more compact six-state

model described above as the aggregated model.

Absorption in the disease model means transition to the union of the States 4 (Infection

under treatment), 5 (death, HBV-unrelated) and 6 (death, HBV-related) of the aggregated

model, which can be reached from any state in the disease model.

1) Initiation of treatment occurs via p34,t = p34 defined for the aggregated model above.

2) Death unrelated to HBV in the disease model is assumed time-invariant with annual

probability of 0.1%, corresponding to an individual of age 25–34 years [10].

3) HBV-related death follows the probabilities listed in Table 1.

The total absorption probability at any state in the disease model is then the sum of

the three aforementioned component probabilities. Having the purpose of aggregation

in mind, we do not need to distinguish the absorbing states in the disease model any

further. The technical tool used to aggregate the disease model into State 3 of the
Fig. 2 Disease model for untreated chronic HBV. State transition diagram of disease model for untreated
chronic HBV, expanding State 3 in aggregated Markov model. Connections illustrate feasible transitions per
step. Absorption to States 4–6 in aggregated Markov model via green box



Table 1 Annual transition probabilities for untreated chronic HBV infection

From To Probability References

eAg+ Inactive carrier 7.67% [13–18]

Mutant 1.90% [14–16]

Compensated cirrhosis 2.96% [14–18]

HCC 0.92% [13–17]

Inactive carrier Mutant 6.16% [15, 17, 18]

sAg- 0.55% [15, 17]

eAg+ 2.54% [17]

Compensated cirrhosis 0.93% [13, 15, 17]

HCC 0.35% [15, 17]

HBV-related death 0.04% [19]

Mutant Inactive carrier 1.60% [14–16]

eAg+ 20.05% [20]

Compensated cirrhosis 4.93% [13–18]

HCC 0.60% [15, 17]

HBV-related death 0.60% [15]

sAg- Inactive carrier 13.40% [21]

Compensated cirrhosis 0.18% [22, 23]

HCC 0.15% [23, 24]

Compensated cirrhosis Decompensated cirrhosis 5.08% [13–18, 25–27]

HCC 3.02% [13–18, 25–27]

HBV-related death 4.29% [13–16, 18, 26, 27]

Decompensated cirrhosis HCC 5.94% [13, 15, 17, 18, 27]

HBV-related death 21.46% [13–18, 25–27]

HCC HBV-related death 40.11% [13–18, 25–27]
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aggregated model is the fundamental matrix N = (I −Q)− 1 of the disease model, where

Q is the matrix obtained by extracting all rows and columns of the state transition

matrix corresponding to transient states. The fundamental matrix N allows a number

of useful deductions about the Markov chain, such as expected numbers of occupancies

in transient states until absorption and corresponding variances.

A particularly useful property of the fundamental matrix is that element nij equals

the expected number of years spent at state j of the disease model when starting in

state i [12]. That is, row i of N accumulates the expected numbers of years in each

disease state given the process is initiated in state i. Given a sufficiently large number

of patients, the normalized version of this row-vector can be interpreted as the aver-

age fraction of time spent at each state until absorption, where normalization refers

to scaling the vector such that its components have sum one. We can now estimate

the probability of death caused by untreated HBV by forming this normalized vector

from the first row of the fundamental matrix and using its components to obtain a

weighted sum of the probabilities for HBV-related death in Table 1. This weighted

sum is used for p36, concluding the aggregation of the disease model into State 3 of

the aggregated model. Assuming probabilities p34 = 15% of initiating medical treat-

ment and 0.1% for HBV-unrelated death in the disease model, this procedure yields
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the estimate p36 = 1.35%. Notice that this probability depends implicitly on the screen-

ing policy employed via variation of p34.

State 4, Infection under treatment of the aggregated model can be viewed as an aggrega-

tion of the same states used to form the disease model (Fig. 2), although with annual

transition probabilities differing from those summarized in Table 1 to reflect effects of

treatment. Moreover, the probability of absorption from this disease model under treat-

ment would be decreased by the amount of p34. The effect of these transition probabilities

for the disease model under treatment is a value for the HBV-related mortality rate under

treatment in the aggregated model, p46. To obtain this transition probability, we correct

the probability for absorption in the disease model used above by p34, but keep using the

values in Table 1. To adjust for the favorable effects of medical intervention, we intro-

duce a scaling parameter α ∈ (0, 1) and estimate p46 = αp46
* , where p46

* denotes the

probability obtained after aggregation with the values in Table 1. For instance, scaling

factor α = 0.25 and fixed annual probability 0.1% for HBV-unrelated death result in

the estimate p46 = 0.54%. This scaling approach is chosen as we focus on effects of screen-

ing policies rather than treatment options. Summarizing the modeling and aggregation

procedure, the state transition matrix for the aggregated models takes on the structure

Pt ¼

1− p12 þ p13 þ p5;t
� �

p12 p13 0 p5;t 0

0 1−p5;t 0 0 p5;t 0

0 0 1− p34 þ p5;t þ p36
� �

p34 p5;t p36

0 0 0 1− p5;t þ αp�46
� �

p5;t αp�46

0 0 0 0 1 0

0 0 0 0 0 1

2
66666666666664

3
77777777777775

;

with HBV-unrelated mortality rates p5,t from the literature [10] and the transition prob-

abilities in the third and fourth rows depending on the aggregation procedure outlined

above. In the following, we use this transition matrix structure for simulation and

corresponding sensitivity analyses based on a number of constants in the state transi-

tion matrix, namely the transition probabilities p12, p13, p34 and the scaling parameter

α. As mentioned above, the effects of SOC and POC screening strategies are compared

using altered transition probabilities p12 and p34 in the aggregated model, which in

terms also affects the state aggregation yielding p36 as well as the respective transition

probabilities on the diagonal of Pt. Higher utilization of POC screening with subsequent

immunization in uninfected cases and initiation of medical treatment in infected cases,

respectively, is anticipated to increase both p12 and p34, albeit to different degrees. To

model these changes, we take p12→ p12
SOC and p34→ p34

SOC in the SOC case. In the POC

case, we take p12→ p12
POC = βp12

SOC and p34→ p34
POC = γp34

SOC, employing additional scaling

parameters β and γ, each greater than one.

The approach taken to analyze POC/SOC utilization effectiveness using the quanti-

fied aggregated model is to model a population of a large number of individuals starting

with an initial probability distribution over the six states and then to propagate the

Markov chain until the collective probability of the death states is nearly one. We

presume the population comprises 100,000 initially uninoculated and uninfected 10-

year-olds and the evolution of the Markov chain over time yields the anticipated
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proportions of the aging population in each state. The assessment of various perform-

ance measures such as mortality rates, years under treatment or life expectancy under

SOC and POC screening policies is then tracked via evolution of the probability vector

Πt, which now admits the interpretation as the proportions of the population occupy-

ing each disease state, since the population is presumed large.

As mentioned above, we use an annual probability of 0.1% for HBV-unrelated death

in the disease model. The remaining transition probabilities in the disease model are

according to Table 1. The time-varying probabilities for HBV-unrelated death in the

aggregated model, p5,t, are obtained via inter- and extrapolation of mortality data for

individuals in the U.S. [10]. The remaining simulation parameters to be chosen are the

scaling constants α, β and γ as well as the transition probabilities p13, p12
SOC and p34

SOC. In

the following, we use the nominal parameter values p12
SOC = 0.2%, p34

SOC = 15%, p13 = 0.15%,

α = 0.25, β = 5 and γ = 2 unless otherwise specified. Sensitivity analyses around the

nominal parameter values specified above are displayed in Table 2, one for the

inoculation-related parameters p12
SOC and β, one for the treatment-related parameters p34

SOC

and γ and one for the screening-unrelated parameters p13 and α. Each sensitivity analysis

uses nominal values for the remaining parameters.

Results
Simulation results based on our cohort of 100,000 initially uninfected and uninoculated

10-year-olds and the nominal simulation parameters specified above are displayed in

Fig. 3. As anticipated, utilization of POC screenings reduces the numbers of untreated

infections and HBV-related mortalities at all times. This holds for all setups of the

simulation parameters, as long as the scaling parameters are confined to their respect-

ive boundaries, that is 0 < α < 1, β > 1 and γ > 1. The number of infections under treat-

ment using POC screening is initially higher but lower in average than with SOC

screening. This trend is a result of both the increased inoculation rate p12
POC > p12

SOC and

the increased rate for initiation of treatment p34
POC > p34

SOC. Initially, about the same num-

ber of people gets infected under each screening strategy, while more of those infected

individuals are linked to medical treatment in the POC case. As the population ages, a

larger fraction of the cohort has been inoculated in the POC case, which results in a

decreased number of new infections. This in turns leads to a smaller number of pa-

tients with untreated infections that can potentially be linked to care, resulting in lower

average numbers of patients receiving medical treatment under the POC screening

setup. However, the ratio of people linked to care over those infected without treatment

is significantly higher in the POC case. The results from our modeling serve to quantify

and bound these results, which are a logical consequence of the model’s structure.

The data displayed in Fig. 3 are based on the particular set of nominal parameter

values specified above, with the resultant findings extended to different parameter

combinations. Sensitivity analyses around the nominal parameter values specified above

are displayed in Table 2 for the following varied parameter combinations: the

inoculation-related parameters p12
SOC and β; the treatment-related parameters p34

SOC and

γ; and the screening-unrelated parameters p13 and α. For presentation purposes, each

sensitivity analysis presumes nominal values for the remaining simulation parameters.

However, the trends summarized in the following paragraphs extend to combined

sensitivity analysis. The indicators listed to evaluate the simulations are the total



Table 2 Sensitivity data for simulation parameters

Sensitivity
Parameters

HBV-caused deaths Life expectancy, years

SOC POC Drop SOC POC Rise

α = 0.20

p13 = 0.10% 11182 7649 31.60% 77.87 77.97 0.13%

p13 = 0.15% 16556 11347 31.46% 77.72 77.87 0.19%

p13 = 0.20% 21791 14963 31.33% 77.57 77.77 0.26%

α = 0.25

p13 = 0.10% 12981 9356 27.93% 77.83 77.93 0.13%

p13 = 0.15% 19224 13879 27.80% 77.66 77.80 0.18%

p13 = 0.20% 25309 18303 27.68% 77.49 77.68 0.25%

α = 0.30

p13 = 0.10% 14682 10962 25.34% 77.79 77.88 0.12%

p13 = 0.15% 21746 16262 25.22% 77.60 77.74 0.18%

p13 = 0.20% 28633 21447 25.10% 77.41 77.60 0.25%

β = 4

p12
SOC = 0.15% 19472 15193 21.98% 77.65 77.78 0.17%

p12
SOC = 0.20% 19224 14512 24.51% 77.66 77.79 0.17%

p12
SOC = 0.25% 18981 13879 26.88% 77.66 77.80 0.18%

β = 5

p12
SOC = 0.15% 19472 14678 24.62% 77.65 77.79 0.18%

p12
SOC = 0.20% 19224 13879 27.80% 77.66 77.80 0.18%

p12
SOC = 0.25% 18981 13147 30.74% 77.66 77.82 0.21%

β = 6

p12
SOC = 0.15% 19472 14190 27.13% 77.65 77.80 0.19%

p12
SOC = 0.20% 19224 13288 30.88% 77.66 77.82 0.21%

p12
SOC = 0.25% 18981 12475 34.28% 77.66 77.83 0.22%

γ = 1.5

p34
SOC = 10% 21843 15838 27.49% 77.57 77.73 0.21%

p34
SOC = 15% 19224 14484 24.66% 77.66 77.78 0.15%

p34
SOC = 20% 17910 13879 22.51% 77.70 77.80 0.13%

γ = 2.0

p34
SOC = 10% 21843 14811 32.19% 77.57 77.77 0.26%

p34
SOC = 15% 19224 13879 27.80% 77.66 77.80 0.18%

p34
SOC = 20% 17910 13494 24.66% 77.70 77.82 0.15%

γ = 2.5

p34
SOC = 10% 21843 14233 34.84% 77.57 77.79 0.28%

p34
SOC = 15% 19224 13564 29.44% 77.66 77.82 0.21%

p34
SOC = 20% 17910 13305 25.71% 77.70 77.83 0.17%

Population size 100,000; initial age 10 years; unless otherwise noted per row: p12
SOC= 0.2%, p34

SOC = 15%, p13 = 0.15%, α = 0.25,
β = 5 and γ = 2
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numbers of HBV-related mortalities and life expectancies under POC and SOC screening

policies as well as relative improvements gained by implementing POC screenings. For

instance, the nominal parameter values result in improvements of 27.8% in HBV-related

mortality numbers 0.18% in life expectancy, respectively. Sensitivity is interpreted as

variation in these two relative measures for the benefit in POC screening utilization. The



Fig. 3 Expected occupancies of States 3, 4 and 6 in the aggregated Markov model. Solid lines= standard of care
(SOC); dashed lines= point of care (POC); initial cohort age of 10 years; parameter values: chance of immunization,
SOC, p12

SOC= 0.2%; chance of treatment initiation, SOC, p34
SOC= 15%; chance of infection, p13 = 0.15%; treatment

effectiveness factor, α= 0.25; immunization factor, β= 5; treatment initiation factor, γ= 2. Solid lines for SOC, dashed
lines for POC; initial cohort age of 10 years
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reason for the seemingly low changes in life expectancy is that only a fraction of

the population ever gets infected with HBV, while the change in life expectancy for

infected individuals is larger.

In the first sensitivity analysis, only the treatment effectiveness factor α and the infec-

tion rate p13 vary from their nominal values. These are the simulation parameters

presumed independent of the screening policies employed. As we can see, each of the

tested combinations of these two parameters yields improvements of at least 25.1% in

total HBV-related death numbers and 0.12% in life expectancy in the POC screening

case. In general, we observe trends for larger improvements in HBV-related mortality

numbers towards higher treatment effectiveness (i.e., lower value for α). The infection

rate p13 has only minor influence on the improvement in HBV-related death totals,

while increasing the gains in life expectancy at higher infection rates. The compara-

tively small influence of p13 on the relative improvements in mortality numbers is not

surprising as p13 only changes the proportions of the population ever to become

infected, but not the change of course for patients after being infected. The treatment

effectiveness factor α, however, is strongly linked to potential gains in POC screening

by the improved linkage to care and thus affects relative improvements in mortality

numbers to a greater extent. The reason for the strong sensitivity of the gains in life

expectancy to the infection rate is that if a larger fraction of the population becomes in-

fected, the relative weight of the improvements for this fraction on the entire population

grows.

The second sensitivity study focuses on variations of the inoculation-related simulation

parameters p12
SOC and β. Using the parameter values in Table 2, we gain improvements of

at least 21.98% in mortality numbers and at least 0.17% in life expectancies when imple-

menting POC screenings. As expected, both scaling factor β and base inoculation rate

p12
SOC have significant influence on the two measures of improvement obtainable using

POC tests. However, even for low scaling factors β and high base inoculation rates,

notable benefits of POC test utilization are apparent. In the third sensitivity study, the

treatment-related simulation parameters p34
SOC and γ are varied. Improvements are at least
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22.51% in HBV-related mortality numbers and 0.13% in life expectancy, while both

parameters appear to have similar influence on the two measures.
Discussion and conclusions
Chronic HBV is a worldwide problem, with millions of new people infected each year

and a large population of chronically infected patients facing health care consequences

both short- and long-term. However, many chronic HBV patients remain asymptomatic

and millions worldwide are unaware of their infections. The importance of early detec-

tion via HBV screening of high-risk individuals hinges on the ability to implement

effective antiviral therapy to prevent progression of liver disease leading to complica-

tions such as cirrhosis and hepatocellular carcinoma. While commercially available

serologic immunoassays are widely used for HBV screening, the availability and access

to these testing tools for resource-limited regions or marginalized populations such as

the homeless and immigrants are suboptimal. Furthermore, the effort associated with

following up on SOC test results, patient call-back and counseling can be considerable

and create further hurdles for implementing effective screening programs. Recent

development of POC tests for HBV holds promise, and previous studies have reported

satisfactory sensitivity and specificity of POC testing when compared with SOC testing.

However, few studies have used a modeling approach that not only takes into account

the performance characteristics of POC testing, but also the natural history of

untreated HBV infection to evaluate accurately the added benefit of POC testing over

SOC testing. Given the significantly lower cost and more rapid turnaround time associ-

ated with POC testing for HBV, the replacement of SOC testing by POC testing has the

potential to improve HBV screening programs by promoting greater access and improving

linkage to care.

Using Markov modeling based on a comprehensive literature review, our current

study demonstrates that POC testing is associated with significantly lower HBV-related

mortality and greater life expectancy when compared with SOC testing. In conclusion,

the simulation results under various parameter selections indicate that a significant

improvement is obtainable via replacement of SOC screening by new POC tests. The

clinical impact of POC testing may be even greater in resource-limited regions and

among marginalized populations where health care access and follow-up after testing

are obstacles to the effective implementation of HBV screening programs. In a future

study, additional measures such as morbidity and expected cost of treatment will be

analyzed based on additional data regarding cost and effectiveness of medical treatment

as well as costs of POC and SOC screening implementation.
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