
Citation: Nasriddinov, A.; Tokarev, S.;

Platonov, V.; Botezzatu, A.; Fedorova,

O.; Rumyantseva, M.; Fedorov, Y.

Heterobimetallic Ru(II)/M (M = Ag+,

Cu2+, Pb2+) Complexes as

Photosensitizers for Room-

Temperature Gas Sensing. Molecules

2022, 27, 5058. https://doi.org/

10.3390/molecules27165058

Academic Editor: Cristina Achim

Received: 22 July 2022

Accepted: 6 August 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Heterobimetallic Ru(II)/M (M = Ag+, Cu2+, Pb2+) Complexes as
Photosensitizers for Room-Temperature Gas Sensing
Abulkosim Nasriddinov 1,2 , Sergey Tokarev 3, Vadim Platonov 1, Anatoly Botezzatu 3 , Olga Fedorova 3,
Marina Rumyantseva 1 and Yuri Fedorov 3,*

1 Chemistry Department, Moscow State University, 119991 Moscow, Russia
2 Faculty of Materials Science, Moscow State University, 119991 Moscow, Russia
3 A.N. Nesmeyanov Institute of Organoelement Compounds RAS, 119991 Moscow, Russia
* Correspondence: fedorov@ineos.ac.ru; Tel.: +7-(499)-135-92-80

Abstract: This work is devoted to the investigation of heterobimetallic Ru(II) complexes as photo-
sensitizers for room-temperature photoactivated In2O3-based gas sensors. Nanocrystalline In2O3

was synthesized by the chemical precipitation method. The obtained In2O3 matrix has a single-phase
bixbyite structure with an average grain size of 13–14 nm and a specific surface area of 72 ± 3 m2/g.
The synthesis of new ditope ligands with different coordination centers, their ruthenium complexes,
and the preparation of heterobimetallic complexes with various cations of heavy and transition metals
(Ag+, Pb2+, or Cu2+) is reported. The heterobimetallic Ru(II) complexes were deposited onto the
surface of the In2O3 matrix by impregnation. The obtained hybrid materials were characterized by
X-ray fluorescent analysis, FTIR spectroscopy, and optical absorption spectroscopy. The elemental
distribution on the hybrids was characterized by energy-dispersive X-ray spectroscopy (EDS) map-
ping. The gas sensor properties were investigated toward NO2, NO, and NH3 at room temperature
under periodic blue LED irradiation. It was identified that the nature of the second binding cation
in Ru(II) heterobimetallic complexes can influence the selectivity toward different gases. Thus, the
maximum sensor signal for oxidizing gases (NO2, NO) was obtained for hybrids containing Ag+ or
Pb2+ cations while the presence of Cu2+ cation results in the highest and reversible sensor response
toward ammonia. This may be due to the specific adsorption of NH3 molecules on Cu2+ cations. On
the other hand, Cu2+ ions are proposed to be active sites for the reduction of nitrogen oxides to N2.
This fact leads to a significant decrease in the sensor response toward NO2 and NO gases.

Keywords: heterobimetallic Ru(II) complexes; binding cations (Ag+, Pb2+ or Cu2+); nanocrystalline
In2O3; hybrid materials; photoactivated gas sensing; selectivity

1. Introduction

Nitrogen-containing gases such as NO2, NO, and NH3, are highly toxic to living
organisms and can cause serious health damages if exposed for a long time [1–5]. The
odor threshold value (OTV) for NH3 has a very wide range depending on the individual
features of people and ranges from 0.04 to 57 ppm while its 8-h threshold limit value (TLV)
is 25 ppm [6]. The OTV for NO2 ranges between 0.05 and 0.22 (0.4) ppm while the 8-h
TLV is 0.5 ppm and the 15-min short-term exposure limit (STEL) is 1.0 ppm [7,8]. As can
be seen, ammonia and nitrogen dioxide can be sensed by humans below the threshold;
however, prolonged exposure to low concentrations can lead to adaptation and tolerance
to the odor [9]. Moreover, the sad experience that covered the whole world in the face
of the coronavirus (COVID-19) showed that such diseases can affect and seriously harm
the human ability to sense smell and taste [10–12]. Olfactory neurons, in this case, may
partially or completely lose their main function for an indefinite time. People who have
been ill with coronavirus and work in industrial manufactures or laboratories and deal
with toxic gases have a high risk of intoxication, due to the fact that their “natural sensor”
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is temporarily out of order. In addition, Exline et al., in their recent study, showed that the
concentrations of biomarkers such as nitric oxide and ammonia are increased in patients
with active COVID-19 pneumonia, which indicates the need for special non-invasive test
systems for exhaled breathe analysis [13].

In such cases, metal oxide gas sensors, which are widely used for real-time monitoring
of the composition of ambient air, can come to the rescue [14–18]. Through early detection
of dangerous to human health trace concentrations of toxic gases in the case of leaks, they
can notify users of the danger of being indoors in a timely manner. A promising approach
for further development in this area and to obtain a more widespread distribution of
sensing devices is to reduce the power consumption of the final product. The n-type metal
oxide semiconductor indium oxide (In2O3), due to its relatively high electrical conductivity,
has great potential for use as a gas sensor at low operating temperatures [19,20]. Earlier,
it was shown that modification of the In2O3 surface with Ru(II) heteroleptic complexes
as photosensitizers, on the one hand, allowed a reduction in the operating temperature
down to room temperature using light illumination. On the other hand, it significantly
increased the sensor response toward NO2 and NO [21–23]. It should be noted that the use
of the separation of functions strategy, in which one part of the hybrid material is used for
gas enrichment and the other part for direct amplification of the sensor signal, can have
wide practical application [24], and the formation of a heterocontact can be effective for
room-temperature NH3 and NO2 sensing [25–27].

On the basis of previous research [21–23], here, we synthesized new heterobimetallic
Ru(II) complexes with various second binding cations (Ag+, Pb2+, or Cu2+) and used
them as photosensitizers. The Ag+, Pb2+, and Cu2+ cations were chosen as promising for
increasing the selectivity of gas analysis since they bind nitrogen-containing or sulfur-
containing gases [28–33]. Tokarev et al. already showed that in such bimetallic systems,
there is no charge transfer between cations, thus each of them has its own role: Ru(II)-
containing fragment is a photosensitizer, and the second cation is a catalytic center or
additional adsorption site in the interaction with the gas phase.

Thus, in the presented work, we studied the influence of the second binding cation on
the light-activated gas sensor properties of the hybrids based on nanocrystalline In2O3 and
Ru(II) heterobimetallic complexes. It was concluded that the nature of the second cation in
Ru(II) heterobimetallic complexes can influence the selectivity toward different gases.

2. Results and Discussion

Analysis of the structural properties of the obtained nanocrystalline In2O3 showed that
it has a single-phase bixbyite structure with an estimated average grain size of 13–14 nm
(Figure S1, Supplementary Materials). The specific surface area was 72 ± 3 m2/g.

Figure 1 represents the SEM image of the In2O3 sample (a) and EDS mapping of hybrid
materials (b, c, d). It can be observed that In2O3 has a porous microstructure with uniformly
aggregated nanoparticles. Moving from the scale of 200 nm to 10 µm, one can see that the
porous morphology is well preserved. The results of the EDS mapping clearly indicate the
homogeneous distribution of the Ru and second cation (Pb, Ag, or Cu) on the surface of
the In2O3 matrix. The samples have similar particle sizes and porous structures, providing
a large surface area.

The data on the elemental composition of the hybrids are given in Table 1. It can be
seen that the content of the Ru in hybrids is close to the specified value of 0.7 mol%. These
values were averaged from four different areas of the sample. The samples in this case
had the optimum resistance to stay within the measuring range of the equipment while
maintaining a high sensor signal.

Figure 2a shows the FTIR spectra of the heterobimetallic Ru(II) complexes in the
frequency range of 4000–400 cm−1. The characteristic IR spectra of the complexes are similar.
The broad peak in the range of 3200–3700 cm−1 is attributed to the stretching vibration of the
N–H and O–H groups. The bands located between 2800 and 3100 cm−1 are associated with
stretching C–H vibrations. The sharp and intense peaks in the range of 1000–1700 cm−1
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are attributed to bpy ring breath, C=O, C=C, C–H, and C=N vibrations. The low-frequency
region is assigned to the ρ(CH2), γ(CH), and ν(C–C) modes. However, in some studies in
which both experimental and theoretical calculations were carried out [34–36], these sharp
peaks, the values of which are close to those in this work, were attributed to the stretching
vibration of the Ru–N bond while in other works, these frequencies were located lower.
The corresponding vibration modes of the functional groups are shown in Table 2.

Table 1. Elemental composition of hybrid materials.

Sample [Ru]/([Ru] + [In] + [M] *),
mol%

[Cu]/([Ru] + [In] + [M] *),
mol%

[Ag]/([Ru] + [In] + [M] *),
mol%

[Pb]/([Ru] + [In] + [M] *),
mol%

In2O3 + RC 0.68 ± 0.01 0.47 ± 0.01 - -
In2O3 + RA 0.71 ± 0.01 - 0.52 ± 0.01 -
In2O3 + RP 0.77 ± 0.01 - - 0.57 ± 0.01

Note: [M] * = Cu, Ag, and Pb, respectively.
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Figure 1. SEM image of the In2O3 (a) and EDS mapping of the various elements (red—In, blue—Ru,
green—second binding cation) in hybrid materials (b–d).

Table 2. Assignment of FTIR spectra vibrational modes [34–37].

Wavenumber, cm−1 Vibrational Mode

623, 765 γ (CH), ν (Ru–N)
730 ρ (CH2), ν (Ru–N)
810 ν (C–C)
1008 ν (C-O)
1096 ν (C-O), δ (CH) + ν (ring)
1260 ν (C=O) + ν (C=C) + δ (CH)
1355 ν (C=C) + δ (CH)
1455 δ (CH) + ν (C=N)
1486 ν (C–C)
1604 ν (C=N), ν (C–C)

2863, 2917, 3074 ν (C-H)
3450 ν (O-H), ν (N-H)
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Figure 2. FTIR spectra of heterobimetallic Ru(II) complexes (a), pure In2O3, and hybrid materials (b).

Figure 2b represents the FTIR spectra of the pure indium oxide and hybrid materials.
All spectra contain intense broad signals corresponding to the stretching vibrations of the
In–O bonds: the bands at 420 and 565 cm–1 correspond to symmetric and the band at
600 cm–1 to asymmetric stretching of the In–O valence bond. The spectra show absorption
in the regions of 1625 cm−1 and a wide band with a maximum at 3432 cm−1, which refer to
the bending vibrations of adsorbed water and stretching vibrations of surface OH groups,
respectively. Weak signals from Ru(II) heterocyclic complexes are also observed in the
range of 900–1690 cm−1.

The normalized optical absorption spectra of the heterobimetallic Ru(II) complexes,
unmodified In2O3, and hybrids are shown in Figure 3.

There are several absorption bands in the spectra of the organic complexes (Figure 3a):
the bands located in the ultraviolet region correspond to ligand-centered π–π* transitions in
2,2′-bipyridine ligand (λmax = 288 nm) and imidazophenanthroline ligand
(λmax = 333 nm) [33,38]. The last one is intense only for the RA complex, which may be
associated with a lower silver charge (+1 compared to +2 for copper and lead), while for the
other two complexes (RC and RP), it appears as a shoulder. A broad band (λmax = 460 nm)
in the visible region is associated with the metal to ligand charge transfer (MLCT) transi-
tion, which plays a key role in photosensitization. This is why a blue LED was used as the
illumination source.

The absorption spectrum of the pure In2O3 matrix does not have any bands in the
visible region. The observed absorption band in the UV region corresponds to a direct
transition from the valence band to the conduction band of the semiconductor. The wide
absorption band in the visible region of the spectrum of hybrid materials corresponds to
the MLCT transition in the organic part. Moreover, the maximum of the absorption edge
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is shifted to the longer wavelength by about 10 nm, thus it completely coincides with the
emission spectrum of the blue LED.
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Since sensor measurements were performed under periodic (blinking) light irradia-
tion [20,21], there are two resistance values corresponding to dark and light conditions,
which were used to characterize the gas response and photoresponse of the materials. The
sensor signal toward oxidizing gases (NO and NO2) was calculated as a ratio of the “dark”
resistance in gas atmosphere to the “dark” resistance in pure air atmosphere (Equation (1));
for the reducing gas (NH3), it has the reversed form (Equation (2)). Photoresponse was
calculated as a ratio of the “dark” resistance to the “light” resistance consequently in air
and testing gas atmosphere (3):

S =
Rdark(gas)
Rdark(air)

(1)

S =
Rdark(air)
Rdark(gas)

(2)

Sph =
Rdark
Rlight

(3)

Figure 4a shows the dependence of the sensor’s resistance on the NO2 concentration.
It can be seen that the sensitization of nanocrystalline indium oxide by organic complexes
leads to an increase in the baseline resistance of the sensors, with the greatest effect being
observed for the RC complex. Additionally, sensitization leads to an increase in the
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photoresponse, but the sensor signal increases only for the In2O3 + RA and In2O3 + RP
hybrids while sensitization by the complex RC leads to a decrease in the sensor signal
(Figure 4b,c).
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As mentioned above, the illumination of the hybrids with blue LED leads to the
MLCT transition in the organic part (Equation (4)). Then, the photoexcited electron can
be transferred into the indium oxide’s conduction band. In pure air atmosphere when the
LED is turned off, the resistance begins to increase due to oxygen adsorption accompanied
with electron capture from the conduction band (Equation (5)). Illumination reduces the
resistance of materials due to oxygen photodesorption during its interaction with photo-
generated holes (Equation (6)). In NO2 atmosphere, the resistance begins to additionally
increase due to the Reactions (7) and (8) in dark conditions. When the LED is turned on,
desorption of NO2 (Reaction (9)) will also proceed along with Reaction (6):

hv MLCT→ h+ + e− (4)

O2(gas) + e− → O−2(ads) (5)

O−2(ads) + h+(hv)→ O2(gas) (6)

NO2(gas) + e− ↔ NO−2(ads) (7)

NO2(gas) + O−2(ads) ↔ NO−2(ads) + O2(gas) (8)

NO−2(ads) + h+(hv)↔ NO2(gas) (9)
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The gas sensor properties were also investigated towards NO in the concentration
range from 0.5 to 4 ppm. The nature of the change in resistance was the same as in the
interaction of sensors with nitrogen dioxide: resistance increases with increasing NO
concentration. In an earlier work [22], it was shown by the DRIFTS method that at room
temperature NO is oxidized by chemisorbed oxygen to NO2 and further reacts as an
oxidizing gas according to the reaction (10). A schematic illustration is shown in Figure 5.

NO(gas) + 1/2O2(gas) + e− ↔ NO−2(ads) (10)
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The study of the sensor properties toward ammonia was carried out in the concen-
tration range of 5.0–20.0 ppm NH3 in air. The change in the resistance of the samples
with a cyclic change in the composition of the gas phase is shown in Figure 4a. In the
presence of NH3, the resistance of the samples decreases, which is consistent with the fact
that the interaction of ammonia (reducing gas) with the surface of an n-type semiconductor
leads to a decrease in resistance and the sensor signal increases with the increasing NH3
concentration (Figure 6b).

The value of the photoresponse characterizes the change in resistance during periodic
illumination due to photodesorption and photoadsorption primarily of oxygen. In the case
of NO2 (Figure 4c), an increase in the photoresponse was observed with the increasing
concentration, which is associated with the additional contribution of the adsorption and
desorption of nitrogen dioxide molecules, which has a high electron affinity. On the
contrary, with an increase in the ammonia concentration, a decrease in the photoresponse
was observed for all materials (Figure 6c). When the surface of the sensors interacts with
ammonia, it is oxidized by oxygen chemisorbed on the surface of nanocrystalline material
according to the following Reaction (11). Thus, due to the photodesorption of oxygen and
its consumption (Reaction 6), at high ammonia concentrations, the amount of oxygen on
the surface is very small.

2β·NH3(gas) + 3O−α
β(ads) → β·N2(gas) + 3β·H2O(gas) + 3α·e− (11)

Moreover, as it turned out, the time in pure air flow (60 min) was not enough to
completely restore oxygen on the surface. This is why for the In2O3, In2O3 + RA, and
In2O3 + RP samples, there is a strong baseline drift and a slight change in the sensor signal.
However, the In2O3 + RC sample behaves differently: its photoresponse has a maximum
value in the case of detection of both oxidizing and reducing gases (Figure 7b). This is
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likely related to the structure of the RC complex. The Cu2+ cation is coordinated in the
heterobimetallic Ru(II) complex via the azadithia-15-crown-5 fragment, which has a donor
nitrogen atom. The interaction of the Cu2+ cation with the heteroatoms of the crown
ether fragment can lead to the neutralization of the electron-donor function of nitrogen
directly bound to the chromophore parts of the molecules [33]. It is likely that periodic
photoactivation can make this process reversible.
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Figure 6. Change in resistance (a), correlation of the sensor signal (b), and photoresponse (c) versus
NH3 concentration of samples.

Figure 7 represents the comparison of the sensor signal and photoresponse of the
samples towards NO2, NO, and NH3 at room temperature.

As it can be observed, the In2O3+RC sample has the highest sensor signal toward
NH3 (Figure 7a), and its resistance reversibly changes in the gas atmosphere (Figure 6a).
These results can be explained in several ways. In terms of acid-base properties, copper
is the stronger Lewis acid compared to silver and lead. This may lead to an increase in
the sensitivity of the copper-containing hybrid material to ammonia. A number of papers
showed the specific adsorption of NH3 molecules on copper cations [39–45]. The formation
of the [Cu(NH3)

+
2 ] complex was shown by the DRIFTS method for a CuBr sample [39].

The formation of [Cu(NH3)
2+
4 ] complex is proposed to form at room temperature, and

it was proved by several analysis methods [40]. Liang X. et al. calculated the binding
energies of the M(II)–N bond in different M(II) phthalocyanine/MWCN hybrids with NH3
molecules at room temperature and concluded that the formation energy of the stable
structure decreases in the following order: CoPc-NH3 > ZnPc-NH3 > CuPc-NH3 > PbPc-
NH3 > PdPc-NH3 > NiPc-NH3, while Pb, Pd and Ni can facilitate the response of oxidants,
such as NO and NO2 [28].
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Moreover, Cu2+ ions are proposed to be an active site for NO decomposition or
reduction of nitrogen oxides to N2 (Reaction (12)) [40]:

2NO(ads) ↔ N2(gas) + O2(gas) (12)

It can be supposed that the mechanism of the NO decomposition is more complicated
and can precede the appearance of the NO2

δ− intermediate [40]. After NO dissociative
adsorption, the Cu2+ sites can actively transform NO into 1/2N2; however, the released
1/2O2 will more probably react with another NO molecule to form [Cu2+-NO2

δ−] rather
than combine with another 1/2O2 and desorb as O2. Then, NO2

δ− can rearrange with
NOδ+ to form [Cu2+-N2O3], which immediately decomposes into N2O + O2 or N2 + O2.

Since reaction (12) proceeds without electron exchange, it, therefore, does not con-
tribute to the change in conductivity. However, a slight increase in the sensor signal is
still observed and it is most likely associated with the adsorption of a part of the NO
molecules on the active sites of the In2O3 matrix and further oxidation by chemisorbed
oxygen according to Reaction (10). This can be evidenced by the fact that the sensor signal
to NO for the In2O3 + RC hybrid is even lower than for pure In2O3. The same situation
can be observed for NO2 detection (Figure 7a). However, as can be observed, for samples
In2O3 + RA and In2O3 + RP, the sensor signal toward NO and NO2 is practically similar. In
this case, the main role in detection is played by the ruthenium part of the photosensitizer.
As a result of photoinduced charge transfer, the surface of the semiconductor is enriched
with electrons, which enhances the interaction with oxidizing gases—electron acceptors.

Since the humidity of the surrounding atmosphere significantly affects the sensor
properties of the gas detectors at room temperature, the effect of the relative humidity (RH)
on the response to investigated gases was studied. Thus, the sensor properties were also
tested when RH was 30%. Figure 8 shows that the presence of water vapor differently
affected the sensor response compared to the tests in dry air.

Since the kinetic diameter of the water molecules (2.65 Å) is less than that of NH3
(2.9 Å), NO2 (3.4 Å), NO (3.17 Å), and O2 (3.46 Å), they can diffuse more easily through
the porous structure of In2O3 and occupy active sites [46–48]. This condition adversely
affects the interaction with ammonia, since the amount of chemisorbed oxygen capable
of oxidizing ammonia molecules is significantly reduced, which resulted in a decrease in
the sensor signal. For all samples, a decrease in the base resistance was found due to an
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increase in the number of charge carriers in the conduction band, which proceeds according
to the proposed Reactions (13)–(15) [49,50]:

H2O(gas) + In(lat) + O(lat) = [In(lat)-OH] + [O(lat)H] + e− (13)

H2O(gas) + 2In(lat) + O(lat) = 2[In(lat)-OH] + VO·+ 2e− (14)

H2O(gas) + 2In(lat) + O2
−

(ads) = 2[In(lat)-OH] + e− (15)
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In the case of detecting NO2, an increase in the sensor response was observed due to
the capturing of released electrons by nitrogen dioxide molecules in Reactions (13)–(15).
The obtained results are in good agreement with the previously obtained data in the
case of the use of a heteroleptic ruthenium(II) complex without a second cation as a
photosensitizer [51]. However, in this work, the sensor signal of the hybrid materials
toward NO also increased in a humid atmosphere. Most likely, the cations of the second
metals contributed to the oxidation of NO molecules by OH groups.

The long-term stability of the sensors was investigated for 30 days toward 1 ppm
NO2, 1 ppm NO, and 20 ppm NH3 at room temperature under periodic light illumination
(Figure 9). The sensitive layer of the sensors was cleaned before each measurement for 2 h
by blowing purified air under periodic illumination. The sensor signals remained fairly
stable when detecting nitrogen oxides, demonstrating reproducibility and reversibility.
When detecting ammonia, only the In2O3 + RC sample exhibited a stable signal with
smaller error bars. It should be noted that the In2O3 + RA and In2O3 + RP samples showed
the same signal path in all cases. However, it should be noted that during the sensor studies,
over time, the reaction products accumulated on the surface of the materials and they were
not completely desorbed at room temperature, which can significantly affect the durability
of sensors.

After reviewing the literature, a comparative analysis of the obtained data of gas
sensor measurements with similar works was carried out; the results are represented in
Table 3. It should be noted that there are few works related to photoactivated sensors for
the detection of ammonia and nitric oxide while there are a sufficient number of those for
the detection of nitrogen dioxide at room temperature. The obtained samples in this work
showed significant sensing characteristics at room temperature under photoactivation.
Among the considered materials from the literature, the samples in this work did not show
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the outstanding values of the gas sensor characteristics. Nevertheless, it is worth noting
that the response to ammonia is acceptable because the In2O3 + RC sample was capable of
detection below the 8-h TLV. The In2O3 + RA and In2O3 + RP samples are inferior in terms
of the response to NO and NO2 only to hybrid materials that were previously studied in
our scientific group. However, a significant advance was observed in enhancing the sensor
signal toward NO detection in humid air, which is expected to be promising in the analysis
of biomarkers of exhaled air.
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S =
R(air)− R(gas)

R(gas)
× 100%, for NH3 (16)

S =
R(gas)− R(air)

R(air)
× 100%, for NO and NO2 (17)

Table 3. Recent works comparing light-activated (with LED) NH3, NO, and NO2 gas sensor per-
formances at room temperature for different pure and composite materials. Sensor signals were
recalculated as:

Material Wavelength,
nm

Incident
Irradiance,
mW/cm2

Sensing
Gas

Concentration,
ppm

Sensor
Signal, % Refs.

Sulfur-hyperdoped silicon White LED 0.74 NH3 20.0 20,100 [52]
WO3 nano-needles 325 0.4 NH3 20.0 66.6 [53]

WS2 microflakes 365 - NH3 10.0 240 [54]
2DPI/In2O3 composite 365 - NH3 10.0 950 [55]

CuPc-loaded ZnO nanorods 600–622 0.15 NH3 20.0 600 [29]
In2O3/heterobimetallic complex

Ru(II)-Cu(II) 470 8.0 NH3 20.0 950 Present study

TiOx nanodots 310 0.3 NO 10.0 31.0 [56]
Au-ZnO nanocomposite 550 - NO 2.0 194 [57]

In2O3 nanostructure 365 3.2 NO 2.0 1200 [58]
Nano-porous organic diodes 365 40 NO 1.0 233 [59]

In2O3/Ru(II) heteroleptic complex 470 8.0 NO 1.0 3000 [22]
In2O3/heterobimetallic complex

Ru(II)-Ag(I) 470 8.0 NO 1.0 1815 Present study

Mesoporous In2O3 400 - NO2 5.0 900 [60]
In2O3 385 1.0 NO2 8.0 17,900 [61]
WO3 590 340 NO2 0.16 820 [62]

Au/ZnO 365 1.2 NO2 5.0 455 [63]
Al/TiO2/Al2O3/p-Si 254 - NO2 20 11.5 [64]

ZnS-core/ZnO-shell nanowires 254 1.2 NO2 1.0 339 [65]
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Table 3. Cont.

Material Wavelength,
nm

Incident
Irradiance,
mW/cm2

Sensing
Gas

Concentration,
ppm

Sensor
Signal, % Refs.

Bi2O3-core/ZnO-shell nanobelt 254 1.2 NO2 1.0 227 [66]
N-719 dye/ZnO hybrid 480 370 NO2 1.25 143 [67]

CuO/ZnS nanowire 365 2.2 NO2 5.0 955 [68]
CdSe QD@In2O3 535 20 NO2 1.6 106 [69]
CdSe QD@ZnO 535 20 NO2 1.6 3000 [69,70]

ZnO/In2O3 composite 365 25 NO2 5 221 [71]
Au/MoS2 365 - NO2 2.5 30 [72]

ZnO 455 5 NO2 0.025 20 [73]
WS2-decorated rGO 430 0.66 NO2 1.0 21 [74]

ZnO/(ZnSe(shell) @ CdS(core))
composite 535 20 NO2 2.0 6900 [75]

WO3 365 8 NO2 5.0 11,300 [76]
Perylenediimide-sensitized SnO2 400–700 - NO2 0.5 12,900 [77]

Polypeptide-assisted ZnO
nanorods 365 - NO2 10.0 400 [78]

Au-ZnO nanorods 495 50 NO2 1.0 109 [79]
Ag- ZnO heterostructure 470 75 NO2 1.0 150 [80]
MoS2/ZnO nanohybrid 365 0.3 NO2 0.5 2310 [81]

ZnO/CsPbBr3 NCs 470 8.0 NO2 2.0 30,000 [82]
In2O3–ZnO nanotubes 365 1.95 NO2 0.5 3170 [83]

In2O3/Ru(II) heteroleptic complex 470 8.0 NO2 1.0 1.75 × 105 [23]
In2O3/heterobimetallic complex

Ru(II)-Pb(II) 470 8.0 NO2 1.0 49,500 Present study

3. Materials and Methods
3.1. Materials Synthesis
3.1.1. Synthesis of Nanocrystalline In2O3

Nanocrystalline In2O3 was synthesized by the chemical precipitation method and was
used as an inorganic matrix in the hybrid materials. The synthesis method and results
of the structural characteristics of In2O3 were discussed in detail in our earlier work [22].
Briefly, the In(OH)3 was deposited from InCl3 water solution by adding ammonia solution.
After washing, the obtained precipitate was dried at 50 ◦C for 24 h and then annealed at
300 ◦C for 24 h.

3.1.2. Synthesis of Heterobimetallic Ru(II) Complexes

2-Substituted-1H-imidazo[4,5-f][1,10]phenanthroline compounds 1, 2, and the cor-
responding ruthenium (II) heteroleptic complexes 3 and 4 were prepared as shown in
Figure 10. The result of the condensation reaction of the 1,10-phenathroline-5,6-dione with
crown-containing aldehyde was the production of ligands 1 and 2 as beige crystalline
compounds with good yields (Supplementary Materials) [84]. In the next step, equimolar
amounts of ligand 1 or 2 and cis-bis(2,2′-bipyridine)-dichlororuthenium(II) hydrate were
kept in ethanol at 80 ◦C in sealed ampoule under argon for 8 h to prepare the correspond-
ing heteroleptic complexes 3 and 4. After complete reaction, the crude complexes were
purified by column chromatography on aluminum oxide. The novel compounds 2–4 were
unambiguously characterized by 1H and 13C NMR, ESI MS spectrometry, and elemental
analysis (Figures S2–S4, Supplementary Materials). Ligand 1 is described in more detail
in [85].

To obtain bimetallic complexes, 3 or 4 were mixed with an equimolar amount of
AgClO4, Pb(ClO4)2, or Cu(ClO4)2 in acetonitrile. The mixtures were then stirred at room
temperature for 8 h in darkness to avoid possible photodegradation. Then, bimetallic
complexes were precipitated by excess addition of dry diethyl ether. The solid was isolated
by filtration and dried under reduced pressure.
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Figure 10. Scheme of the synthesis of ditope ligands.

For the coordination of the Ag+, Pb2+, and Cu2+ cations in heterobimetallic Ru(II)
complexes, fragments of crown ethers were introduced into the ligands: dithia-18-crown-6
for Ag+ and Pb2+ and azadithia-15-crown-5 for Cu2+ (Figure 11a,b) The composition and
size of crown ethers were selected for target cations. The aza-containing crown ether with
an intermediate Lewis base will firmly bind a copper cation—an intermediate Lewis acid.
For silver and lead cations—soft acids, soft Lewis bases are needed. For this, sulfur atoms
are well suited. In addition, these cations are larger than Cu2+, so 18-membered crown
ether was selected. The synthesized heterobimetallic Ru(II) complexes with Ag+, Pb2+, and
Cu2+ cations were shortly named as RA, RP, and RC, respectively. The detailed elemental
analysis results can be found in the Supplementary Materials.
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3.1.3. Synthesis of Hybrid Materials

Hybrids based on nanocrystalline In2O3 and heterobimetallic Ru(II) complexes were
obtained by impregnation. Organic complexes were dissolved in acetonitrile, then 10 µL of
the corresponding solution was added dropwise to a weighed portion of the semiconductor
oxide, and the suspension was stirred with a glass rod to obtain a uniform distribution of
the solution on the surface of the oxide matrix, waiting for the complete evaporation of the
solvent each time. The concentration of the solution was chosen so that the content of the
Ru in the obtained hybrids was equal to 0.7 mol%.

3.2. Materials Characterization

Structural characteristics were investigated by X-ray diffraction in a DRON diffrac-
tometer (CuKα radiation, λ = 1.5418 Å) and by Raman spectroscopy in an i-Raman Plus
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spectrometer (BW Tek, Newark, DE, USA). The average size of the crystallites was calcu-
lated using Scherrer’s Formula (18):

d =
k · λ

β · cos Θ
(18)

where d is the mean crystallite size (nm), k is a dimensionless shape factor and is about
0.9, λ = 1.5406 Å is the X-ray wavelength, β is the line broadening at the half of maximum
intensity, and Θ is the Bragg angle.

The specific surface area was measured by the BET model (Brunauer, Emmett, Teller)
in a Chemisorb 2750 instrument (Micromeritics, Norcross, GA, USA). A weighed portion of
the powder (~100 mg) was placed in a flowing quartz test tube. The sample was kept in a
helium flow (50 mL/min) at a temperature of 200 ◦C for 1 h to remove adsorbed impurities
from the surface. The measurements were carried out in a flow of an N2/He mixture
(12 mL/min), and the test tube was cooled to liquid nitrogen temperature, recording the
absorption of nitrogen from the carrier gas.

The determination of the elemental composition was performed using X-ray flu-
orescence analysis on an M1 Mistral spectrometer (Bruker). The surface morphology
and elemental distribution were characterized using scanning electron microscopy (SEM)
and energy-dispersive X-ray spectroscopy (EDS) mapping with a Zeiss NVision 40 (Carl
Zeiss, Oberkochen, Germany) microscope. FTIR spectra were recorded on a Perkin Elmer
Spectrum One Fourier transform spectrometer in transmission mode in the range of
4000–400 cm−1. Samples were mixed with KBr (Aldrich, for spectroscopy) and then pressed
into tablets. The absorption spectra of heterobimetallic Ru(II) complexes were recorded on
a Cary 300 spectrometer. The diffuse reflectance UV−Vis spectra of the obtained powders
were recorded on a Perkin-Elmer Lambda-950 spectrometer in the range of 200–800 nm.

NMR spectra were recorded on INOVA-400 and Bruker Avance 400 spectrometers,
(400.13 and 100.13 MHz frequency for 1H and 13C, respectively). Chemical shifts are given
with respect to the residual proton signal of the used solvent, i.e., 1.94 ppm for CD3CN,
2.49 ppm for DMSO-d6, 3.31 ppm for methanol-d4, 13C: 1.32 ppm for CD3CN, 39.52 ppm
for DMSO-d6, 49.00 ppm for methanol-d4). ESI mass spectra (ESI-MS) were acquired on
a Finnigan LCQ Advantage tandem dynamic mass spectrometer (USA) equipped with a
mass analyzer with an octapole ionic trap, a MS Surveyor pump, a Surveyor autosampler, a
Schmidlin-Lab nitrogen generator (Germany), and a system of data collection and process-
ing using the X Calibur program, version 1.3 (Finnigan). The mass spectra were measured
in the positive ion mode. Samples in MeCN were injected directly into the source at a flow
rate of 50 µL min−1 through a Reodyne injector with a loop of 20 µL. The temperature of
the transfer capillary was 150 ◦C, and the electrospray needle was held at a potential of
4.0 kV.

The sensor properties were tested using laboratory-made equipment with a flow
chamber at a fixed temperature (T = 25 ◦C). Electronic mass flow controllers (RRG-12)
were used to dilute the test gas and to obtain the desired concentration. The air was
purified by a pure air generator (Granat-Engineering Co., Ltd., Moscow, Russia) and was
used as background and carrier gas. The concentrations of NO and NO2 in gas mixtures
were additionally verified with a Teledyne API N500 CAPS NOX Analyzer. Specially
designed microhotplates were used for sensor measurements: Al2O3 substrate covered
with Pt electrodes was used for gas sensor measurements. A blue light-emitting diode
(λmax = 470 nm) with periodic light irradiation was used for photoactivation. The exposure
time of the on and off LED was 2 min each.

4. Conclusions

Three new heterobimetallic Ru(II) complexes with Ag+, Pb2+, or Cu2+ cations were
synthesized and their optical characteristics were studied. The heterobimetallic Ru(II)
complexes with Cu(II), Ag(I), or Pb(II) as a second binding cation in the azadithia crown
ether moiety were deposited onto the surface of the In2O3 matrix by impregnation.
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It was shown that surface sensitization with heterobimetallic Ru(II) complexes can be
used for control of the In2O3 gas sensor properties. The combination of different properties
in the resulting hybrid materials made it possible to eliminate two significant drawbacks of
gas sensors—high power consumption and selectivity. Indium oxide, used as a matrix, is
an excellent candidate as a sensitive layer for gas sensors because it is chemically stable and
has free electrons in the conduction band, surface oxygen vacancies, and active chemisorbed
oxygen. The photosensitizer made it possible to reduce the operating temperature of the
sensor to room temperature. The second cation plays a critical role in the selectivity toward
different gases. Hence, the In2O3+RC sample had the highest sensor signal toward NH3
due to the specific adsorption of NH3 molecules on copper cations. Moreover, copper is the
stronger Lewis acid compared to silver and lead. This provision can lead to an increase
in the sensitivity of copper to ammonia. On the other hand, Cu2+ ions are proposed to be
active sites for reduction of nitrogen oxides to N2. This fact leads to a significant decrease
in the sensor signal toward NO2 and NO gases.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27165058/s1, Figure S1: XRD pattern (a) and Raman spectrum
(b) of nanocrystalline In2O3; Figure S2: Structure of the 2-(2,3,5,6,8,9,11,12,14,15,16a,20adodecahydrob
enzo[b] [1,4,7,10,13,16] tetraoxadithiacyclooctadecin-18-yl)-1H-imidazo[4,5-f][1,10]phenanthroline.
(2); Figure S3: Structure of the bis(2,2-bipyridine-k4N1′,N1”[2-(10-(4-(1H-imidazo[4,5-f][1,10]phenan
throlin-2-yl)cyclohexa-2,4-dien-1-yl)-1,4-dioxa-7,13-dithia-10-azacyclopentadecane)-1H-imidazo[4,5-
f][1,10]phenanthroline-k2N7,N8]ruthenium(II) chloride. (3); Figure S4: Structure of the bis(2,2-
bipyridine-k4N1′,N1”)[2-(2-(2,3,5,6,8,9,11,12,14,15,16a,20a dodecahydrobenzo[b] [1,4,7,10,13,16]tetra
oxadithiacyclooctadecin-18-yl)-1H-imidazo[4,5-f][1,10]phenanthroline-k2N7,N8] ruthenium(II) chlo-
ride (4).
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