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With recent advances in computational analyses of structural neuroimaging, it is possible

to comprehensively map neural connectivity, i.e., the brain connectome. The architectural

organization of the connectome is believed to play an important role in several biological

processes. Central to the conformation of the connectome are connectivity hubs, which

are likely to be organized in accordance with the rich club phenomenon, as evidenced

by graph theory analyses of neural architecture. It is yet unclear whether rich club

connectivity hubs are consistently organized in the same anatomical framework across

healthy adults. We constructed the brain connectome from 43 healthy adults, based on

T1-weighted and diffusion tensor MRI data. Probabilistic fiber tractography was used

to evaluate connectivity between each possible pair of cortical anatomical regions of

interest. Connectivity hubs were identified in accordance with the rich club phenomenon

applied to binarized matrices, and the variability in frequency of hub participation was

assessed node-wise across all subjects. The anatomical location of nodes participating

in rich club networks was fairly consistent across subjects. The most common locations

for rich club nodes were identified in integrative areas, such as the cingulate and

pericingulate regions, medial aspect of the occipital areas and precuneus; or else, they

were found in important and specialized brain regions (such as the oribitofrontal cortex,

caudate, fusiform gyrus, and hippocampus). Marked anatomical consistency exists

across healthy brains in terms of nodal participation and location of rich club networks.

The consistency of connections between integrative areas and specialized brain regions

highlights a fundamental connectivity pattern shared among healthy brains. We propose

that approaching brain connectivity with this framework of anatomical consistencies may

have clinical implications for early detection of individual variability.

Keywords: connectome, magnetic resonance imaging, diffusion tensor imaging, structural networks, rich club,

hub nodes

Introduction

Recent advances in neuroimaging now make it possible to chart the organization of neural con-
nectivity across the entire human brain using magnetic resonance (MRI) diffusion tensor imaging
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(DTI) (Hagmann et al., 2008). Known as brain connectomes
(Sporns et al., 2005; Sporns, 2011), the generation of whole brain
maps of neural architecture is becoming increasingly popular as
evidence accumulates in favor of the view that the disruption of
structural connectivity is central to the neurobiology of many
neurological and psychiatric illnesses (Buckner et al., 2009; Seeley
et al., 2009; van den Heuvel and Sporns, 2011).

A common challenge encountered during connectome anal-
ysis is the identification of connectivity hubs, that is, nodes that
are essential to the network, granting it a structured and non-
random conformation. In general, hubs are expected to function
as the basis of the brain’s integrative capacity (van denHeuvel and
Sporns, 2011; Sporns, 2013), and possess a high degree of connec-
tivity, short neuronal path lengths, and high centrality (van den
Heuvel and Sporns, 2011).

A promising strategy in identifying network hubs involves
the assessment of nodal participation in so-called rich club sub-
networks (Sporns, 2014). Assuming that central hubs of the con-
nectome are more likely to be highly interconnected, rich-club
nodes characteristically show higher connectivity with each other,
beyond what would be expected by chance given their degrees
(i.e., number of connections with other nodes).

Despite many reports demonstrating the presence of the rich
club phenomenon in the brain (van denHeuvel and Sporns, 2011;
van den Heuvel et al., 2012; van den Heuvel and Sporns, 2013;
Collin et al., 2014) the actual anatomical variability of nodes per-
taining to these kinds of networks across the healthy populations
has yet to be established. Studies have so far demonstrated that
the number and approximate locations of the hub nodes are sim-
ilar (van den Heuvel and Sporns, 2011), while the exact position
of each node differs slightly (Mueller et al., 2013). Thus, the nor-
mative definition of regional variability in rich-club nodes can
aid the interpretation of future studies aiming to assess confor-
mational differences in network architecture and hub sites, and
their relationship with neurological and psychiatric diseases.

In this study, we aimed to measure the anatomical variability
of nodal participation in structural rich club networks. We com-
puted the whole brain connectome from a relatively large cohort
of healthy individuals and we assessed the frequency with which
anatomical sites were involved in the rich club. We hypothesized
that, while the overall size of the rich club network (i.e., the num-
ber of nodes in the rich-club network) remained relatively stable
across individuals, anatomical differences could be observed in
its composition, for instance, in terms of nodal participation in
rich club configuration.

Methods

Subjects
We studied 43 right-handed, healthy subjects [mean age ±

standard deviation (SD) = 37.1 ± 11.7 years, 28 females]
with no previous history of neurological or psychiatric disor-
ders. The Institutional Review Board of the Medical Univer-
sity of South Carolina approved this study. All subjects signed
an informed consent prior to their inclusion in the present
study.

MRI Acquisition
All subjects underwent MRI scanning performed on a Verio
3 Tesla MRI scanner (Siemens Medical, Erlangen, Germany),
yielding T1- and diffusion-weighted images (DWIs) obtained
using a unique protocol across, as follows: (1) T1 weighted
images: 3D magnetization-prepared rapid gradient echo
(MPRAGE) sequences with parameters: repetition time
(TR) = 2250ms, echo time (TE) = 4.18ms, flip angle = 6◦,
FOV = 256× 256mm, matrix size = 256× 256, slice thickness:
1mm and 192 sagittal slices; (2) DWI: twice-refocused, single-
shot echo planar sequence with diffusion weightings b-value= 0,
1000, and 2000 s/mm2 applied along 30 non-collinear directions.
Other imaging parameters were: TR= 8500ms, TE= 98ms, field
of view = 222 × 222mm, matrix size = 74 × 74, bandwidth =

1324Hz/pixel, parallel imaging factor of 2, no partial Fourier
encoding, number of excitations (NEX) = 10 for b = 0 s/mm2,
and 1 for b = 1000, 2000 s/mm2, and 40 axial slices each 3mm
thick (no gap).

Tractography and Connectome Measurement
White matter maps were obtained from segmentation of T1-
weighted images using FreeSurfer (Martinos Center for Biomed-
ical Imaging, Harvard-MIT, Boston USA) (Fischl et al., 2002).
Gray matter regions of interest (ROI) were obtained by the
segmentation of the cortex into 41 ROIs in each hemisphere
in accordance with the Lausanne anatomical atlas, distributed
as part of the Connectome Mapping Toolkit [http://www.cmtk.
org/] (listed inTable 1). Graymatter ROIs andwhitemattermaps
were transformed onto the image space of DWIs through linear
registration using FSL FLIRT (Xue et al., 1999; Jenkinson et al.,
2002).

Whole brain tractography was reconstructed in DWI space.
Tractography was performed using the software Diffusion
Toolkit (DTK) (Wang et al., 2007). The acquisition geometry and
gradients were obtained from DICOM images using dcm2nii, as
part of the software MRIcron (Rorden et al., 2007). The param-
eters for tractography were as follows: (1) maximal angle thresh-
old of 45◦ (Mori and van Zijl, 2002); (2) inclusion mask from
dynamic contrast range mask based on the diffusion-weighted
image (DWI), as part of default DTK parameters; (3) inclusion
mask from white matter map (in DWI space). Every white matter
fiber was evaluated regarding its extreme points. If the extreme
point of the fiber was located in the boundary between gray and
white matter region (i.e., within approximately one or fewer vox-
els from the gray matter ROI), this extreme was considered to
be linking this ROI. If both extremes were linking different gray
matter ROIs, the fiber was counted as connecting these ROIs.
For each possible pair of ROIs, the number of fibers connect-
ing the pair was computed and recorded in a connectivity matrix.
The connectivity was corrected due to the biases arising from
the length of streamlines and volume sizes of the different ROIs
(Hagmann et al., 2007). These steps were performed through
in-house scripts written in MATLAB.

For each subject, the resulting connectome was represented
as a weighted connectivity matrix A, symmetrical along its main
diagonal (i.e., undirected), where each entry Aij corresponded to
the weighted link between ROIs i and j.
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Calculation of the Rich Club Network
For each subject, the nodes participating in the rich club network
were defined as those with high degree, which were more densely
connected with other highly-interconnected nodes than it would
be expected just by chance based on their high degree (Sporns,
2013, 2014). We employed the same methodological approach
previously described by Sporns (Sporns, 2013) in order to iden-
tify such rich-club nodes. We binarized each individual network
based on a range of fixed density thresholds, whereby all links
with weight higher than 60th to the 95th percentile of individual
weight distribution were maintained. This step maintained only
the reproducible core of the network, which was associated with
high number of streamlines in each subject.

For each fixed density threshold, the rich club coefficient was
iteratively calculated across all degrees (k) observed in the net-
work, as the sum of connections of the sub-network composed
of nodes with higher degrees (>k), divided by the number of
all possible connections within this sub-network. For each net-
work degree, the rich club coefficient is denoted as 8, and a
corresponding vector is obtained for each subject representing
the coefficient across all degrees, 8(k). A normalized coefficient
was then obtained by calculating the element by element ratio
between8(k) and8

random(k), where8
random(k) denotes the rich

club coefficient calculated (also across the range k) for 1000 ran-
dom networks obtained by shuffling the links in the individual
network, preserving the degree distribution compared with the
individual network. For each subject, nodes participating in the
rich club network were defined as those with degree k such that
8(k)/8random(k) > 1.

We examined the variability across subjects of nodal participa-
tion in the rich club network by evaluating the relative frequency
with which each node was part of the rich club network.We com-
pared regional participation in the rich club networks across all
fixed density thresholds through a series of chi-squares. Nonethe-
less, we focused our analyses on the data obtained from the net-
works including only links within the highest 5th percentile of
link weight, which is a sparsity level more likely to represent
the core framework of structural organization of the networks
obtained with probabilistic tractography (Hinne et al., 2015).

Finally, we also evaluated whether there was a correlation
between the frequency of participation in the rich club network
and age.

Results

There were no statistically significant differences in regional rich
club participation when comparing different fixed density thresh-
olds. The relative participation of nodes in the rich club network
across all thresholds can be observed in Supplementary Figure 1.

Focusing on networks composed of links with weight greater
than the 95th percentile (in order to better represent network
cores) we observed a relatively left vs. right symmetrical distri-
bution of nodal degrees. As demonstrated in Figure 1, there was
not a statistically significant difference in node-wise distribution
of degrees across hemispheres, except for the nucleus accumbens
(ROI 39), which was associated with a higher degree on the right
hemisphere (t = 3.98, p = 0.0003).

The hemispheric distribution of node-wise rich club participa-
tion was also fairly symmetrical across hemispheres. Nonetheless,
the lateral occipital region was more commonly part of the rich
club network in the right (t = 2.95, p = 0.005). Notably, employ-
ing a more liberal statistical threshold, (i.e., 0.01 < p < 0.05), we
observed a trend toward higher participation of the right perical-
carine region (t = 2.07, p = 0.04), the right nucleus accumbens
(t = 2.67, p = 0.01), and the left transverse temporal region
(t = −2.35, p = 0.02).

Group wise average curves demonstrating 8(k) (i.e., the rich
club coefficient per degree k), 8

random(k), and their ratios are
shown in Figure 2. As described in the methods, the criterion
for defining nodes participating in the rich club network is
defined as 8(k)/8random(k) > 1. The nodal degrees where the
ratio 8(k)/8random(k) was greater than 1 was variable among
subjects, as demonstrated in Supplementary Figure 2, which
demonstrates 8(k), 8

random(k), and 8(k)/8random(k) for all
subjects.

The average number of nodes pertaining to the rich club,
per subject, was 45 ± 13 nodes. A chi-square comparison
of the observed versus expected frequencies for each node

FIGURE 1 | Nodal degree (mean ± SD) for each ROI in the left (blue)

and right (red) hemispheres. A significant difference between the right and

left hemispheres was found exclusively for ROI 39 (nucleus accumbens),

marked with an asterisk. Error bars are SD.

FIGURE 2 | Rich club coefficient as a function of nodal degree (x-axis)

for the average connectome of participants in this study (8, blue) and

for 1000 random networks with similar degree distribution (8random,

green). The left Y-axis demonstrates the rich club coefficient. The shaded

areas represent the interval within 1 SD above and below the mean, which is

demonstrated by the continuous colored line. The red line represents the

proportion between 8 and 8
random as a function of degree (X-axis), and the

ratio is demonstrated on the right Y-axis.
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FIGURE 3 | Anatomical distribution of nodes color-coded for

node-wise percentage of participation in the rich club. Notice

the preferential location in the proximity of medial integrative areas,

medial aspect of occipital and pre-cuneus regions, and highly

specialized brain regions. The data in this figure corresponds to

Table 1.

demonstrated that the following nodes were more likely to
be involved in the rich club network: right lateral occipital,
right pericalcarine, right caudal anterior cingulate, left posterior
cingulate, right posterior cingulate, right lateral orbitofrontal,
right fusiform, right caudate, left supramarginal, left lateral
orbitofrontal, left inferior temporal, right middle temporal, right
lingual, right hippocampus, left precuneus, left hippocampus, left
caudate, left caudal middle frontal regions.

The node-wise percentage of participation in the rich club
for each node is demonstrated anatomically in Figure 3 and in
Supplementary Figure 3. The individual variability can also be
appreciated in Supplementary Figure 4, which demonstrates the
nodes participating in the rich club network for each individual
assessed in this study.

We did not observe a relationship between age and the num-
ber of nodes pertaining to the rich club network. However, we
observed a trend toward a higher participation of the left entorhi-
nal cortex in the rich club network among older individuals (i.e.
older than themedian age in our sample, 35 years), Chi2 = 9.382,
p < 0.005.

Discussion

In this study, we demonstrated that nodes participating in rich
club networks are consistently located in relatively equivalent
anatomical locations across healthy adults. We also observed that
the rich club nodes are located on all brain lobes in a fairly
symmetrical distribution either in their medial or lateral aspects.

Interestingly, the anatomical areas more commonly associ-
ated with rich club nodes were those located in the proximity
of medial integrative areas, such as the cingulate and pericingu-
late regions, medial aspect of the occipital areas and precuneus;
or else, they were found in specialized brain regions (such as
the oribitofrontal cortex, caudate, fusiform gyrus and hippocam-
pus). These results suggest that these areas not only play an
important functional role, but they also play an important part
in the configuration of the structural brain networks in healthy
individuals (Sporns, 2013). Specifically, they may serve as struc-
tural hubs and provide the structural framework for integration
across different functional domains (Sporns, 2014). Our obser-
vations are in accordance with the theory that informational
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TABLE 1 | Percent nodal participation in the rich club for healthy

participants recruited in this study based on networks obtained with a

fixed density threshold in the 95th percentile.

Number Node Rich club participation (%)

1 Right lateral occipital 90.69767442

2 Right pericalcarine 88.37209302

3 Right caudal anterior cingulate 86.04651163

4 Left posterior cingulate 86.04651163

5 Right posterior cingulate 83.72093023

6 Right lateral orbitofrontal 83.72093023

7 Right fusiform 83.72093023

8 Right caudate 83.72093023

9 Left supramarginal 83.72093023

10 Left lateral orbitofrontal 83.72093023

11 Left inferior temporal 83.72093023

12 Right middle temporal 81.39534884

13 Right lingual 81.39534884

14 Right hippocampus 81.39534884

15 Left precuneus 81.39534884

16 Left hippocampus 81.39534884

17 Left caudate 81.39534884

18 Left caudal middle frontal 81.39534884

19 Right isthmus cingulate 79.06976744

20 Left middle temporal 79.06976744

21 Right pars opercularis 76.74418605

22 Right inferior parietal 76.74418605

23 Left rostral middle frontal 76.74418605

24 Left post central 76.74418605

25 Left lingual 76.74418605

26 Left inferior parietal 76.74418605

27 Left superior temporal sulcus 76.74418605

28 Left amygdala 76.74418605

29 Right supramarginal 74.41860465

30 Right superior temporal 74.41860465

31 Right precuneus 74.41860465

32 Right postcentral 74.41860465

33 Right caudal middle frontal 74.41860465

34 Right superior temporal sulcus 74.41860465

35 Left superior temporal 74.41860465

36 Left pars opercularis 74.41860465

37 Left insula 74.41860465

38 Left fusiform 74.41860465

39 Right rostral middle frontal 72.09302326

40 Right rostral anterior cingulate 72.09302326

41 Right medial orbitofrontal 72.09302326

42 Right accumbens 72.09302326

43 Left medial orbitofrontal 72.09302326

44 Left caudal anterior cingulate 72.09302326

45 Right inferior temporal 69.76744186

46 Left rostral anterior cingulate 69.76744186

47 Left pericalcarine 69.76744186

48 Left pars triangularis 69.76744186

49 Left lateral occipital 69.76744186

50 Left isthmus cingulate 69.76744186

(Continued)

TABLE 1 | Continued

Number Node Rich club participation (%)

51 Right superior parietal 67.44186047

52 Right pars triangularis 67.44186047

53 Right pallidum 67.44186047

54 Right amygdala 67.44186047

55 Left pallidum 67.44186047

56 Right superior frontal 65.11627907

57 Left thalamus 62.79069767

58 Right thalamus 60.46511628

59 Right temporal pole 60.46511628

60 Right insula 60.46511628

61 Left superior frontal 60.46511628

62 Right parahippocampal 58.13953488

63 Right paracentral 58.13953488

64 Left superior parietal 55.81395349

65 Right pars orbitalis 51.1627907

66 Right cuneus 51.1627907

67 Left temporal pole 51.1627907

68 Left parahippocampal 51.1627907

69 Left cuneus 51.1627907

70 Right precentral 48.8372093

71 Left pars orbitalis 48.8372093

72 Left accumbens 48.8372093

73 Left paracentral 46.51162791

74 Left precentral 39.53488372

75 Right entorhinal 20.93023256

76 Left frontal pole 20.93023256

77 Right frontal pole 18.60465116

78 Left entorhinal 18.60465116

79 Left transverse temporal 16.27906977

80 Right putamen 6.976744186

81 Right transverse temporal 4.651162791

82 Left putamen 2.325581395

Nodes represent each of the 82 regions of interest derived from the gray cortical map. Rich

club participation was defined as those nodes with degree j such that 8(j)/8random(j) > 1.

Structures in bold were rich club nodes in at least 80% of the participants.

processing associated with a non-randomly and consistently
organized structural pattern (van den Heuvel et al., 2012).

We observed mild hemispheric asymmetry in regional rich
club participation due to a higher prevalence of the right nucleus
accumbens. This finding may be related to functional specializa-
tion of the nucleus accumbens in motor (Budilin et al., 2008),
behavioral control (Savjani et al., 2014) and/or learning and
memory (Downar et al., 2011). Furthermore, the higher partic-
ipation of the entorhinal cortex in the rich club networks related
to aging may be signifying increased medial temporal lobe net-
work centrality in relationship with compensatory aging memory
processing (Du et al., 2003).

In this study, we employed an atlas featuring 82 ROIs, since
this parcellation method is commonly used in the neuroimaging
literature (Hagmann et al., 2008) and our results can be related to
other studies employing a similar approach. Nonetheless, it is yet
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unknown whether cortical parcellation methods exert a signifi-
cant influence on the ensuing network architecture. In theory, a
higher number of nodes could lead to a better evaluation of finer
grained network complexity. With current limitations in spatial
resolution of DTI, building the connectome with smaller ROIs
can lead to an inability to resolve micro-connectivity.

Furthermore, our results are related to structural networks
constructed using probabilistic tractography and should be inter-
preted in this context. Probabilistic tractography is a commonly
used approach to evaluate DTI data, with the ability to par-
tially resolve complex fiber anatomy and fiber crossings (Behrens
et al., 2007). The streamline count obtained from probabilistic
tractography is considered to be a biophysical representation of
the underlying axonal bundles and myelin sheath (Jones et al.,
2013). However, since the calculation of tractography streamlines
is assessed from the distributions on voxel-wise principal diffu-
sion directions, there is an inherent possibility that noise or low
probability connections are included in the connectome. For this
reason, the evaluation of networks based on density thresholds
permits a more accurate assessment of the core framework of
connectivity. Thus, we used the number of streamlines as a binary
threshold method—i.e., regional links with a very high number
of fibers were likely to be considered a core in the connectome
framework, and therefore maintained in the network analyses.
This “fixed density threshold” approach does not use number of
fibers as weighted links in the network in the subsequent rich club
analyses. We focused on a 95th percentile threshold to maintain
consistency with the methodology from previous studies (van
denHeuvel and Sporns, 2011; Cammoun et al., 2012; Hinne et al.,
2015). Nonetheless, our exploratory analyses using different fixed
density thresholds demonstrate a fair reproducibility in regional
rich club participation across multiple sparsity levels.

There are many potential and practical implications from
observations from this study, especially with regard to gain or
loss of hub function by brain regions in specific pathological
or developmental processes. For example, while studies to date
have evaluated the number of rich club networks in particular
disease states (e.g., see van den Heuvel and Sporns, 2011), it is
conceivable that positioning of hubs may also be affected by net-
work rearrangement as a consequence of neuropathological or
neurodevelopmental processes. This may also aid in the further
characterization of phenotypical manifestations of neurological
diseases, as, for example, different network rearrangements may
be associated with neurological or psychiatric symptoms. Thus,
by better evaluating the plastic changes associated with neural
architecture organization, it may be possible to correctly identify
biomarkers related to neurological and neuropsychiatric prob-
lems. As an example, different neural networks may be involved
in the generation and maintenance of seizures in patients with
temporal lobe epilepsy (Bonilha et al., 2012). However, the clin-
ical and electrophysiological manifestations of epilepsy may be
indistinguishable regarding the neuronal networks that origi-
nate seizures. This is clinically relevant, as response to treat-
ment of epilepsy may be directly associated with the underlying
neurobiological mechanisms of seizure generation and propaga-
tion (Bonilha et al., 2013). By evaluating changes in core con-
figuration of temporal lobe network hubs, it may be possible

to better identify the conformation of different phenotypes of
temporal lobe epilepsy, and to potentially contribute with similar
approaches to other pathological models.

Another example of direct application of anatomical
positioning of rich club nodes is the evaluation of loss and
reestablishment of hubs in relationship with brain injury. For
example, it is commonly observed that subjects with language
processing problems (aphasia) after cortical and subcortical
injury after strokes may recover spontaneously or with speech
therapy (Holland et al., 1996; Robey, 1998). It is commonly
assumed that recovery involves the re-establishment of new
networks to support the regaining of function. Nonetheless, it
is still undefined whether a greater loss of network hubs may
actually prevent a more full recovery. Similarly, it is unclear
whether recovery may be associated with the reclaiming of hub
status by areas that are typically not associated with the rich
club.

In this study, we aimed to provide a description of the anatom-
ical positioning and variability of nodes participating in rich club
networks. The findings from this study may provide a reference
and framework for future studies that assess changes in this pat-
tern in association with neurobiological mechanisms related to
health and disease.
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Supplementary Figure 1 | Percent nodal participation in the rich club for

healthy participants recruited in this study based on networks obtained

with fixed density thresholds ranging from 60th to the 95th percentile.

When correcting for multiple comparisons there we no differences in participations

across thresholds. Using a less conservative approach (i.e., not correcting for

multiple comparisons, with p < 0.05), we observed lesser rich club participation of

the R posteriorcingulate, R postcentral, R/L fusiform, L caudalanteriorcingulate, L

bankssts (superior temporal sulcus) below the threshold set 90th percentile; lesser

rich club participation of the R pericalcarine below 95th percentile, lesser rich club

participation of the L paracentral, L caudalanteriorcingulate and L cuneus from

90th to 95th percentiles. (R, right hemisphere; L, left hemisphere).

Supplementary Figure 2 | This figure provides a demonstration of

individual rich club coefficients as a function of nodal degree (x-axis) (8,

blue) and for 1000 random networks with similar degree distribution

(8random, green). The left y-axis demonstrates the rich club coefficient. The red

line represents the proportion between 8 and 8
random as a function of degree

(x-axis), and the ratio is demonstrated on the right y-axis.

Supplementary Figure 3 | This figure provides an anatomical reference for

the nodes color-coded for node-wise percentage of participation in the

rich club. The data in this figure is similar to Figure 3, but all nodes are numbered

in accordance with Table 1 to facilitate visualization.

Supplementary Figure 4 | This figure demonstrates the location of nodes

participating in the rich club network (yellow) for all subjects assessed in

this study. Nodes not participating in the rich club network are demonstrated in

dark red.
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