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Abstract

Combining information from various image features has become a standard technique in concept recognition tasks.
However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple
kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical
approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be
outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently
developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer
vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-
kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo
Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tu-
berlin.de/image_mkl/(Accessed 2012 Jun 25).
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Introduction

A common strategy in visual object recognition tasks is to

combine different image features to capture relevant traits of an

image. Prominent features are, for instance, built from color,

texture, and shape information and used to accurately locate and

classify the objects of interest. The importance of such image

features changes across the tasks. For example, color information

increases the detection rates of stop signs in images substantially

but it is almost useless for finding cars. This is because, in most

countries, stop signs are red, while cars can have any color.

Additional less informative features may not only slow down the

computation time, but even can harm the predictive performance

by adding noise to the resulting classifier. Therefore it is necessary

to exclude insufficiently informative features in order to achieve

the predictive performance of state-of-the-art (SOTA) object

recognition systems (by ‘‘SOTA systems’’’ we here refer to top-

ranked submissions in established annual benchmark challenges

such as Pascal VOC (http://pascallin.ecs.soton.ac.uk/challenges/

VOC/, Accessed 2012 Jun 25) [1], ImageCLEF (http://www.

imageclef.org/, Accessed 2012 Jun 25) as well as TRECVID

(http://trecvid.nist.gov/, Accessed 2012 Jun 25) [2] for video

data). This raises the question how a combination of features can

be learned from the available data.

In this paper, we approach visual object classification from a

machine learning perspective. In the past decade, support vector

machines (SVM) [3–5] have been successfully applied to many

practical problems in various application fields including computer

vision [6]. Support vector machines exploit similarities of the data,

arising from some (possibly nonlinear) measure. The matrix of

pairwise similarities, also known as kernel matrix, allows to abstract

the data from the learning algorithm [7,8].

However, the problem remains, given a task at hand, to find an

appropriate similarity measure and to plug the resulting kernel

into an appropriate learning algorithm. But what if this similarity

measure is difficult to find? We note that [9] and [10] were the first

to exploit prior and domain knowledge for the kernel construction.

In object recognition, translating information from various

features into several kernels has now become a standard

technique. Consequently, the choice of finding the right kernel
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changes to finding an appropriate way of fusing the kernel

information; however, finding the right combination for a

particular application is so far often a matter of a judicious choice

(or trial and error).

In the absence of principled approaches, practitioners frequent-

ly resort to heuristics such as uniform mixtures of normalized

kernels [11,12] that have proven to work well. Nevertheless, this

may lead to sub-optimal kernel mixtures.

An alternative approach is multiple kernel learning (MKL),

which has been applied to object classification tasks involving

various image features [13,14]. Multiple kernel learning [15–18]

generalizes the support-vector-machine framework and aims at

simultaneously learning the optimal kernel mixture and the model

parameters of the SVM. To obtain a well-defined optimization

problem, many MKL approaches promote sparse mixtures by

incorporating a 1-norm constraint on the mixing coefficients.

Compared to heuristic approaches, MKL has the appealing

property of automatically selecting kernels in a mathematical

sound way and converges quickly as it can be wrapped around a

regular support vector machine [17]. However, some evidence

shows that sparse kernel mixtures are often outperformed by an

unweighted-sum kernel [19]. As a remedy, [20,21] propose ‘2-

norm regularized MKL variants, which promote non-sparse

kernel mixtures and subsequently have been extended to ‘p-norms

[22,23].

Multiple Kernel approaches have been applied to various

computer vision problems outside our scope such multi-class

problems [24], which require in distinction to the general multi-

label case mutually exclusive labels and object detection [25,26] in

the sense of finding object regions in an image. The latter reaches

its limits when image concepts cannot anymore be represented by

an object region such as the Outdoor,Overall Quality or Boring

concepts in the ImageCLEF2010 dataset that we will use. Please

note that we make a distinction between the general case of multi-

label classification and the more special case of multi-class

classification with mutually exclusive classes.

In this contribution, we study the benefits of sparse and non-

sparse MKL in object recognition tasks. We report on empirical

results on image data sets from the PASCAL visual object classes

(VOC) 2009 [27] and ImageCLEF2010 PhotoAnnotation [28]

challenges, showing that non-sparse MKL significantly outper-

forms the uniform mixture and ‘1-norm MKL. Furthermore, we

discuss the reasons for performance gains and performance

limitations obtained by MKL based on additional experiments

using real world and synthetic data.

The family of MKL algorithms is not restricted to SVM-based

ones. Another competitor, for example, is Multiple Kernel

Learning based on Kernel Discriminant Analysis (KDA) [29,30].

The difference between MKL-SVM and MKL-KDA lies in the

underlying single kernel optimization criterion while the regular-

ization over kernel weights is the same.

Further competitors include, for example, [31], who use logistic

regression as base criterion; their approach results in a number of

optimization parameters equal to the number of samples times the

number of input features. Since the approach in [31] a priori uses

much more optimization variables, it poses a more challenging

and potentially more time consuming optimization problem,

which limits the number of applicable features.

Further alternatives use more general combinations of kernels

such as products with kernel widths as weighting parameters

[32,33]. As [33] point out, the corresponding optimization

problems are no longer convex. Consequently, they may find

suboptimal solutions and it is more difficult to assess using how

much gain can be achieved by learning the kernel weights.

This paper is organized as follows. We first briefly review the

machine learning techniques used in his paper. Then we present

our experimental results on the VOC2009 and ImageCLEF2010

datasets, and, finally, we discuss promoting and limiting factors of

MKL and the sum-kernel SVM in various learning scenarios.

Methods

This section briefly introduces multiple kernel learning (MKL).

For an extensive treatment see the survey of [34].

Given a finite number m of different kernels each of which

implies the existence of a feature mapping yj : X?Hj onto a

Hilbert space

kj(x,�xx)~Syj(x),yj(�xx)THj

the goal of multiple kernel learning is to learn SVM parameters

(a,b) and kernel weights fbl ,l~1, . . . ,mg for a linear combination

of these m kernels K~
P

l blkl simultaneously.

This can be cast as the following optimization problem which

reduces to support vector machines [4,8] in the special case of on

kernel m~1

min
b,w,b,j

1

2

Xm

j~1

bjwj
’wjzCEjE1 ð1Þ

s:t: Vi : yi

Xm

j~1

bjwj
’yj(xi)zb

 !
§1{ji

j§0; b§0; EbEpƒ1:

The usage of kernel mixtures
P

l blkl is permitted through its

partially dualized form:

min
b

max
a

Xn

i~1

ai{
1

2

Xn

i,l~1

aialyiyl

Xm

j~1

bjkj(xi,xl) ð2Þ

s:t: Vn
i~1 : 0ƒaiƒC;

Xn

i~1

yiai~0;

Vm
j~1 : bj§0; EbEpƒ1:

For details on the solution of this optimization problem and its

kernelization we refer to [23]. This optimization problem has two

parameters: the regularization constant C and a parameter p on

the constraint for the kernel weights b. The regularization constant

is known from support vector machines; it balances the margin

term CEjE1 from equation (1) over the regularization termPm
j~1 bjwj

’wj . A high value of the regularization constant C puts

more emphasis on achieving high classification margins

yi

Pm
j~1 bjwj

’yj(xi)zb
� �

on the training data while a low value

emphasizes the regularization term as a measure against over-

fitting on training data.

While prior work on MKL imposes a 1-norm constraint on the

mixing coefficients to enforce sparse solutions lying on a standard
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simplex [16,17,35,36], we employ a generalized ‘p-norm con-

straint EbEpƒ1 for p§1 as used in [22,23]. The implications of

this modification in the context of image concept classification will

be discussed throughout this paper.

Results

In this section, we evaluate ‘p-norm MKL in real-world image

categorization tasks, experimenting on the VOC2009 and

ImageCLEF2010 data sets. We also provide insights on when

and why ‘p-norm MKL can help performance in image

classification applications. The evaluation measure for both

datasets is the average precision (AP) over all recall values based

on the precision-recall (PR) curves.

Data Sets
We experiment on the following data sets:

1. PASCAL2 VOC Challenge 2009: We use the official data

set of the PASCAL2 Visual Object Classes Challenge 2009

(VOC2009) [27], which consists of 13979 images. The use

the official split into 3473 training, 3581 validation, and 6925

test examples as provided by the challenge organizers. The

organizers also provided annotation of the 20 objects

categories; note that an image can have multiple object

annotations. The task is to solve 20 binary classification

problems, i.e. predicting whether at least one object from a

class k is visible in the test image. Although the test labels are

undisclosed, the more recent VOC datasets permit to evaluate

AP scores on the test set via the challenge website (the number

of allowed submissions per week being limited).

2. ImageCLEF 2010 PhotoAnnotation: The Image-

CLEF2010 PhotoAnnotation data set [28] consists of 8000

labeled training images taken from flickr and a test set with

recently disclosed labels. The images are annotated by 93

concept classes having highly variable concepts—they contain

both well defined objects such as lake, river, plants, trees, flowers, as

well as many rather ambiguously defined concepts such as

winter, boring, architecture, macro, artificial, motion blur, —however,

those concepts might not always be connected to objects

present in an image or captured by a bounding box. This

makes it highly challenging for any recognition system.

Unfortunately, there is currently no official way to obtain test

set performance scores from the challenge organizers. There-

fore, for this data set, we report on training set cross-validation

performances only. As for VOC2009 we decompose the

problem into 93 binary classification problems. Again, many

concept classes are challenging to rank or classify by an object

detection approach due to their inherent non-object nature. As

for the previous dataset each image can be labeled with

multiple concepts.

Image Features and Base Kernels
In all of our experiments we deploy 32 kernels capturing various

aspects of the images. Our choice of features is inspired by the

VOC 2007 winner [37] and our own experiences from our

submissions to the VOC2009 and ImageCLEF2009 challenges. It

is known from the top-ranked submissions in recent Pascal VOC

Classification and ImageCLEF PhotoAnnotation Challenges that

Bag-of-Words features are necessary for state-of-the-art perfor-

mance results when the focus lies on visual concept classification

and ranking. At the same time adding simpler features together

with multiple kernel learning may improve the ranking perfor-

mance for some visual concepts as well as the average performance

measured over all visual concepts (shown in [38]). For the

ImageCLEF2010 dataset the test data annotations have been

disclosed and we checked that adding the simpler features listed

below improves, indeed, the average-kernel performance com-

pared to relying on BoW-S features (see next section) alone. Our

choice of features was furthermore guided by the intention to have

several different feature types that empirically have been proven to

be useful and to use gradient and color information. Furthermore

the features should have reasonable computation times without the

need for excessive tuning of many parameters and they should be

able to capture objects and visual concept cues of varying sizes and

positions. For this reason, we used bag of word features and global

histograms based on color and gradient information.

The features used in the following are derived from histograms

that a priori contain no spatial information. We therefore enrich the

respective representations by using regular spatial tilings 1|1,

3|1, 2|2, 4|4, 8|8, which correspond to single levels of the

pyramidal approach in [11]. Furthermore, we apply a x2 kernel on

top of the enriched histogram features, which is an established

kernel for capturing histogram features [12]. The bandwidth of the

x2 kernel is thereby heuristically chosen as the mean x2 distance

over all pairs of training examples, as done, for example, in [39].

Histogram over a bag of visual words over SIFT
features (BoW-S). Histograms over a bag of visual words over

SIFT features are known to yield excellent performance for visual

concept recognition both when used as single features alone as well

as in combination with other features. This can be observed by

checking the top-ranked submissions in the recent ImageCLEF

PhotoAnnotation and Pascal VOC Classification challenges and

noting their general usage in publications on visual concept

ranking. It has also recently been successfully deployed to object

detection [40] on a large data set of images within the Imagenet

Large Scale Visual Recognition Challenge.

The BoW features [41] were constructed with parameters that

were established in past image annotation challenges so as to yield

good results. At first, the SIFT features [42] were calculated on a

regular grid with six pixel pitch for each image. We computed the

SIFT features over the following color combinations, which are

inspired by [43]: red-green-blue (RGB), normalized RGB, gray-

opponentColor1–opponentColor2, and gray-normalized Oppo-

nentColor1–OpponentColor2; in addition, we also use a simple

gray channel. For visual words we used a code book of size 4000
obtained by k-means clustering (with a random initialization of

centers and using 600000 local features taken randomly from the

training set). Finally, all SIFT features were assigned to the visual

words (so-called prototypes) by adding a constant to the nearest

visual word and then summarized into histograms within entire

images or sub-regions. The BoW feature was normalized to an ‘1-

norm of one. Note that five color channel sets times three spatial

tilings (see below) 1|1, 2|2 and 3|1 yield 15 features in total.

Histogram over a bag of visual words over color
intensity histograms (BoW-C). This feature has been

computed in a similar manner as the BoW-S feature. However,

for the local feature, we employed low-dimensional color

histograms instead of SIFT features, which combines the

established BoW computation principle of aggregating local

features into a global feature with color intensity information –

this was our motivation for employing them. The color histograms

were calculated on a regular grid with nine pixel pitch for each

image over a descriptor support of radius 12 and histogram

dimension 15 per color channel (SIFT: 128). We computed the

color histograms over the following color combinations, again

inspired by [43]: red-green-blue (RGB), gray-opponentColor1-

Classifying Visual Concepts with Multiple Kernels
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opponentColor2, gray only and, finally, the hue weighted by the

grey value in the pixels. For the latter the weighting implies that

the hue receives a higher weight in bright pixels as a

countermeasure against the known difficulties to estimate hue in

dark regions of an image.

For visual words we used a code book of size 900 obtained by k-

means clustering. The lower dimensionality in local features and

visual words yielded a much faster computation compared to the

BoW-S feature. Otherwise we used the same settings as for BoW-

S. Four color channel sets times two spatial tilings 1|1 and 3|1
resulted in 8 BoW-C features in total.

Histogram of oriented gradients (HoG). The histogram

of oriented gradients has proven to be useful [44] on the seminal

Caltech101 Dataset [45]. It serves as an alternative and much

faster way to incorporate gradient information compared to the

BoW-S features. The HoG feature is based on discretizing the

orientation of the gradient vector at each pixel into bins and then

summarizing the discretized orientations into histograms within

image regions [46]. Canny detectors [47] are used to discard

contributions from pixels, around which the image is almost

uniform. We computed HoG features over the following color

channel combinations: red-green-blue (RGB), gray-opponentCo-

lor1-opponentColor2 and gray only, every time using 24

histogram bins for gradient orientations for each color channel

and spatial tilings 4|4 and 8|8.

In the experiments we deploy four kernels: a product kernel

created from the two kernels with different spatial tilings with

colors red-green-blue, a product kernel created from the two

kernels having color combination gray-opponentColor1-oppo-

nentColor2, and the two kernels using the gray channel alone

(differing in their spatial tiling). Note that building a product kernel

out of x2 kernels boils down to concatenating feature blocks (but

using a separate kernel width for each feature block).

This choice allows to employ gradient information for a specific

color channel set – independent of spatial resolution – via the first

two kernels and for a specific spatial resolution (independent of

color channels) via the last two kernels. This is a principled way to

yield diverse features: one subset varies over color channel sets and

the other over spatial tilings. In total we have four HoG features.

Histogram of pixel color intensities (HoC). The

histogram of color intensities is known to be able to improve

ranking performance of BoW-S features as shown in [38], which

motivated us to use it here. The HoC features were constructed by

discretizing pixel-wise color values and computing their bin

histograms within image regions. We computed HoC features

over the following color channel combinations: red-green-blue

(RGB), gray-opponentColor1-opponentColor2 and gray only,

every time using 15 histogram bins for color intensities for each

color channel and spatial tilings 3|1, 2|2 and 4|4.

In the experiments we deploy five kernels: a product kernel

created from the three kernels with different spatial tilings with

colors red-green-blue, a product kernel created from the three

kernels with color combination gray-opponentColor1-opponent-

Color2, and the three kernels using the gray channel alone

(differing in their spatial tiling). Again, please note the relation

between feature concatenation and taking the product of x2-

kernels. The last three kernels are HoC features from the gray

channel and the two spatial tilings. This choice allows to employ

color information for a specific color channel set independent of

spatial resolution via the first two kernels and for a specific spatial

resolution independent of color channels via the last two kernels.

In total we have five HoC features.

For the HoG and HoC feature we used higher spatial tilings

because these two features are much faster to compute compared

to BoW features, thus allowing to increase their dimensionality by

the spatial tilings, and due to our empirical experience that choices

of finer spatial tilings beyond 2|2 tend to yield a higher

improvement for such simpler features as compared to BoW-based

features.

Summary. We can summarize the employed kernels by the

following types of basic features:

N Histogram over a bag of visual words over SIFT features

(BoW-S), 15 kernels

N Histogram over a bag of visual words over color intensity

histograms (BoW-C), 8 kernels

N Histogram of oriented gradients (HoG), 4 kernels

N Histogram of pixel color intensities (HoC), 5 kernels.

We used a higher fraction of bag-of-word-based features as we

knew from our challenge submissions that they have a better

performance than global histogram features. The intention was,

however, to use a variety of different feature types that have been

proven to be effective on the above datasets in the past—but at the

same time obeying memory limitations of maximally ca. 25 GB

per job as required by computer facilities used in our experiments

(we used a cluster of 23 nodes having in total 256 AMD64 CPUs

and with memory limitations ranging in 32–96 GB RAM per

node).

In practice, the normalization of kernels is as important for

MKL as the normalization of features is for training regularized

linear or single-kernel models. Optimal feature/kernel weights are

requested to be small by the ‘p-norm constraint in the

optimization problem given by equation (1), implying a bias to

towards excessively up-scaled kernels. In general, there are several

ways of normalizing kernel functions. We apply the following

normalization method, proposed in [48,49] and entitled multipli-

cative normalization in [23];

K.
K

1

n
tr(K){

1

n2
1>>K1

: ð3Þ

The denominator is an estimator of the variance in the embedding

Hilbert space computed over the given dataset D by replacing the

expectation operator E½:� by the discrete average over the data

points xi[D.

Var(w)H~E Ew(X ){E½w�E2
H

� �
~ESw(X ){E½w�,w(X ){E½w�TH

&D

1

n
tr(K){

1

n2
1>>K1

ð4Þ

Thus dividing the kernel matrix k(xi,xj)~Sw(xi),w(xj)TH by this

term is equivalent to dividing each embedded feature w(x) by its

standard deviation over the data. This normalization corresponds

to rescaling the data samples to unit variance in the Hilbert space

used for SVM and MKL classification.

Experimental Setup
We treat the multi-label data set as binary classification

problems, that is, for each object category we trained a one-vs.-

rest classifier. Multiple labels per image render multi-class methods

inapplicable as these require mutually exclusive labels for the

images. The classifiers used here were trained using the open

sourced Shogun toolbox http://www.shogun-toolbox.org (Ac-

cessed 2012 Jun 25) [50]. In order to shed light on the nature of

the presented techniques from a statistical viewpoint, we first
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pooled all labeled data and then created 20 random cross-

validation splits for VOC2009 and 12 splits for the larger dataset

ImageCLEF2010.

For each of the 12 or 20 splits, the training images were used for

learning the classifiers, while the SVM/MKL regularization

parameter C and the norm parameter p were chosen based on

the maximal AP score on the validation images. Thereby, the

regularization constant C is optimized by class-wise grid search

over C[f10i Di~{1,{0:5,0,0:5,1g. Preliminary runs indicated

that this way the optimal solutions are attained inside the grid.

Note that for p~? the ‘p-norm MKL boils down to a simple

SVM using a uniform kernel combination (subsequently called

sum-kernel SVM). In our experiments, we used the average kernel

SVM instead of the sum-kernel one. This is no limitation in this as

both lead to identical result for an appropriate choice of the SVM

regularization parameter.

For a rigorous evaluation, we would have to construct a

separate codebook for each cross validation split. However,

creating codebooks and assigning features to visual words is a

time-consuming process. Therefore, in our experiments we resort

to the common practice of using a single codebook created from all

training images contained in the official split. Although this could

result in a slight overestimation of the AP scores, this affects all

methods equally and does not favor any classification method

more than another—our focus lies on a relative comparison of the

different classification methods; therefore there is no loss in

exploiting this computational shortcut.

Numerical Evaluation
In this section we report on the empirical results achieved by ‘p-

norm MKL in our visual object recognition experiments.

VOC 2009 Table 1 shows the AP scores attained on the official

test split of the VOC2009 data set (scores obtained by evaluation

via the challenge website). The class-wise optimal regularization

constant has been selected by cross-validation-based model

selection on the training data set. We can observe that non-sparse

MKL outperforms the baselines ‘1-MKL and the sum-kernel

SVM in this sound evaluation setup. We also report on the cross-

validation performance achieved on the training data set (Table 2).

Comparing the two results, one can observe a small overestimation

for the cross-validation approach (for the reasons argued in

Section Experimental Setup) —however, the amount by which this

happens is equal for all methods; in particular, the ranking of the

compared methods (SVM versus ‘p-norm MKL for various values

of p) is preserved for the average over all classes and most of the

classes (exceptions are the bottle and bird class); this shows the

reliability of the cross-validation-based evaluation method in

practice. Note that the observed variance in the AP measure across

concepts can be explained in part by the variations in the label

distributions across concepts and cross-validation splits. Unlike for

the AUC measure [51] which is also commonly used for the

evaluation of rankings of classifier predictions, the average score of

the AP measure under randomly ranked images depends on the

ratio of positive and negative labeled samples.

A reason why the bottle class shows such a strong deviation

towards sparse methods could be the varying but often small

fraction of image area covered by bottles leading to overfitting

when using spatial tilings.

We can also remark that ‘1:333-norm achieves the best result of

all compared methods on the VOC dataset, slightly followed by

‘1:125-norm MKL. To evaluate the statistical significance of our

findings, we perform a Wilcoxon signed-rank test for the cross-

validation-based results (see Table 2; significant results are marked

in boldface). We find that in 15 out of the 20 classes the optimal

result is achieved by truly non-sparse ‘p-norm MKL (which means

p[�1,?½), thus outperforming the baseline significantly.

ImageCLEF Table 3 shows the AP scores averaged over all

classes achieved on the ImageCLEF2010 data set. We observe that

the best result is achieved by the non-sparse ‘p-norm MKL

algorithms with norm parameters p~1:125 and p~1:333. The

detailed results for all 93 classes are shown in Table S1.We can see

from the detailed results that in 37 out of the 93 classes the optimal

result attained by non-sparse ‘p-norm MKL was significantly

better than the sum kernel according to a Wilcoxon signed-rank

test.

We also show the results for optimizing the norm parameter p

class-wise on the training set and measuring the performance on the

test set (see Table 4 for the VOC dataset and Table 5 for the

ImageCLEF dataset). We can see from Table 5 that optimizing the

‘p-norm class-wise is beneficial: selecting the best p[�1,?½ class-

wise, the result is increased to an AP of 37.02—this is almost 0.6

AP better than the result for the vanilla sum-kernel SVM.

Including the ‘1-norm MKL in the candidate set results in no

gains. Similarly, including the sum-kernel SVM to the set of

models, the AP score does not increase compared to using ‘p-

Norms in �1,?½ alone. A qualitatively similar result can be seen

from Table 4 for the VOC 2009 dataset where we observe a gain

of 0.9 AP compared to the sum-kernel SVM. We conclude that

optimizing the norm parameter p class-wise improves performance

compared to the sum kernel SVM and, more importantly, model

selection for the class-wise optimal ‘p-norm on the training set is

stable in the sense that the choices make sense by their AP scores

on the test set; additionally, one can rely on ‘p-norm MKL alone

without the need to additionally include the sum-kernel-SVM to

the set of models. Tables 2 and 1 show that the gain in

performance for MKL varies considerably on the actual concept

class. The same also holds for the ImageCLEF2010 dataset.

Analysis and Interpretation
We now analyze the kernel set in an explorative manner; to this

end, our methodological tools are the following

1. Pairwise kernel alignment scores (KKA)

2. Kernel-target alignment scores (KTA).

Both are based on measuring angles between kernel matrices

embedded in a vector space and are explained briefly in the

following section Kernel Alignment. The KKA score measures a

similarity between two kernels computed from image features. The

KTA score measures a similarity between one of our computed

feature kernels and an optimally discriminative kernel derived

from the visual concept labels.

Kernel Alignment. The kernel alignment introduced by [52]

measures the similarity of two matrices as a cosine angle in a

Hilbert space defined by the Frobenius product of matrices

A(k1,k2) : ~
Sk1,k2TF

Ek1EF Ek2EF

, ð5Þ

It was argued in [53] that centering [54] is required in order to

correctly reflect the test errors from SVMs via kernel alignment.

Centering in the corresponding feature spaces is the replacement

of k(xi,xj)~Sw(xi),w(xi)T by

Sw(xi){N{1
XN

k~1

w(xk),w(xi){N{1
XN

k~1

w(xk)T ð6Þ
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Note that support vector machines using a bias term are invariant

against centering, which can be shown using the conditionP
i aiyi~0 from the optimization problem given by equation (2).

To see the influence of centering on kernel alignment consider that

the normalized kernel alignment with an added bias z and non-

negative kernels Sz1,z2T§0 will be dominated by the bias z when

EzE??:

Sw(x1)zz,w(x2)zzT
Ew(x1)zzEEw(x2)zzE

§

EzE2

Ew(x1)zzEEw(x2)zzE
?

EzE??
1: ð7Þ

Centering can be achieved by taking the product HKH, with

H : ~I{
1

n
11>>, ð8Þ

I is the identity matrix of size n and 1 is the column vector with all

ones. For kernel target alignment we will employ an optimally

discriminative kernel computed from the labels for a given visual

concept. The centered kernel which achieves a perfect separation

of two classes can be derived from the labels and is proportional toeyyeyy>>,where

eyy~(eyyi), eyyi : ~

1

nz

yi~z1

{
1

n{

yi~{1

8>><>>: ð9Þ

and nz and n{ are the sizes of the positive and negative classes,

respectively.

Analysis of the Chosen Kernel Set. To start with, we

computed the pairwise kernel alignment scores of the 32 base

kernels: they are shown in Figure 1. We recall that the kernels can

be classified into the following groups: Kernels 1–15 and 16–23

employ BoW-S and BoW-C features, respectively; Kernels 24 to

27 are product kernels associated with the HoG and HoC features;

Kernels 28–30 deploy HoC, and, finally, Kernels 31–32 are based

on HoG features over the gray channel. We see from the block-

diagonal structure that features that are of the same type (but are

generated for different parameter values, color channels, or spatial

tilings) are strongly correlated. Furthermore the BoW-S kernels

(Kernels 1–15) are weakly correlated with the BoW-C kernels

(Kernels 16–23). Both, the BoW-S and HoG kernels (Kernels 24–

25,31–32) use gradients and therefore are moderately correlated;

the same holds for the BoW-C and HoC kernel groups (Kernels

26–30). This corresponds to our original intention to have a broad

range of feature types which are, however, useful for the task at

hand. The principle usefulness of our feature set can be seen a

posteriori from the fact that ‘1-MKL achieves the worst

performance of all methods included in the comparison while

the sum-kernel SVM performs moderately well. Clearly, a higher

fraction of noise kernels would further harm the sum-kernel SVM

and favor the sparse MKL instead.

Based on the observation that the BoW-S kernel subset shows

high KTA scores, we also evaluated the performance restricted to

the 15 BoW-S kernels only. Unsurprisingly, this setup favors the

sum-kernel SVM, which achieves higher results on VOC2009 for

most classes; compared to ‘p-norm MKL using all 32 classes, the

sum-kernel SVM restricted to 15 classes achieves slightly better AP

scores for 11 classes, but also slightly worse for 9 classes.

Furthermore, the sum kernel SVM, ‘2-MKL, and ‘1:333-MKL

were on par with differences fairly below 0.01 AP. This is again

not surprising as the kernels from the BoW-S kernel set are

strongly correlated with each other for the VOC data which can

be seen in the top left image in Figure 1. For the ImageCLEF data

we observed a quite different picture: the sum-kernel SVM

restricted to the 15 BoW-S kernels performed significantly worse,

Table 1. AP scores on VOC2009 test data with fixed ‘p-norm.

average aeroplane bicycle bird boat bottle bus

‘1 54.58 81.13 54.52 56.14 62.44 28.10 68.92

‘1:125 56.43 81.01 56.36 58.49 62.84 25.75 68.22

‘1:333 56.70 80.77 56.79 58.88 63.11 25.26 67.80

‘2 56.34 80.41 56.34 58.72 63.13 24.55 67.70

‘? 55.85 79.80 55.68 58.32 62.76 24.23 67.79

car cat chair cow diningtable dog horse

‘1 52.33 55.50 52.22 36.17 45.84 41.90 61.90

‘1:125 55.71 57.79 53.66 40.77 48.40 46.36 63.10

‘1:333 55.98 58.00 53.87 43.14 48.17 46.54 63.08

‘2 55.54 57.98 53.47 40.95 48.07 46.59 63.02

‘? 55.38 57.30 53.07 39.74 47.27 45.87 62.49

motorbike person pottedplant sheep sofa train tvmonitor

‘1 57.58 81.73 31.57 36.68 45.72 80.52 61.41

‘1:125 60.89 82.65 34.61 41.91 46.59 80.13 63.51

‘1:333 61.28 82.72 34.60 44.14 46.42 79.93 63.60

‘2 60.91 82.52 33.40 44.81 45.98 79.53 63.26

‘? 60.55 82.20 32.76 44.15 45.69 79.03 63.00

AP scores were obtained on request from the challenge organizers due to undisclosed annotations. Regularization constants were selected via AP scores computed via
cross-validation on the training set. Best methods are marked boldface.
doi:10.1371/journal.pone.0038897.t001
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when, again, being compared to non-sparse ‘p-norm MKL using

all 32 kernels. To achieve top state-of-the-art performance, one

could optimize the scores for both datasets by considering the

class-wise maxima over learning methods and kernel sets.

However, since the intention here is not to win a challenge but

a relative comparison of models, giving insights in the nature of the

methods—we therefore discard the time-consuming optimization

over the kernel subsets.

From the above analysis, the question arises why restricting the

kernel set to the 15 BoW-S kernels affects the performance of the

compared methods differently, for the VOC2009 and Image-

CLEF2010 data sets. This can be explained by comparing the

KKA/KTA scores of the kernels attained on VOC and on

ImageCLEF (see Figure 1 (Right)): for the ImageCLEF data set the

KTA scores are substantially more spread along all kernels; there

is neither a dominance of the BoW-S subset in the KTA scores nor

a particularly strong correlation within the BoW-S subset in the

KKA scores. We attribute this to the less object-based and more

ambiguous nature of many of the concepts contained in the

ImageCLEF data set. Furthermore, the KKA scores for the

ImageCLEF data (see Figure 1 (Left)) show that this dataset

exhibits a higher variance among kernels—this is because the

correlations between all kinds of kernels are weaker for the

ImageCLEF data.

Therefore, because of this non-uniformity in the spread of the

information content among the kernels, we can conclude that

indeed our experimental setting falls into the situation where non-

sparse MKL can outperform the baseline procedures (For

example, the BoW features are more informative than HoG and

HoC, and thus the uniform-sum-kernel-SVM is suboptimal. On

the other hand, because of the fact that typical image features are

only moderately informative, HoG and HoC still convey a certain

amount of complementary information—this is what allows the

performance gains reported in Tables 2 and 3.

Note that we class-wise normalized the KTA scores to sum to

one. This is because we are rather interested in a comparison of

the relative contributions of the particular kernels than in their

absolute information content, which anyway can be more precisely

derived from the AP scores already reported in Tables 2 and 3.

Furthermore, note that we consider centered KKA and KTA scores,

Table 2. AP scores obtained on the VOC2009 training data set with fixed ‘p-norm.

Norm Average Aeroplane Bicycle Bird Boat Bottle

‘1 54.94612.3 84.8465.86 55.35610.5 59.38610.1 66.83612.4 25.91610.2

‘1:125 57.07612.7 84.8265.91 57.25610.6 62.469.13 67.89612.8 27.8869.91

‘1:333 57.2612.8 84.5166.27 57.41610.8 62.7569.07 67.99613 27.4469.77

‘2 56.53612.8 84.1265.92 56.89610.9 62.5368.9 67.69613 26.6869.94

‘? 56.08612.7 83.6765.99 56.09610.9 61.9168.81 67.52612.9 26.569.5

Norm Bus Car Cat Chair Cow Diningtable

‘1 71.15623.2 54.5467.33 59.568.22 53.3611.7 23.13613.2 48.51619.9

‘1:125 71.7622.8 56.5968.93 61.5968.26 54.3612.1 29.59616.2 49.32619.5

‘1:333 71.33623.1 56.7569.28 61.7468.41 54.25612.3 29.89615.8 48.4619.3

‘2 70.33622.3 55.9269.49 61.3968.37 53.85612.4 28.39616.2 47618.7

‘? 70.13622.2 55.5869.47 61.2568.28 53.13612.4 27.56616.2 46.29618.8

Norm Dog Horse Motorbike Person Pottedplant Sheep

‘1 41.7269.44 57.67612.2 55613.2 81.3269.49 35.14613.4 38.13619.2

‘1:125 45.57610.6 59.4612.2 57.66613.1 82.1869.3 39.05614.9 43.65620.5

‘1:333 45.85610.9 59.4611.9 57.57613 82.2769.29 39.7614.6 46.28623.9

‘2 45.14610.8 58.61611.9 56.9613.2 82.1969.3 38.97614.8 45.88624

‘? 44.63610.6 58.32611.7 56.45613.1 8269.37 38.46614.1 45.93624

Norm Sofa Train Tvmonitor

‘1 48.15611.8 75.33614.1 63.97610.2

‘1:125 48.72613 75.79614.4 65.9969.83

‘1:333 48.76611.9 75.75614.3 66.0769.59

‘2 47.29611.7 75.29614.5 65.55610.1

‘? 46.08611.8 74.89614.5 65.19610.2

AP scores were computed by cross-validation on the training set. Bold faces show the best method and all other ones that are not statistical-significantly worse by a
Wilcoxon’s signed rank test with a p-value of 0:05.
doi:10.1371/journal.pone.0038897.t002

Table 3. Average AP scores obtained on the ImageCLEF2010
test data set with ‘p-norm fixed for all classes.

‘p-Norm 1 1.125 1.333 2 ??

34.61 37.01 36.97 36.62 36.45

Regularization constants were selected by AP scores computed via 12-fold
cross-validation on the training set.
doi:10.1371/journal.pone.0038897.t003
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since it was argued in [53] that only those correctly reflect the test

errors attained by established learners such as SVMs.

The Role of the Choice of ‘p-norm. Next, we turn to the

interpretation of the norm parameter p in our algorithm. We

observe a big gap in performance between ‘1:125-norm MKL and

the sparse ‘1-norm MKL. The reason is that for pw1 MKL is

reluctant to set kernel weights to zero, as can be seen from Figure 2.

In contrast, ‘1-norm MKL eliminates 62.5% of the kernels from

the working set. The difference between the ‘p-norms for pw1 lies

solely in the ratio by which the less informative kernels are down-

weighted—they are never assigned with true zeros.

However, as proved in [23], in the computational optimum, the

kernel weights are accessed by the MKL algorithm via the

information content of the particular kernels given by a ‘p-norm-

dependent formula (see Eq. (12); this will be discussed in detail in

Section One Argument For the Sum Kernel: Randomness in Feature

Extraction). We mention at this point that the kernel weights all

converge to the same, uniform value for p??. We can confirm

these theoretical findings empirically: the histograms of the kernel

weights shown in Figure 2 clearly indicate an increasing uniformity

in the distribution of kernel weights when letting p??. Higher

values of p thus cause the weight distribution to shift away from

zero and become slanted to the right while smaller ones tend to

increase its skewness to the left.

Selection of the ‘p-norm permits to tune the strength of the

regularization of the learning of kernel weights. In this sense the

sum-kernel SVM clearly is an extreme, namely fixing the kernel

weights, obtained when letting p??. The sparse MKL marks

another extreme case: ‘p-norms with p below 1 loose the convexity

property so that p~1 is the maximally sparse choice preserving

convexity at the same time. Sparsity can be interpreted here that

only a few kernels are selected which are considered most

informative according to the optimization objective. Thus, the ‘p-

norm acts as a prior parameter for how much we trust in the

informativeness of a kernel. In conclusion, this interpretation

justifies the usage of ‘p-norm outside the existing choices ‘1 and ‘2.

The fact that the sum-kernel SVM is a reasonable choice in the

context of image annotation will be discussed further in Section

One Argument For the Sum Kernel: Randomness in Feature Extraction.

Our empirical findings on ImageCLEF and VOC seem to

contradict previous ones about the usefulness of MKL reported in

the literature, where ‘1 is frequently to be outperformed by a

simple sum-kernel SVM (for example, see [32])—however, in

these studies the sum-kernel SVM is compared to ‘1-norm or ‘2-

norm MKL only. In fact, our results confirm these findings: ‘1-norm

MKL is outperformed by the sum-kernel SVM in all of our

experiments. Nevertheless, in this paper, we show that by using the

more general ‘p-norm regularization, the prediction accuracy of

MKL can be considerably leveraged, even clearly outperforming

the sum-kernel SVM, which has been shown to be a tough

competitor in the past [14]. But of course also the simpler sum-

kernel SVM also has its advantage, although on the computational

side only: in our experiments it was about a factor of ten faster

than its MKL competitors. Further information about run times of

MKL algorithms compared to sum kernel SVMs can be taken

from [23].

Remarks for Particular Concepts. Finally, we show

images from classes where MKL helps performance and discuss

relationships to kernel weights. We have seen above that the

sparsity-inducing ‘1-norm MKL clearly outperforms all other

methods on the bottle class (see Table 1). Figure 3 shows two typical

highly ranked images and the corresponding kernel weights as

output by ‘1-norm (LEFT) and ‘1:333-norm MKL (RIGHT),

respectively, on the bottle class. We observe that ‘1-norm MKL

tends to rank highly party and people group scenes. We conjecture

that this has two reasons: first, many people group and party

scenes come along with co-occurring bottles. Second, people

group scenes have similar gradient distributions to images of large

upright standing bottles sharing many dominant vertical lines and

a thinner head section—see the left- and right-hand images in

Figure 3. Sparse ‘1-norm MKL strongly focuses on the dominant

HoG product kernel, which is able to capture the aforementioned

special gradient distributions, giving small weights to two HoC

product kernels and almost completely discarding all other kernels.

Next, we turn to the cow class, for which we have seen above

that ‘1:333-norm MKL outperforms all other methods clearly.

Figure 4 shows a typical high-ranked image of that class and also

the corresponding kernel weights as output by ‘1-norm (LEFT) and

‘1:333-norm (RIGHT) MKL, respectively. We observe that ‘1-MKL

focuses on the two HoC product kernels; this is justified by typical

cow images having green grass in the background. This allows the

HoC kernels to easily to distinguish the cow images from the

indoor and vehicle classes such as car or sofa. However, horse and

sheep images have such a green background, too. They differ in

sheep usually being black-white, and horses having a brown-black

color bias (in VOC data); cows have rather variable colors. Here,

we observe that the rather complex yet somewhat color-based

BoW-C and BoW-S features help performance—it is also those

Table 4. Average AP scores on the VOC2009 test data with ‘p-norm class-wise optimized on training data.

?? {1,??} {1.125, 1.333, 2} {1.125, 1.333, 2??} {1, 1.125, 1.333, 2} all norms from the left

55.85 55.94 56.75 56.76 56.75 56.76

AP scores on test data were obtained on request from the challenge organizers due to undisclosed annotations. The class-wise selection of ‘p-norm and regularization
constant relied on AP scores obtained via cross-validation on the training set.
doi:10.1371/journal.pone.0038897.t004

Table 5. Average AP scores on the ImageCLEF2010 test data with ‘p-norm class-wise optimized.

?? {1,??} {1.125, 1.333, 2??} {1, 1.125, 1.333, 2} all norms from the left

36.45 37.02 37.00 36.94 36.95

The class-wise selection of ‘p-norm and regularization constant relied on AP scores obtained via cross-validation on the training set.
doi:10.1371/journal.pone.0038897.t005
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kernels that are selected by the non-sparse ‘1:333-MKL, which is

the best performing model on those classes. In contrast, the sum-

kernel SVM suffers from including the five gray-channel-based

features, which are hardly useful for the horse and sheep classes

and mostly introduce additional noise. MKL (all variants) succeed

in identifying those kernels and assign those kernels with low

weights.

Discussion

In the previous section we presented empirical evidence that ‘p-

norm MKL considerably can help performance in visual image

categorization tasks. We also observed that the gain is class-specific

and limited for some classes when compared to the sum-kernel

SVM, see again Tables 2 and 1. The same also holds for the

ImageCLEF2010 dataset. In this section, we aim to shed light on

the reasons of this behavior, in particular discussing strengths of

the average kernel in Section One Argument For the Sum Kernel:

Randomness in Feature Extraction, trade-off effects in Section MKL and

Prior Knowledge and strengths of MKL in Section One Argument for

Learning the Multiple Kernel Weights: Varying Informative Subsets of Data.

Since these scenarios are based on statistical properties of kernels

which can be observed in concept recognition tasks within

computer vision we expect the results to be transferable to other

algorithms which learn linear models over kernels such as [30,31].

Figure 1. Similarity of the kernels for the VOC2009 (Top) and
ImageCLEF2010 (Bottom) data sets in terms of pairwise kernel
alignments (Left) and kernel target alignments (Right), respec-
tively. In both data sets, five groups can be identified: ‘BoW-S’ (Kernels
1–15), ‘BoW-C’ (Kernels 16–23), ‘products of HoG and HoC kernels’
(Kernels 24–27), ‘HoC single’ (Kernels 28–30), and ‘HoG single’ (Kernels
31–32).
doi:10.1371/journal.pone.0038897.g001

Figure 2. Histogram of kernel weights as output by ‘p-norm MKL for the various classes on the VOC2009 data set (32 kernels620
classes, resulting in 640 values). ‘1-norm (TOP LEFT)), ‘1:125-norm (top right), ‘1:333-norm (BOTTOM LEFT), and ‘2-norm (BOTTOM RIGHT).
doi:10.1371/journal.pone.0038897.g002

Figure 3. Images of typical highly ranked bottle images and
kernel weights from ‘1-MKL (left) and ‘1:333-MKL (right).
doi:10.1371/journal.pone.0038897.g003
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One Argument For the Sum Kernel: Randomness in
Feature Extraction

We would like to draw attention to one aspect present in BoW

features, namely the amount of randomness induced by the visual

word generation stage acting as noise with respect to kernel

selection procedures.

Experimental setup. We consider the following experiment,

similar to the one undertaken in [32]: we compute a BoW kernel

ten times each time using the same local features, identical spatial

pyramid tilings, and identical kernel functions; the only difference

between subsequent repetitions of the experiment lies in the

randomness involved in the generation of the codebook of visual

words. Note that we use SIFT features over the gray channel that

are densely sampled over a grid of step size six, 512 visual words

(for computational feasibility of the clustering), and a x2 kernel.

This procedure results in ten kernels that only differ in the

randomness stemming from the codebook generation. We then

compare the performance of the sum-kernel SVM built from the

ten kernels to the one of the best single-kernel SVM determined by

cross-validation-based model selection.

In contrast to [32] we try two codebook generation procedures,

which differ by their intrinsic amount of randomness: first, we

deploy k-means clustering, with random initialization of the

centers and a bootstrap-like selection of the best initialization

(similar to the option ‘cluster’ in MATLAB’s k-means routine).

Second, we deploy extremely randomized clustering forests (ERCF)

[55,56], that are, ensembles of randomized trees—the latter

procedure involves a considerably higher amount of randomiza-

tion compared to k-means.

Results. The results are shown in Table 6. For both clustering

procedures, we observe that the sum-kernel SVM outperforms the

best single-kernel SVM. In particular, this confirms earlier findings

of [32] carried out for k-means-based clustering. We also observe

that the difference between the sum-kernel SVM and the best

single-kernel SVM is much more pronounced for ERCF-based

kernels—we conclude that this stems from a higher amount of

randomness is involved in the ERCF clustering method when

compared to conventional k-means. The standard deviations of

the kernels in Table 6 confirm this conclusion. For each class we

computed the conditional standard deviation

std(K Dyi~yj)zstd(K Dyi=yj) ð10Þ

averaged over all classes. The usage of a conditional variance

estimator is justified because the ideal similarity in kernel target

alignment (cf. equation (9)) does have a variance over the kernel as

a whole however the conditional deviations in equation (10) would

be zero for the ideal kernel. Similarly, the fundamental MKL

optimization formula (12) relies on a statistic based on the two

conditional kernels used in formula (10). Finally, ERCF clustering

uses label information. Therefore averaging the class-wise

conditional standard deviations over all classes is not expected to

be identical to the standard deviation of the whole kernel.

We observe in Table 6 that the standard deviations are lower for

the sum kernels. Comparing ERCF and k-means shows that the

former not only exhibits larger absolute standard deviations but

also greater differences between single-best and sum-kernel as well

as larger differences in AP scores.

We can thus postulate that the reason for the superior

performance of the sum-kernel SVM stems from averaging out

the randomness contained in the BoW kernels (stemming from the

visual-word generation). This can be explained by the fact that

averaging is a way of reducing the variance in the predictors/

models [57]. We can also remark that such variance reduction

effects can also be observed when averaging BoW kernels with

varying color combinations or other parameters; this stems from

the randomness induced by the visual word generation.

Note that in the above experimental setup each kernel uses the

same information provided via the local features. Consequently, the

best we can do is averaging—learning kernel weights in such a

scenario is likely to suffer from overfitting to the noise contained in

the kernels and can only decrease performance.

Figure 4. Images of a typical highly ranked cow image and kernel weights from ‘1-MKL (left) and ‘1:333-MKL (right).
doi:10.1371/journal.pone.0038897.g004
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To further analyze this, we recall that, in the computational

optimum, the information content of a kernel is measured by ‘p-

norm MKL via the following quantity, as proved in [23]:

b!EwE
2

pz1
2 ~(

X
i,j

aiyiKijajyj)
2

pz1: ð11Þ

In this paper we deliver a novel interpretation of the above

quantity; to this end, we decompose the right-hand term into two

terms as follows:

X
i,j

aiyiKijajyj~
X

i,jDyi~yj

aiKijaj{
X

i,jDyi=yj

aiKijaj :

The above term can be interpreted as a difference of the support-

vector-weighted sub-kernel restricted to consistent labels and the

support-vector-weighted sub-kernel over the opposing labels.

Equation (11) thus can be rewritten as

b!(
X

i,jDyi~yj

aiKijaj{
X

i,jDyi=yj

aiKijaj)
2

pz1: ð12Þ

Thus, we observe that random influences in the features combined

with overfitting support vectors can suggest a falsely high

information content in this measure for some kernels. SVMs do

overfit on BoW features. Using the scores attained on the training

data subset we can observe that many classes are deceptive-

perfectly predicted with AP scores fairly above 0.9. At this point,

non-sparse ‘pw1-norm MKL offers a parameter p for regularizing

the kernel weights—thus hardening the algorithm to become

robust against random noise, yet permitting to use some degree of

information given by Equation (12).

[32] reported in accordance to our idea about overfitting of

SVMs that ‘2-MKL and ‘1-MKL show no gain in such a scenario

while ‘1-MKL even reduces performance for some datasets. This

result is not surprising as the overly sparse ‘1-MKL has a stronger

tendency to overfit to the randomness contained in the kernels/

feature generation. The observed amount of randomness in the

state-of-the-art BoW features could be an explanation why the

sum-kernel SVM has shown to be a quite hard-to-beat competitor

for semantic concept classification and ranking problems.

MKL and Prior Knowledge
For solving a learning problem, there is nothing more valuable

than prior knowledge. Our empirical findings on the VOC2009 and

ImageCLEF09 data sets suggested that our experimental setup was

actually biased towards the sum-kernel SVM via usage of prior

knowledge when choosing the set of kernels/image features. We

deployed kernels based on four features types: BoW-S, BoW-C,

HoC and HoG. However, the number of kernels taken from each

feature type is not equal. Based on our experience with the VOC

and ImageCLEF challenges we used a higher fraction of BoW

kernels and less kernels of other types such as histograms of colors

or gradients because we already knew that BoW kernels have

superior performance.

To investigate to what extend our choice of kernels introduces a

bias towards the sum-kernel SVM, we also performed another

experiment, where we deployed a higher fraction of weaker

kernels for VOC2009. The difference to our previous experiments

lies in that we summarized the 15 BOW-S kernels in 5 product

kernels reducing the number of kernels from 32 to 22. The results

are given in Table 7; when compared to the results of the original

32-kernel experiment (shown in Table 2), we observe that the AP

scores are in average about 4 points smaller. This can be

attributed to the fraction of weak kernels being higher as in the

original experiment; consequently, the gain from using (‘1:333-

norm) MKL compared to the sum-kernel SVM is now more

pronounced: over 2 AP points—again, this can be explained by

the higher fraction of weak (i.e., noisy) kernels in the working set.

In summary, this experiment should remind us that semantic

classification setups use a substantial amount of prior knowledge.

Prior knowledge implies a pre-selection of highly effective kernels—a

carefully chosen set of strong kernels constitutes a bias towards the

sum kernel. Clearly, pre-selection of strong kernels reduces the

need for learning kernel weights; however, in settings where prior

knowledge is sparse, statistical (or even adaptive, adversarial) noise

is inherently contained in the feature extraction—thus, beneficial

effects of MKL are expected to be more pronounced in such a

scenario.

One Argument for Learning the Multiple Kernel Weights:
Varying Informative Subsets of Data

In the previous sections, we have presented evidence for why the

sum-kernel SVM is considered to be an efficient learner in visual

image categorization. Nevertheless, in our experiments we have

observed gains in accuracy by using MKL for many concepts. In

this section, we investigate causes for this performance gain.

We formulate a hypothesis for the performance gains achieved

by MKL: each kernel is informative for a subset of the data in the

sense that the kernel classifies that subset well. These subsets can

be partially disjoint between kernels and have varying sizes. The

MKL information criterion given in Eq. (12) is able to exploit such

differences in informative subsets and is able to weight kernels

properly despite being a global information measure that is

computed over the support vectors (which in turn are chosen

over the whole dataset).

In this section, we will present evidence for this hypothesis in

two steps. In the first step we show that our kernels computed from

the real ImageCLEF2010 dataset indeed have fairly disjoint

informative subsets. This suggests that our observed performance

gains achieved by MKL could be explained by MKL being able to

exploit such a scenario. In the second step we will create a toy

dataset such that the informative subsets of kernels are disjoint by

Table 6. AP Scores and standard deviations showing amount
of randomness in feature extraction: Results from repeated
computations of BoW Kernels with randomly initialized
codebooks.

Method Best Single Kernel Sum Kernel

VOC-KM AP: 44.42612.82 45.84612.94

VOC-KM Std: 30.81 30.74

VOC-ERCF AP: 42.60612.50 47.49612.89

VOC-ERCF Std: 38.12 37.89

CLEF-KM AP: 31.0965.56 31.7365.57

CLEF-KM Std: 30.51 30.50

CLEF-ERCF AP: 29.9165.39 32.7765.93

CLEF-ERCF Std: 38.58 38.10

VOC-KM denotes VOC2009 dataset and k-means for visual word generation,
VOC-ERCF denotes VOC2009 dataset and ERCF for visual word generation.
Similarly CLEF denotes ImageCLEF2010 dataset.
doi:10.1371/journal.pone.0038897.t006
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design. We will show that, in this controlled toy scenario, MKL

outperforms average-kernel SVMs in a statistically significant

manner. These two steps together will serve as evidence for our

hypothesis given above.

The main question for the first step is how to determine which

set of samples is informative for a given kernel matrix and how to

measure the diversity of two sets defined by two kernels. Despite

using ranking measures for most of the paper, we will stick here to

a simple definition. Consider one binary classification problem.

The set of all true positively and true negatively classified test

examples using a SVM will be the informative subset for a kernel.

If we restrict the kernel to the union of these two subsets of the test

data set, then the resulting classifier would discriminate the two

classes perfectly. Since we do not have test data labels for the

Pascal VOC dataset, we will restrict ourselves to the ImageCLEF

data.

The diversity measure will be defined in two steps: at first for

two sets, then for a pair of kernels. The diversity measure d(S1,S2)
for two sets S1,S2 should have two properties: it should be 1 if

these sets are maximally disjoint and be equal to zero if one set is

contained in the other. The second property follows the idea that if

the informative set of one kernel is contained in the informative set

of another, then the first kernel is inferior to the second and we

would like to reflect this in our diversity measure by setting it to

zero as we would expect little gain from adding the first kernel to

the second one in SVMs or MKL algorithms – we would say the

inferior kernel does not add any diversity.

Using these two conditions we note that two sets S1,S2 are

maximally disjoint if DS1|S2D~min(DS1DzDS2D,Ntest),where Ntest

is the total number of test samples. Analogously, if one set is

contained in the other, then DS1|S2D~min(DS1D,DS2D). Linear

interpolation between these two extremes yield the diversity

measure for a pair of sets S1,S2:

�dd(S1,S2)~
DS1|S2D{min(DS1D,DS2D)

min(DS1DzDS2D,Ntest){min(DS1D,DS2D)
ð13Þ

Note that we do not use the symmetric difference here because this

would be non-empty if one set was contained in the other.

The diversity measure d(k1,k2) for two kernels k1,k2, still given

a fixed binary classification problem, will be defined as the sum of

the diversities between the two true positive sets from both kernels

and the two true negative sets from both kernels. Let TP(k) be the

set of true positive samples of kernel k, and TN(k) the

corresponding set of true negative samples. Then we define

d(k1,k2)~
�dd(TP(k1),TP(k2))z�dd(TN(k1),TN(k2))

2
ð14Þ

Treating true positives and true negatives separately makes sense

because for most of the classes the positive labeled samples

constitute only a small fraction of all samples which has its impact

on the maximal number of true positives.

Since the ImageCLEF2010 dataset has 93 classes, we consider

the average diversity of a pair of kernels over all classes and the

maximal diversity over all classes. Figure 5 shows both diversities.

We can see an interesting phenomenon: the diversities are low

between the first 15 BoW-S kernels. This may serve as an

explanation for anecdotal experiences that using MKL on BoW-S

features alone yields no gains. The diversity is low but the

randomness in feature extraction as discussed in a subsection

above results in overfitting. However for the whole kernel set of all

32 kernels the diversities are large. The mean average diversity

(when the mean is computed over all pairs of kernels and the

average of all 93 binary classification problems) is 37:77, the mean

maximal diversity over all kernel pairs is 71:68 when the

maximum is computed over all 93 binary classification problems.

This concludes the first step: our kernel set does have partially

disjoint sets of true positive and true negative samples between

pairs of kernels. The informative subsets of kernels are fairly

disjoint.

In the second step we will construct two toy data sets in which

by design we have kernels with disjoint informative subsets of

varying sizes. The goal is to show that MKL outperforms the

average kernel SVM under such conditions. This implies that the

MKL information criterion given in Eq. (12) is able to capture

such differences in informative subsets despite being a global

information measure. In other words, the kernel weights are global

weights that uniformly hold in all regions of the input space. While

on the first look it appears to be a disadvantage, explicitly finding

informative subsets of the input space on real data may not only

imply a too high computational burden (note that the number of

partitions of an n-element training set is exponential in n) but also

is very likely to lead to overfitting.

We performed the following toy experiment. The coarse idea is

that we create n features of dimension 6k, where n is the number

of data samples. We will compute k kernels such that the i-th

kernel is computed only from the i-th consecutive block of 6
feature dimensions from all available 6k dimensions. We want the

i-th kernel to have an informative subset of samples and an

uninformative complement. After drawing labels for all n samples,

we partition all data samples into k blocks of varying size. The

precise sizes of the blocks nl will be given below. The i-th block of

data samples will be the informative subset for the i-th kernel. This

will be achieved in the following way: for the i-th block of samples

Table 7. MKL versus Prior Knowledge: AP Scores with a
smaller fraction of well scoring kernels.

Class/‘p-norm 1:333 ???

Aeroplane 77.8267.701 76.2868.168

Bicycle 50.75611.06 46.39612.37

Bird 57.768.451 55.0968.224

Boat 62.8613.29 60.9614.01

Bottle 26.1469.274 25.0569.213

Bus 68.15622.55 67.24622.8

Car 51.7268.822 49.5169.447

Cat 56.6969.103 55.5569.317

Chair 51.67612.24 49.85612

Cow 25.33613.8 22.22612.41

Diningtable 45.91619.63 42.96620.17

Dog 41.22610.14 39.0469.565

Horse 52.45613.41 50.01613.88

Motorbike 54.37612.91 52.63612.66

Person 80.12610.13 79.17610.51

Pottedplant 35.69613.37 34.6614.09

Sheep 37.05618.04 34.65618.68

Sofa 41.15611.21 37.88611.11

Train 70.03615.67 67.87616.37

Tvmonitor 59.88610.66 57.77610.91

Average 52.33612.57 50.23612.79

doi:10.1371/journal.pone.0038897.t007
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the i-th block of dimensions will be drawn from two Gaussians

having different means such that the chosen Gaussian depends on

the label of the data sample. This implies that each of the two

Gaussians is responsible for creating the samples of one label. For

all other samples (except for the i-th block of samples) the i-th

block of dimensions will be drawn from an unconditional mixture

of two Gaussians, i.e. which Gaussian is used will be independent

of the sample labels. Therefore the i-th kernel which is computed

from the i-th block of dimensions contains discriminative

information only for the samples coming from the i-th block of

samples. For all other samples, the i-th kernel uses features from a

mixture of Gaussians independent of the sample labels which

allows no discrimination of labels. By this construction the i-th

kernel will have the i-th set of samples as discriminative subset.

Furthermore, all kernels will have mutually disjoint informative

subsets, because the i-th kernel is discriminative only on the i-th

subset.

We generated a fraction of pz~0:25 of positively labeled and

p{~0:75 of negatively labeled training examples (motivated by

the unbalancedness of training sets usually encountered in

computer vision). The precise data creation protocol is given in

the experimental section parts for experiments one and two.

We consider two experimental setups for sampling the data,

which differ in the number of employed kernels k and the sizes of

the informative sets. In both cases, the informative features are

drawn from two sufficiently distant normal distributions (one for

each class) while the uninformative features are just Gaussian noise

(mixture of Gaussians). The experimental setup of the first

experiment can be summarized as follows:

Experimental Settings for Experiment 1 (k = 3 ker-
nels). Let nl be the size of the l-th informative subset and

n~
Pk

l~1 nl the total sample size. ffi[R6k Di~f1 : ngg are the

features to be drawn where f
(r)

i is the r-th dimension of the i-th

feature.

nl~1,2,3 : ~(300,300,500)

pz : ~P(y~z1)~0:25

S1~f1 : n1g, Slw1~fnl{1z1 : nlg

f
(r)

i [
informative subset if i[Sl and r[f1z6(l{1) : lg

uninformative subset else

�
ð15Þ

The features for the informative subset are drawn according to

f
(r)

i *
N(0:0,sl) if yi~{1

N(0:4,sl) if yi~z1

�
ð16Þ

sl~
0:3 if l~1,2

0:4 if l~3

�
ð17Þ

The features for the uninformative subset are drawn according to

f
(r)

i *(1{pz)N(0:0,0:5)zpzN(0:4,0:5): ð18Þ

Finally the l-th kernel is defined as

kl(f1,f2)~exp({sEpf1z6(l{1):lg(f1{f2)E2
2), l~1, . . . ,k ð19Þ

where pf1z6(l{1):lg(:) is the projection on the feature dimensions

ranging in the set f1z6(l{1) : lg.
For Experiment 1 the three kernels had disjoint informative

subsets of sizes nk~1,2,3~(300,300,500). We used 1100 data points

for training and the same amount for testing. We repeated this

experiment 500 times with different random draws of the data.

Note that the features used for the uninformative subsets are

drawn as a mixture of the Gaussians with a higher variance,

though. The increased variance encodes the assumption that the

feature extraction produces unreliable results on the uninformative

data subset. None of these kernels are pure noise or irrelevant.

Each kernel is the only informative one for its own informative

subset of data points.

We now turn to the experimental setup of the second

experiment which is an extension to five kernels:

Figure 5. Diversity measure between correctly classified samples for all pairs of 32 kernels. Left: Average over all concept classes. Right:
Maximum over all concept classes.
doi:10.1371/journal.pone.0038897.g005
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Experimental Settings for Experiment 2 (k = 5 ker-
nels). Let nl be the size of the l-th informative subset and

n~
Pk

l~1 nl the total sample size. ffi[R6k Di~f1 : ngg are the

features to be drawn where f
(r)

i is the r-th dimension of the i-th

feature.

nl~1,2,3,4,5~(300,300,500,200,500),

pz : ~P(y~z1)~0:25

S1~f1 : n1g, Slw1~fnl{1z1 : nlg

f
(r)

i [
informative subset if i[Sl and r[f1z6(l{1) : lg
uninformative subset else

�
ð20Þ

The features for the informative subset are drawn according to

f
(r)
i *

N(0:0,sl) if yi~{1

N(ml ,sl) if yi~z1

�
ð21Þ

ml~
0:4 if l~1,2,3

0:2 if l~4,5

�
ð22Þ

sl~
0:3 if l~1,2

0:4 if l~3,4,5

�
ð23Þ

The features for the uninformative subset are drawn according to

f (r)*(1{pz)N(0:0,0:5)zpzN(ml ,0:5) ð24Þ

Finally the l-th kernel is defined as

kl(f1,f2)~exp({sEpf1z6(l{1):lg(f1{f2)E2
2), l~1, . . . ,k ð25Þ

where pf1z6(l{1):lg(:) is the projection on the feature dimensions

ranging in the set f1z6(l{1) : lg.
As for the real experiments, we normalized the kernels to having

standard deviation 1 in Hilbert space and optimized the

regularization constant by grid search in

C[f10i Di~{2,{1:5, . . . ,2g.
Table 8 shows the results. The null hypothesis of equal means is

rejected by a t-test with a p-value of 0:000266 and 0:0000047,

respectively, for Experiment 1 and 2, which is highly significant.

Experiment 2 shows that the design of the Experiment 1 is no

singular lucky find: we can extend the setting of experiment 1 and

observe similar results again when using more kernels; the

performance gaps then even increased. Experiment 2 uses five

kernels instead of just three. Again, the informative subsets are

disjoint, but this time of sizes 300, 300, 500, 200, and 500; the the

Gaussians are centered at 0:4, 0:4, 0:4, 0:2, and 0:2, respectively,

for the positive class; and the variance is taken as

sk~(0:3,0:3,0:4,0:4,0:4). Compared to Experiment 1, this results

in even bigger performance gaps between the sum-kernel SVM

and the non-sparse ‘1:0625-MKL. One can imagine to create

learning scenarios with more and more kernels in the above way,

thus increasing the performance gaps—since we aim at a relative

comparison, this, however, would not further contribute to

validating or rejecting our hypothesis.

Furthermore, we also investigated the single-kernel performance

of each kernel: we observed the best single-kernel SVM (which

attained AP scores of 43:60, 43:40, and 58:90 for Experiment 1)

being inferior to both MKL (regardless of the employed norm

parameter p) and the sum-kernel SVM over the whole set of

kernels. The differences were significant with fairly small p-values

(for example, for ‘1:25-MKL the p-value was still about 0:02).

We emphasize that we did not design the example in order to

achieve a maximal performance gap between the non sparse MKL

and its competitors. For such an example, see the toy experiment

of [23].Our focus here was to confirm our hypothesis that kernels

in semantic concept classification are based on varying informative

subsets of the data—although MKL computes global weights, it

emphasizes on kernels that are relevant on the largest informative

set and thus approximates the infeasible combinatorial problem of

computing an optimal partition/grid of the space into regions

which underlie identical optimal weights. Though, in practice, we

expect the situation to be more complicated as informative subsets

may overlap between kernels instead of being disjoint as modeled

here

Nevertheless, our hypothesis also opens the way to new

directions for learning of kernel weights, namely restricted to

subsets of data chosen according to a meaningful principle.

Finding such principles is one the future goals of MKL—we

sketched one possibility: locality in feature space. A first starting

point may be the work of [58,59] on localized MKL.

We conclude the second step. MKL did outperform the average

kernel SVM in this controlled toy data scenario with disjoint

informative subsets for each kernel. It may serve as empirical

evidence for our hypothesis why we observe gains using MKL on

real data: MKL with its global information criterion can exploit

scenarios in which each kernel is informative for a subset of the

data and these subsets are partially disjoint between kernels.

Conclusions

Analyzing images using many different features is a common

strategy in visual object recognition. This raises the question of how

to combine these features. In this paper, we revisited this

important topic and discussed machine learning approaches to

adaptively combine different image features in a systematic and

theoretically well founded manner. While MKL approaches in

principle solve this problem it has been observed that the standard

‘1-norm based MKL often cannot outperform SVMs that use an

average of a large number of kernels. One hypothesis why this

seemingly unintuitive result may occur is that the sparsity prior

may not be appropriate in many real world problems—especially,

when prior knowledge is already at hand. We tested whether this

hypothesis holds true for computer vision and applied the recently

developed non-sparse ‘p MKL algorithms to object classification

Table 8. AP Scores in Toy experiment using Kernels with
disjoint informative subsets of Data.

Setup ,‘-SVM ,1.0625-MKL t-test p-value

1 68.7263.27 69.4963.17 0.000266

2 55.0762.86 56.3962.84 4:7:10{6

doi:10.1371/journal.pone.0038897.t008

Classifying Visual Concepts with Multiple Kernels

PLOS ONE | www.plosone.org 14 August 2012 | Volume 7 | Issue 8 | e38897



tasks. The ‘p-norm constitutes a slightly less severe method of

sparsification. By choosing p as a hyperparameter, which controls

the degree of non-sparsity and regularization, from a set of

candidate values with the help of a validation data, we showed that

‘p-MKL significantly improves SVMs with averaged kernels and

the standard sparse ‘1 MKL.

Future work will study localized MKL and methods to include

hierarchically structured information into MKL, e.g. knowledge

from taxonomies for multi-label ranking [60,61] or the classical

multi-class classification, semantic information or spatial priors.

Another interesting direction is MKL-KDA [29,30]. The differ-

ence to the method studied in the present paper lies in the base

optimization criterion: KDA [62] leads to non-sparse solutions in a
while ours leads to sparse ones (i.e., a low number of support

vectors). While on the computational side the latter is expected to

be advantageous, the first one might lead to more accurate

solutions. We expect the regularization over kernel weights (i.e.,

the choice of the norm parameter p) having similar effects for

MKL-KDA like for MKL-SVM. Future studies will expand on

that topic. First experiments on ImageCLEF2010 show for sum

kernel SRKDA [63] a result of 39.29 AP points which is slightly

better than the sum kernel results for the SVM (39.11 AP) but

worse than MKL-SVM.

Supporting Information

Table S1 The file Table S1 contains AP scores on
ImageCLEF2010 test data with fixed ‘p-norm for each
of the 93 concept classes listed separately.

(PDF)
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62. Mika S, Rätsch G, Weston J, Schölkopf B, Müller KR (1999) Fisher discriminant

analysis with kernels. In: Hu YH, Larsen J, Wilson E, Douglas S, editors, Neural

Networks for Signal Processing IX. IEEE, pp. 41–48.

63. Cai D, He X, Han J (2007) Efficient kernel discriminant analysis via spectral

regression. In: Proc. Int. Conf. on Data Mining (ICDM’07).

Classifying Visual Concepts with Multiple Kernels

PLOS ONE | www.plosone.org 16 August 2012 | Volume 7 | Issue 8 | e38897


