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Osteosarcoma is a dominating malignant bone tumor with high mortality due to pulmonary
metastases. Furthermore, because of the cancer cell erosion and surgery resection,
osteosarcoma always causes bone defects, which means dysfunction and disfigurement
are seldom inevitable. Although various advanced treatments (e.g. chemotherapy,
immunotherapy, radiotherapy) are coming up, the 5-year survival rate for osteosarcoma
with metastases is still dismal. In line with this, the more potent treatments for
osteosarcoma are in high demand. Curcumin, a perennial herb, has been reportedly
applied in the therapy of various types of tumors via different mechanisms. In vitro, it has
also been reported that curcumin can inhibit the proliferation of osteosarcoma cell lines
and can be used to repair bone defects. This seems curcumin is a promising candidate in
osteosarcoma treatment. However, due to its congenital property like hydrophobicity, and
low bioavailability, affecting its anticancer effect, clinical applications of curcumin are highly
limited. To enhance its performance in cancer therapies, some synergist approaches with
curcumin have emerged. The present review presents some prospective ones (i.e.
combinations with immunotherapy, chemotherapeutics, bone tissue engineering, and
biomaterials) applied in osteosarcoma treatment. Additionally, with the advancements of
photodynamic therapy in cancer therapy, this review also prospects the combination of
curcumin with photodynamic therapy in osteosarcoma treatment.

Keywords: osteosarcoma, curcumin, immunotherapy, chemotherapy, bone tissue engineering, biomaterials,
photodynamic therapy
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INTRODUCTION

Osteosarcoma (OS) originating from mesenchymal stem cells is the
main primary malignant bone tumor (1), making up for ca. 35% of
all bone carcinomas (2); it is usually diagnosed in children and
adolescents (3). The principal cause of death in patients suffering
from OS is pulmonary metastases (4). More than 90% of these
patients died from this before the introduction of
polychemotherapy (5). Another reason for the high mortality may
refer to the rapid tumor development: frustratingly, once diagnosed,
OS has most been in stage IIb or III (6). Furthermore, bone
metastases are also common in OS, causing bone defects and
followed by potential dysfunction and disfigurement (7, 8).
However, to date, it is still hard to identify a targeted treatment
for OS, as it is with a high frequency of gene and chromosome
mutations (9). Currently, the prevailing remedies for OS are surgery,
neoadjuvant and adjuvant chemotherapy. Conventionally, OS is
indicated to be resistant to radiotherapy, nonetheless, it is implied
that it is beneficial for those who have received chemotherapy but
are unable to undergo complete resection (10). With these modern
systemic therapies, the 5-year survival rate has improved, while this
rate of those with metastases is still dismal—less than 30% (8). On
the other hand, in the latest decades, therapeutic approaches for OS
have not developed. Regarding this, more efficient therapies are still
in urgent need.

Curcumin also named 1,7-Bis(4-hydroxy-3-methoxyphenyl)-
1,6-heptadiene-3,5-dione, a natural polyphenol, is isolated from
the rhizome ofCurcuma longa (11). Although curcumin is isolated
from herbs, its chemical structure has been identified (Figure 1).
Structurally, there are 3 reactive sites in curcumin: metal chelator,
Michael acceptor, and hydrogen atom donor, which bestows
versatile abilities on curcumin to fight against diseases. It has
been reported that curcumin possesses not only anti-
inflammatory, anti-oxidative but also anti-tumor potential
through targeting various molecules (12–16). In cancer
treatments, curcumin suppresses tumor progression via various
mechanisms (Table 1); commercial curcumin products have been
used to evaluate the anti-cancer effect in vitro and in vivo (31). As a
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capable phytochemical, it has identified curcumin inhibits the
proliferation of osteosarcoma cell lines and induces their apoptosis
(24, 32, 33). Moreover, curcumin is with the potential to repair
bone defects owing to tumor erosion or surgery (34–37). Taken
together, curcumin seems to be an outstanding candidate that can
be used in osteosarcoma treatment with the “one stone two birds”
effect: inhibiting OS progression and repairing the bone defects
simultaneously. Nevertheless, due to its poor aqueous solubility—
about 11 ng/ml in water (38), rapid metabolism, and rapid system
elimination, contributing to the low bioavailability (39), its clinical
applications are not common currently. Based on some research, it
has been demonstrated that the IC50 of curcumin for most cancer
cells is 15–30 mM, whereas, the highest concentration of curcumin
in the human body is just in the nanomolar range (40). Hence, to
improve its anti-cancer efficacy, synergistic approaches have been
carried out. We herein summarize combinations of free curcumin
with other therapeutic strategies to enhance its anticancer effect on
OS treatments.
INHIBITION EFFECT OF CURCUMIN
ON TUMORS

Apoptosis or programmed cell death (PCD) plays a potent role in
tumorigenesis. In physiological conditions, it can eliminate the
precancerous cells, thereby preventing normal cells from being
malignant; in turn, anticancer agents will induce cancer cells
apoptosis to cure cancers. Generally, there are two canonical
apoptotic pathways: extrinsic and intrinsic pathways (Figure 2).
For the former, apoptosis initiates after the bond between some
extracellular cytokines or growth factors and their receptors,
death receptors, on the cytomembrane, which will activate
caspase 8 followed by the activation of caspase 3 finally. The
well-known death receptor couples are TNF-TNFR1 and FasL-
Fas (41). For the intrinsic pathway, apoptosis is mainly induced
by the mitochondria dysfunction attributed to some stress
conditions. With increased mitochondria membrane potential,
some molecules (mainly cytochrome c) released from
mitochondria will initiate the process of apoptosis.

Curcumin can inhibit cancer development via various
mechanisms: inducing apoptosis and some miRNA expression,
dampening angiogenesis, metastasis, etc. Curcumin is identified
to induce neoplasm apoptosis through extrinsic and intrinsic
pathways via various targets such as Bax, Bcl-2, Fas, p53 (42–44).
It is also found to suppress non-small cell lung cancer by
upregulating miR192-5p (45) and in leukemic cells, curcumin
can upregulate miR-15a and miR-16-1, which will decrease WT-
1expression, thereby suppressing the proliferation of leukemic
cells (46).

For osteosarcoma, several researchers have successfully
proven that curcumin can induce the MG63, U2OS, and HOS
cell line apoptosis based on different signal pathways (32, 33, 47–
50). Besides, curcumin has also been identified to suppress the
proliferation, invasion, and metastasis of osteosarcoma (23, 24,
51, 52). Thence, curcumin is a promising agent with multifaced
roles it plays in the treatment of osteosarcoma. However, due to
FIGURE 1 | Chemical structure of curcumin.
TABLE 1 | Targets of curcumin in anticancer treatments.

Targets of Curcumin

Breast Cancer NF-kB (17), Nrf2 (18), MMPs, VEGF (19), Akt (20)
Lung Cancer PI3K/Akt/mTOR (21), EGFR and TLR4/MyD88 (22)
Osteosarcoma p-JAK2/p-STAT3 (23), Notch-1 (24), miR-138 (25)
Head & Neck Cancer IL-6/p-STAT3 (26), NF-kB, cyclin D1, and Bcl-2 (27)
Gastric Cancer PI3K and P53 (28), ROS (29), Wnt/b-catenin (30)
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poor bioavailability, the administration of curcumin in cancer
treatment is not common. To overcome this issue and improve
its efficiency in tumor therapy, synergistic approaches are
carried out.
SYNERGISTIC APPROACHES

Combination With Immunotherapy
The immune system is vital for the human to defect various
pathogens causing infections or tumors with the cooperation of
immune cells and some cytokines. As tumor immunotherapy has
achieved great success in clinical, the importance of cancer
immunotherapy has been gradually acknowledged in these
decades. In 2018, the Nobel prize for physiology or medicine
was awarded to the Nobel Laureates who found two immune
checkpoints: cytotoxic T-lymphocyte associated protein (CTLA-
4) and programmed cell death protein 1 (PD-1) and its ligand
Frontiers in Oncology | www.frontiersin.org 3
(PD-L1) (53) that are responsible for the tumor immune evasion.
Currently, some tumor immunotherapy agents applied in the
treatment of melanoma, lung cancer, head and neck squamous
cell cancer have been approved by Food and Drug
Administration (FDA) and European Medicines Agency
(EMA) (54). However, due to the complicacy of the immune
response in the tumor microenvironment (Figure 3), further and
more studies still should be carried out.

Immunotherapy is a practical strategy to treat osteosarcoma.
Immunotherapy enables an increase in the survival rate of
patients suffering from osteosarcoma. Back in 1891, Coley’s
research manifested that around 10% of patients with bone
and soft tissue sarcomas got benefit from the stimulated
immune system by the injection of two kinds of heat-
inactivated bacteria (55); in a randomized phase III study,
Mifamurtide with chemotherapy performed better than
monotherapy. In this study, Mifamurtide was used to activate
some innate immune cells (e.g. monocytes and macrophages) to
FIGURE 2 | Schematic diagram of cell apoptosis. Once the extracellular cytokines bond to relative death receptors (DRs), DRs recruit FADD intracellularly, this
complex initiates the cascade of apoptosis. In some stress conditions, mitochondrial permeability transition will increase, afterwards, Cyto C will be released. With
Apaf-1, Cyto C will start the activation cascade from Pro-Caspase 9. In these two ways, caspase 3 is activated finally and exerts the apoptosis process with various
mechanisms including the DNA fragmentation in the nucleus. The extrinsic pathway can modulate the intrinsic pathway by the tBid, ASK, and JNK. ASK, apoptosis
signal-regulating kinase; Apaf-1, apoptotic protease activating factor-1; CAD, caspase-activated deoxyribonuclease; Cyto C; cytochrome C; Daxx, death domain
associated protein; DR, death receptor; FAAD, Fas-associated death domain protein; ICAD, inhibitor of caspase-activated deoxyribonuclease; JNK, c-Jun N-terminal
kinase; tBid, truncated Bid; ROS, reactive oxygen species; TNF, tumor necrosis factor; TNFR1, tumor necrosis factor receptor 1; TRADD, Tumor necrosis factor
receptor type 1-associated death domain protein. TRAIL, tumor necrosis factor related apoptosis inducing ligand; ┤, Inhibition; !, Promotion.
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FIGURE 3 | Immune responses in the tumor microenvironment. In the initiation of tumorigenesis, activated Tc and NK cells suppress tumor proliferation. While in the
immune evasion, Th2 recruits MDSC and promotes macrophages polarization (M1 to M2). Finally, survived tumor cells exhaust Tc cells by some immune
checkpoints. DC, Dendritic cell; MCH-1, Major histocompatibility complex class I; MCH-II, Major histocompatibility complex class II; TCR, T cell receptor; Th, T helper
cell; Th1, T helper 1 cell; Th2, T helper 2 cell; Tc, Cytotoxic T cell; IFN-g, Interferon-gamma; Treg, Regulatory T cell; Foxp3, Forkhead box Protein 3; MDSC, Myeloid-
derived suppressor cell; NOS2, Nitric Oxide Synthase 2; TNFa, Tumor necrosis factor-alpha; IL-2, Interleukin 2; IL-6, Interleukin 6; iNOS, Inducible nitric oxide
synthase; M1, Macrophage 1; M2, Macrophage 2; PD-1, Programmed cell death protein 1; PD-L1, Programmed cell death protein ligand 1; CTLA-4, Cytotoxic T-
lymphocyte antigen 4; NK, Natureal kill cell; TGF-b, Transforming growth factor-beta; MMP-9, Matrix metallo proteinase-9; VEGF, Vascular endothelial growth factor;
┤,Inhibition; !, Promotion.
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control the tumor development as it is an analog of bacteria cell
walls (56). Furthermore, adoptive T cell therapy in osteosarcoma
also worked well (57, 58). Tumor-infiltrating lymphocytes (TIL)
are detected in osteosarcoma by an immunohistochemical study,
and among those TILs, CD8+ T-lymphocytes dwarf others (59,
60). Similarly, Tsukahara and his colleagues also found CD8+ T-
lymphocytes play a pivotal role in the suppression response to
osteosarcoma (61).

Curcumin can improve tumor immunotherapy targeting PD-
1/PD-L1 and CTLA-4. Traditionally, researchers focus on the
anti-cancer effect of curcumin on various signal pathways in
cancer cells, however, an increasing body of literature has
indicated that curcumin can elevate no matter the innate or
adaptive immune response to cancer (62) by the modulation of T
cells, macrophages, dendritic cells (DC), natural killer cells (NK),
cytokines, etc. (63, 64). Curcumin can promote T cells
quantitively and functionally (62, 65–67). The potential
mechanism may include the downregulation of Treg and the
expression of some immune checkpoints (e.g. PD-1/PD-L1,
CTLA-4). It is well-known that Foxp-3+ Treg can suppress
cytotoxic T lymphocytes (CTLs) (68), while curcumin has been
found to inhibit the activity of Treg via the decrease of IL-2 (69).
On the other hand, the overexpression of PD-1/PD-L1 and
CTLA-4 is responsible for the exhaustion of CTLs, which leads
to tumor immune evasion finally. In some previous research,
CTLA-4 and PD-1/PD-L1 are identified to overexpress in
osteosarcoma and negatively correlate to the prognosis (70–
75). Blockade of PD-1 or CTLA-4 can contribute to the
inhibition of osteosarcoma, but, in a phase II trial, only 5% of
patients with osteosarcoma were relieved by PD-1 inhibitor-
pembrolizumab (76). Reassuringly, Taeko et al. found curcumin
can enhance the PD-1 blockade therapy (77). Similarly, Paul also
found curcumin can improve anti-PD1 efficacy in vivo (78). This
means combining curcumin with immune checkpoints blockade
is a potential promising clinical approach in the treatment
of osteosarcoma.

Except for T lymphocytes, some innate immune cells are also
of great importance for immunotherapy. Dendritic cell (DC) is a
professional antigen presentence cell (APC). With this property,
it can activate lymphocytes, not only T cells but also NK, thereby
fighting against tumor cells (79). The application of DCs to
inhibit some pediatric solid tumors including osteosarcoma has
been reported in a clinical study (80). Kawano et al. found DCs
pulsed with tumor lysate cannot enhance IFN-g level in serum
and the accumulation of CTLs in metastatic areas (81). What’s
more, they also found combining with CTLA-4 blockade in a
mouse osteosarcoma model, the anticancer effect had been
enhanced: more CTLs, less Treg, prolonged survival, etc. (82).
Another immune checkpoint PD-L1 also expresses on DCs and
can attenuate T cell activation (83). It has been identified that
PD-1 inhibitor combing with DCs vaccines has improved
anticancer effect (84, 85). As mentioned above, curcumin may
affect the expression of PD-1/PD-L1, according to this, curcumin
combing with DCs may also be a promising therapeutic strategy.
Interestingly, PD-1 inhibitors also can induce macrophage
polarization from M2 (pro-tumor) to M1 (anti-tumor) in an
Frontiers in Oncology | www.frontiersin.org 5
osteosarcoma model (73). In line with this, curcumin may also be
able to inhibit osteosarcoma via the polarization of macrophages
from M2 to M1. Nevertheless, these trials have not been
conducted widely, currently.

Taken together, curcumin may modulate the immune
response to osteosarcoma by affecting various immune cells,
cytokines, and molecular markers, which confers it to be a
promising agent for immunotherapy in osteosarcoma.

Combination With Chemotherapy
Chemotherapy plays a great role in the treatments of tumors,
particularly for extensive metastatic advanced ones that cannot
be removed by surgical resection. To date, various chemotherapy
regimens have been administrated clinically (e.g.. cisplatin,
doxorubicin, 5-fluorouracil, methotrexate), and among them,
cisplatin is the most used (86). These drugs perform anti-
cancer activities through various mechanisms: damaging DNA,
activating TP53, increasing the intracellular reactive oxygen
species (ROS) level, etc. However, these chemotherapeutic
agents are like a “double-edged” sword; they damage both
cancer cells and normal somatic cells in the same way, terming
as on-target toxicity (87). According to a great amount of
previous research, cisplatin and doxorubicin have been
confirmed to be toxic to many organs, especially the kidney
and heart (88, 89), respectively. Another challenge for the current
chemotherapy is multidrug resistance (MDR) impedes the
efficacy of chemotherapeutic drugs regarding the activation of
NF-kB, overproduced P-glycoprotein (P-gp), etc. (90–92). To
overcome this issue, the strategy of escalating dose and group
combination has been presented. Nevertheless, this means more
toxicity to patients.

ROS plays a crucial role in on-target toxicity and MDR. For
on-target toxicity, most chemotherapeutic agents will upregulate
the intracellular ROS. Afterward, the accumulated ROS will
damage DNA and proteins, and cell membranes, thereby
inducing cell apoptosis. Normal cells will also be killed due to
oxidative stress in this process. Cisplatin-induced kidney injury
and doxorubicin-induced cardiotoxicity are reported to be
relative to ROS (93, 94). On the other hand, upgraded ROS
can active NF-kB following activation of some chemoresistance
genes such as hypoxia-inducible factor 1 alpha and P-gp (95).

Regarding the role of ROS in chemotherapy, combining with
antioxidants seems an appealing approach to protect normal
cells and circumvent the chemoresistance simultaneously (96–
98). Curcumin reverses chemotherapy resistance, which has also
been reported. Ehherth et al. found curcumin sensitized CE/
ADR5000 cell line from 883-fold doxorubicin-resistance to 0.9-
fold (99). As mentioned above, curcumin is a safe natural
antioxidant (maximum 12 g/day over 3 months) (100), with
the application of it in chemotherapy, there may be an improved
synergistic effect and can protect the normal tissues; it is implied
that curcumin protects against doxorubicin toxicity (101); the
protective effects can also be found in combination with cisplatin
(102). Except for ROS, Ma reported that curcumin can increase
the absorption of doxorubicin in vivo by inhibition of drug efflux,
thereby enhancing the chemotherapy efficacy (103). This means
May 2021 | Volume 11 | Article 672490
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curcumin may play a versatile role in the combination with
chemotherapeutic agents.

With the introduction of chemotherapy in osteosarcoma
treatment, long-term survival rates have increased from less than
20 to 65–70%, and the first-line drugs are MAP: methotrexate,
doxorubicin, and cisplatin (104). However, the survival of patients
bearing osteosarcoma has not been improved since the last decades,
although chemotherapy strategy for osteosarcoma has developed:
neoadjuvant and adjuvant chemotherapy. To enhance the
chemotherapy efficacy, numerous studies with the addition of
some drugs to MAP have been conducted, however, data from
these studies did not show any improvement. A trial started in 2005
conducted by the European and American Osteosarcoma Study
Group showed the addition of interferon-alpha in neoadjuvant
chemotherapy, and ifosfamide and etoposide in adjuvant
chemotherapy did not show a statistical difference (105); and the
French multicenter OS2006 added zoledronic to chemotherapy,
there was no significant enhancement either (106). Other agents
(topotecan, imatinib, oxaliplatin, ixabepilone, etc.) tested in selected
phase II trials in osteosarcoma did not show any positive results
(104). Although curcumin seems a drug with great synergistic effort
in chemotherapy, there is little research about this strategy in the
chemotherapy of osteosarcoma until now. Further investigations
about this strategy are required in the future.

Combination With Bone Tissue
Engineering Materials
To remove the primary tumor thoroughly, an extended resection
area is the main approach currently. In osteosarcoma treatment,
this may cause critical size bone defects, while insufficient
resections are always responsible for the tumor recurrence. This
seems to be in a dilemma. To repair the critical size bone defects
(more than 2 cm, typically), autografts and allografts are prevailing
strategies, and autografts are considered to be the “gold standard”
(107). Nevertheless, the application of autografts and allografts will
cause some side effects. Autografts may cause the morbidity of
donor sites (pain, hematomas, nerve injuries, etc.); allografts may
result in disease transmission. To overcome these issues, various
biomaterials have been developed and applied clinically, among
which the prevailing materials are polymers (natural or synthetic),
bioceramic, and composite materials (108). These materials
achieve great success in osteogeneration. However, most of these
materials lack the anti-cancer property, which means they are
ineffective for potential tumor recurrence. The combination of
curcumin with these materials is a promising strategy to resolve
this problem. As mentioned above, curcumin cannot suppress
osteosarcoma development but induce osteogenesis. The addition
of curcumin can promote bone repairment and protect against the
potential remaining carcinoma. Naboneeta documented that
curcumin loaded with hydroxyapatite-coated Titanium implant
enhanced the cytotoxicity to MG-63 in vitro (109). In another
study, he and his colleagues pointed out that curcumin loaded on
3D printed calcium phosphate scaffold presented selective toxicity
to MG-63 cells and promoted normal osteoblast proliferation
(110). Another benefit of this combination strategy is increasing
the accumulation of curcumin in lesions. Due to extensive first-
pass metabolism and poor curcumin bioavailability (111),
Frontiers in Oncology | www.frontiersin.org 6
traditional delivery methods are powerless to overcome these
issues. Loading in/on these materials, curcumin can accumulate
in the target area directly, therefore, its pharmacological
efficacy boost.

To refine the stability and bioavailability of curcumin, some
nanoparticles are used. In a review, encapsulating curcumin in
liposomal nanoparticles, the most used way, improved its anticancer
efficacy (112). Currently, some more sophisticated combination
strategies have been proposed. The chemotherapeutic drug,
photosensitizer, and immune checkpoint blockade were loaded in
the same nanoscale polymers, by which the anticancer effect
increased significantly (113). Based on this, curcumin, a versatile
agent with all these properties, is a prospective candidate in a nano
delivery system.
PROSPECT OF APPLICATION OF CURCUMIN
IN PHOTODYNAMIC THERAPY

Photodynamic therapy (PDT) is an emerging treatment modality.
To date, it has been applied in many fields including dermatology,
oncology, gynecology, and urology (114). It is thought to be a non-
invasive remedy, as it kills pathogens or tumor cells depending on
the phototoxicity resulting from the intracellular accumulation of
ROS attributing to the “photodynamic effect” referred to in 1904
by Von Tappeiner (115). The production of exceeded ROS is
based on the mutual interaction among the photosensitizers (PS),
light with appropriated wavelength, and intracellular oxygen
molecules. There are two types of reactions in PDT with the
same initiation- exciting PS using appropriated light. Afterward,
the excited PS may transport electrons to cellular substrates (Type
I reaction) or molecular oxygen directly (Type II reaction) (116).
In the former, free radicals and anion radicals (hydroxyl radical,
and superoxide ion) were generated, and singlet oxygen was found
in the latter, which is considered to be the most dangerous one
among ROS as it can react with unsaturated lipids, proteins (117)
with its potent oxidative property, thereby damaging the cell and
nuclear membranes (118).

PDT was firstly approved in Canada in 1993 for the therapy of
bladder cancer (119), and more than 200 clinical trials have been
carried out. Photofrin, a first-generation and most used PS has
been approved to treat cancers by FDA (120) and it is still used
now. The anticancer effect of PDT is based on these mechanisms:
direct killing cancers by ROS, inhibiting the angiogenesis (121),
and activating the immune system (122) (Figure 4). ROS can
cause the death of cancer cells and vascular endothelial cells. In
this condition, oxygen and nutrition supplements for tumors will
be dampened, causing cancer cell death. Afterward, some pro-
inflammatory cytokines will be released to recruit and activate
immune cells (123). The broken vascular walls also facilitate the
recruitment of neutrophils and macrophages in the tumor
microenvironment (124). Additionally, Castano et al. also
found PDT can suppress the Treg (125) which always silences
cytotoxicity T lymphocytes. Based on these, a combination of
PDT with immune checkpoint inhibitors may enhance the anti-
cancer effect. In a case report, a patient with advanced head and
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neck squamous cell cancer received radiotherapy, surgery, and
chemotherapy, which did not control the development of cancer.
Afterward, with PDT, the visible tumor vanished, and combining
PD-1 blocker, the patient was with no signs of the disease two
years later (126).

Although curcumin, to date, has not been applied in the
treatment of osteosarcoma clinically, curcumin has been found
that it can work as a PS in PDT with enhanced anti-cancer or anti-
bacteria effect (127, 128). Curcumin although is a phytochemical
agent, its chemical structure is declared clearly. It is available to
obtain highly pure commercial production and meet the potential
tremendous clinical need. Besides, regarding the non-toxicity of
curcumin to normal tissues (100), curcumin used in PDT can
reduce the potential damage to normal cells. Moreover, to reduce
the damage to normal tissues, the selectivity of PS is also crucial.
Ideally, the more PS distributed in tumors, the better efficacy, and
fewer side effects can be induced. It has been proved that tumor
takes up more curcumin than normal cells (129). All these suggest
curcumin is a promising PS, while it also has a great challenge in
clinical application. To excited PS, light with an appropriated
Frontiers in Oncology | www.frontiersin.org 7
wavelength is vital. The optimal wavelengths are between 600 and
850 nm, termed as “therapeutic windows”, as the lower ones cannot
penetrate deep tissues and higher ones without sufficient energy
cannot excite PS to generate singlet oxygen (130). Unluckily, the Ex
of curcumin is just around 425 nm (131), which is cannot penetrate
skins to excite curcumin in osteosarcoma PDT. To overcome this
problem, using a fiber optic device may be a practical approach.
Another drawback of curcumin-hydrophobicity also dampens its
efficacy in PDT. It is documented that PS can perform photoactive
only in the monomeric form (132). Curcumin will aggregate in an
aqueous environment, reducing its excitation. These disadvantages
may be contributed to the limitation of its clinical trials. More
advantages and modifications of curcumin are in high demand to
adjust to the PDT.
CONCLUSION

Curcumin, a multifunctional phytochemical, has been identified to
be a promising anticancer drug based on abundant in vitro and
FIGURE 4 | Schematic diagram of PDT. The photosensitizer (PS) will be activated by light with an appropriate wavelength, causing the accumulation of ROS in the
cells. Exceeded ROS damages tumor cells directly and epithelial cells of tumor-associated vessels. As the impairment of the tumor cell membrane, some pro-
inflammatory cytokines will be released, facilitating the recruitment of immune cells in the tumor microenvironment (TME). On the other hand, as the tumor-associated
vessels are also damaged, nutrients and oxygen supplements for the tumor will decrease; moreover, the neutrophils and macrophages can transport into the TME,
suppressing tumor proliferation.
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in vivo studies. Nonetheless, due to its hydrophobicity, poor
bioavailability, there are few clinical trials demonstrating
comforting results, neither successful clinical applications. For
osteosarcoma treatment, most of the current research about the
effect of curcumin is carried out in vitro, which may weaken the
comforting results from these studies. Established OS animal
models using different OS cell lines have been reported, while
few of them have been applied to test curcumin resulting from its
inherent disadvantages that may affect the feasibility and impede
the accurate assassination. To circumvent this limitation and
provide more reliable conclusions from no matter cellular and
animal research or pre/clinical trials, more measures have to be
implemented. On one hand, chemical modification of curcumin
or analogs has been carried out to enhance its solubility in water
and bioavailability in physiological conditions. On the other hand,
the combination of curcumin with other therapeutic strategies is
also promising. Thanks to its versatile properties, curcumin can
improve chemotherapy and immunotherapy efficiency. Moreover,
curcumin can also work as a photosensitizer in PDT. Interestingly,
these three approaches can work synergistically. In line with this,
curcumin may combine a wide range of agents as a sophisticated
Frontiers in Oncology | www.frontiersin.org 8
systemic strategy to suppress oncogenesis. In osteosarcoma
remedy, curcumin loaded in bone-engineering materials can
inhibit osteosarcoma cells and promote osteogenesis
simultaneously. This property makes curcumin stand out from a
great variety of anticancer drugs. In this approach, bone-
engineering materials not induce osteogenesis but work as a
controlled delivery system of curcumin that enhances the local
concentration of curcumin and prolongs its duration of action.
Taken together, although curcumin has a great anticancer
property, to widen its clinical application, more modifications
and further studies are still required.
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