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ABSTRACT Pseudomonas protegens strain MWU12-2233 was isolated from wild cran-
berry fruit surfaces in Provincetown, MA. The genome contains putative hydrogen cya-
nide synthase and type VI secretion systems which can act symbiotically on plant health
by suppressing competitors, indicating a role in indigenous microfloral disease and insect
pest suppression.

Protected wetlands represent an understudied ecosystem that harbors diverse communities
of phyllosphere bacteria, including those associated with wild cranberry flowers and fruits

(1, 2). Some of these bacteria are pseudomonads that produce secondary metabolites with
biological activity against fungi and insects (3), including the plant-growth-promoting and
insectivorous bacterium Pseudomonas protegens (4–7), potentially making them a component
of the indigenous disease-suppressive microflora. P. protegens MWU12-2233 was isolated in
July 2012 from cranberry fruit as part of a culture-dependent survey of bacteria from
wild cranberry bogs in the Cape Cod National Seashore, Provincetown, MA (42.070624 N,
70.210548 W). Plant phenology at the time of sampling was late flowering to early fruit
set. Cranberry fruits were vortexed in sterile water, and the water was plated on King’s
medium B (KMB) agar containing 50mg � mL21 each of ampicillin and cycloheximide. Colonies
were picked for isolation onto fresh KMB if they fluoresced under long-wave UV light, sin-
gle-colony purified 3 times, and stored at 280°C in 34% glycerol. MWU12-2233 was placed
initially in the genus Pseudomonas by a 16S rRNA gene sequence amplified with 27F and
1525R primers, using BLAST (8) within the NCBI nucleotide database. Genomic DNA was iso-
lated with a DNeasy blood and tissue kit (Qiagen) from overnight KMB broth cultures, and
libraries were generated with the Kapa Biosystem Hyperplus library preparation kit (KK8514).
DNA was enzymatically fragmented to approximately 500 bp, end repaired, and A-tailed as
described in the Kapa protocol. Illumina-compatible adapters with unique indexes (Integrated
DNA Technologies; 00989130v2) were ligated individually to each sample, followed by clean-
ing with Kapa pure beads (Kapa Biosciences; KK8002), and amplified with a HiFi enzyme
(KK2502). Fragment size was determined on an Agilent Tapestation system and quanti-
fied using quantitative PCR (qPCR) (Kapa library quantification kit, KK4835) on a ThermoFisher
Quantstudio 5 instrument. The library was multiplex pooled for sequencing on an Illumina
MiSeq platform in a 2� 250 bp flow cell. Raw reads were assembled and quality controlled
in the PATRIC (http://patricbrc.org) Comprehensive Genome Analysis pipeline v3.6.12 using
Unicycler v0.4.8 and two rounds of polishing with Pilon v1.23 using default settings except
for the automated trimming function, which was set to “true” (9–11). The pipeline includes
quality control with Trim Galore v0.4.0 (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/) (12). P. protegens MWU12-2233 had a genome size of 6,586,881 bp assembled
into 23 contigs, from 1,228,931 reads, and a total read length of 581,147,449 bp. The G1C
content was 63.4% and N50 value was 806,444 bp with 88� coverage. The isolate was identi-
fied as P. protegens by Genome BLAST distance phylogeny approach (GBDP) using the type
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strain genome server (TYGS) online tool (https://tygs.dsmz.de/) (13). MWU12-2233 contains
HCN synthase genes, as do other isolates of P. protegens (14, 15), as well as a type VI secre-
tion system (16), of which both may be part of a suite of functions that makes MWU12-2233
a disease-suppressive component of the cranberry phytobiome.

Data availability. This whole-genome shotgun project has been deposited at DDBJ/
EMBL/GenBank under the accession number JALHAR000000000 for P. protegensMWU12-
2233. The version described in this paper is the first version, JALHAR000000000.1, BioProject
PRJNA691338, and BioSample SAMN26894067. The Sequence Read Archive accession number
is SRR18508440. RASTtk annotations are available under open license at Zenodo (https://
zenodo.org/record/6392145#.YlRrdsjMK3A).
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