
Unraveling the Hidden Heterogeneities of Breast Cancer
Based on Functional miRNA Cluster
Li Li1,2, Chang Liu1,2, Fang Wang1,2, Wei Miao1,2, Jie Zhang1,2, Zhiqian Kang1,2, Yihan Chen2*,

Luying Peng1,2*

1 Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China, 2 Key Laboratory of Arrhythmias, Ministry of Education, Tongji University, Shanghai,

China

Abstract

It has become increasingly clear that the current taxonomy of clinical phenotypes is mixed with molecular heterogeneity,
which potentially affects the treatment effect for involved patients. Defining the hidden molecular-distinct diseases using
modern large-scale genomic approaches is therefore useful for refining clinical practice and improving intervention
strategies. Given that microRNA expression profiling has provided a powerful way to dissect hidden genetic heterogeneity
for complex diseases, the aim of the study was to develop a bioinformatics approach that identifies microRNA features
leading to the hidden subtyping of complex clinical phenotypes. The basic strategy of the proposed method was to identify
optimal miRNA clusters by iteratively partitioning the sample and feature space using the two-ways super-paramagnetic
clustering technique. We evaluated the obtained optimal miRNA cluster by determining the consistency of co-expression
and the chromosome location among the within-cluster microRNAs, and concluded that the optimal miRNA cluster could
lead to a natural partition of disease samples. We applied the proposed method to a publicly available microarray dataset of
breast cancer patients that have notoriously heterogeneous phenotypes. We obtained a feature subset of 13 microRNAs
that could classify the 71 breast cancer patients into five subtypes with significantly different five-year overall survival rates
(45%, 82.4%, 70.6%, 100% and 60% respectively; p = 0.008). By building a multivariate Cox proportional-hazards prediction
model for the feature subset, we identified has-miR-146b as one of the most significant predictor (p = 0.045; hazard
ratios = 0.39). The proposed algorithm is a promising computational strategy for dissecting hidden genetic heterogeneity
for complex diseases, and will be of value for improving cancer diagnosis and treatment.
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Background

The patients with similar prognosis often respond differently to

the same treatment. One explanation for this is that disease with

similar phenotypes may have different genetic causes, a phenom-

ena of genetic heterogeneity. Such genetic heterogeneity presents a

significant challenge for modern clinical practice and biomedical

research on common human diseases. MicroRNAs are a class of

small noncoding RNAs that regulate translation of protein coding

mRNAs by translational inhibition or cleavage of the mRNA

transcripts. In humans, miRNAs are approximately 22-nucleotide-

long single-stranded RNAs[1]. They play a key role in the post-

transcriptional regulation of up to 30% of protein-coding genes,

and have a profound impact on many cellular processes during

development and adult life.

MicroRNA(MiRNA) expression profiles of tumour samples

have recently been shown to provide phenotypic signatures for

specific types of cancer [2–6], making it potentially useful in

tackling the heterogeneity issues for complex human diseases.

Recent studies have used DNA microarrays to study breast cancer,

and have shown that it was possible to identify subgroups of

patients in terms of different survival courses by gene expression

profiles [7]. Blenkiron et al. [8] analysed the expression of miRNAs

in breast tumour samples using a bead-based flow-cytometric

profiling method. To our knowledge, this was the first integrated

analysis of miRNA expression, mRNA expression and genomic

changes in breast cancer. They showed that miRNAs could act as

molecular signature to distinguish the subtypes of breast cancer,

which would be unlikely to be discovered by traditional clinical

approaches. They further identified distinctive microRNA signa-

tures that correlated with cytogenetic and molecular subtypes of

breast cancer. However, most methods that aimed to identify

clinically relevant subtypes using microRNAs usually employed

unsupervised learning techniques, such as hierarchical clustering,

which would be of limited use when the disease heterogeneity

results from only a small subset of the miRNAs participating in a

particular cellular process. In these cases, the ‘‘signal’’ or relevant

miRNAs may be overwhelmed by the ‘‘noise’’ generated by the

vast majority of unrelated data.

In this study, we aimed to identify a subset of miRNAs that

could dissect breast cancer patients with different survival

outcomes. We employed a coupled two-way clustering algorithm
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(CTWC) [9–11] to iteratively partition breast cancer samples and

microRNA sets. The partition was done by a super-paramagnetic

clustering (SPC) algorithm [12] that can automatically determine

the number of partitions, and generate robust stable phenotypic

partitions and the significant feature signatures (miRNA subsets).

For identifying the optimal miRNA cluster, we developed a

functional consistency index to evaluate the functional consistency

of the significant miRNA subsets. The index considers not only

expression correlation but also chromosome distance between

miRNAs within a significant miRNA subset. The index was

developed based on the following considerations. With this

measurement, the optimal miRNA cluster is expected to not only

dissect breast cancer samples efficiently, but also function in a

coherent manner. Finally we applied the proposed method to a

publicly available breast cancer microRNA expression profiling

dataset, and then employed the Kaplan-Meier survival analysis

[13] and multivariate Cox proportional-hazards prediction mod-

elling [14] to determine the differential survival outcomes of new

subtypes.

Materials and Methods

Dataset Preprocessing
A miRNA expression data (GSE7842) was download from the

Gene Expression Omnibus (GEO)(http://www.ncbi.nlm.nih.gov/

geo/). The raw dataset consisted of the expression profiles of 309

miRNAs in 137 samples in which 119 passed quality control (93

primary human breast tumours, 21 cell lines and five normal

breast samples). The original breast cancer study used a single

sample predictor (SSP) to assign individual samples to one of five

breast tumour subtypes: Luminal A(ER+, PR+, HER22),

Luminal B(ER+, PR+, HER2+), Basal-like(ER2, PR2, HER22

), HER2+(ER2, PR2, HER2+) and Normal breast-like [8]. For

heterogeneity analysis, we used the subset of the data that consists

of the expression profiles of 133 miRNAs, which express in 71

human breast cancers with specific clinical information (Meno-

pause stage, Size, Grade, Total nodes, NPI (Nottingham

Prognostic Index), Survival time, Dead, DFI and Age etc.) for

subsequent analysis.

Coupled two-way clustering
The applied CTWC algorithm is a heuristic and iterative

method, and is implemented by a stand-alone package. Super-

Paramagnetic Clustering was used as the underlying clustering tool

to partition the whole dataset into subsets of miRNA and samples

iteratively until significant partitions (submatrices) are obtained. A

detailed description of the SPC and CTWC algorithm can be

found in [15]. For a microRNA expression profile matrix M, we

denoted the initial sample set as S1, and the microRNA set mG1.

Clustering microRNA set mGi on the basis of their expression

levels over the set of samples Sj was referred to the process in an

operation denoted by mGi(Sj). Similarly defined, Sj(mGi)

described the process of clustering Sj using all microRNA of

mGi. We employed CTWC for identifying significant miRNA

subsets in the breast cancer dataset. Specifically, first, we clustered

all samples using all miRNAs to identify stable sample partitions,

and clustered all miRNAs using all samples to identify stable

miRNA subsets. Then, we clustered the miRNA gained in the

previous step using the newly defined sample partitions (including

all samples) to find the responsible miRNA subsets of high

discriminating power. Finally, we clustered each sample partition

again using each miRNA subset with high discriminating power.

In the searching process, we explored the cluster depth for both

dimensions of samples and miRNAs. The cluster depth selected

was based on the empirical judgement on whether the clinical

samples could be well separated using the candidate miRNA

subset(s).

Evaluation of a miRNA subset using the functional
consistency score

We obtained many high-correlation sample partitions and

miRNA subsets by CTWC. To evaluate the power of dissecting

tumour subtypes, we developed a functional consistency score that

evaluates the biological significance of a miRNA subset. The steps

for computing a functional consistency score of miRNA subsets

mGi(i~1,2 � � � ,N)were as follows:

(1) Correlation coefficient (CC). For each mGi, we

computed the correlation coefficient

mC(mGi)~mean
XT

j~1,l~1

CC(mj ,ml)

where CC(mj ,ml)is the Pearson correlation coefficient between

microRNA mj and ml in mGi, and T is the number of microRNA

in mGi .

(2) Computing the chromosome cluster. Based on the

chromosome location of each miRNA in human via MiRGen

[16], we grouped human miRNAs into different clusters by

requiring that in each cluster the maximum distance between any

two miRNAs be less than 50K bp, and obtained 51 intergenic or

gene-resident spatial clusters in which 38 overlap with the 133

miRNAs in this study.

For each pairP(mj ,ml),(mj[mGi,ml[mGi), we map the pair

P(mj ,ml) to 51 chromosome clusters. Then, we computed the

number of the pair P(mj ,ml) that overlaps the 51 chromosome

clusters N(mj ,ml). The chromosome consistency score of mGi is

then defined as:

CCS(mGi)~

PT
j~1,l~1 N(mj ,ml)

PT
j~1,l~1 P(mj ,ml)

where T is the total number of microRNA in mGi.

(3) Functional consistency. For eachmGi,

FC(mGi)~mC(mGi)zCCS(mGi),(i~1,2, � � � ,N)

A higher FC(mGi) corresponds to a higher degree of functional

consistency among the miRNAs involved in mGi.

Survival analysis
To verify the clinical significance of the identified hidden breast

cancer subtypes, we plotted their survival curves by Kaplan–Meier

product-limit method, and assessed the differences between the

survival curves of breast cancer patients belonging to different

subtypes by log-rank test. The multivariate Cox proportion-

hazards model was used to predict the overall survival time, and to

determine the significance (at significant level p,0.05) of the

effects if the miRNAs is included in the identified miRNA subset(s)

on the patient’ survival months. Wald Chi-square test was used to

determine the significance of each predictor’s hazard toward the

survival time.

Unraveling the Heterogeneities of Breast Cancer
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Predicting the targets of optimized miRNA subset
To further understand the function and dissect the involved

pathways in the optimized miRNAs, we predicted the targets of

the optimized miRNA subset mG4 using mirGen [16] which

includes miRanda, PicTar and TargetScanS prediction programs.

This is based on Sethupathy et al’ study [17], which found that the

intersection of the predictions from prediction program could

achieve both high sensitivity and specificity. In addition, we also

considered the expression of predicted target genes of miRNAs.

Those genes with anti-correlated expression of the miRNAs were

filted and mapped to KEGG in order to study the underlining

related pathways.

Computational algorithms
The flowchart of the proposed method was graphically depicted

by Figure 1. The programming codes for computing a function

consistency score are available upon request to the authors. The

hierarchical dendrogram resulted from the coupled two-way

clustering was plotted by Treeview[18,19].

Results

Selection of miRNA subset that partitions breast cancer
samples with highest functional consistency score

We employed CTWC algorithm to search for significant

miRNA subsets that could distinguish breast cancer subtypes.

CTWC identified many highly correlated miRNA subsets during

the recursive partitioning of samples and miRNAs. In this study we

aimed to identify the partition of breast cancers [8]. With CTWC,

we identified 75 stable and significant miRNA subsets at the

cluster depth of one (mG2,mG3, � � � ,mG76) (Table 1). Then, we

determined the function consistency scores of the 75 stable

miRNA subsets separately.

We computed and sorted the correlation coefficient of 75

miRNA subsets. The CC (the average Pearson correlation

coefficient across all pairs of miRNAs in the cluster, see Methods

for details) of the top 5 subsets (mG4,mG8,mG2,mG6,mG5)are:

0.565230769, 0.55772, 0.50603, 0.48114, 0.47562, respectively.

mG4has the highest CC. The CC of pairwise miRNAs in mG4is

shown in Table S1.

For 5 microRNA subsets with higher CC, we mapped all

combinations of microRNAs pairs in each microRNA subset into

51 different chromosome clusters based on MiRGen, and then

computed a chromosome consistency score for each miRNA

subset. We found that score of mG4was 2/78 = 0.0256. The other

4 microRNA subsets have no miRNAs pairs belonging to any

chromosome cluster. Based on the correlation coefficient and

chromosome cluster of miRNA subsets, we found the has mG4the

highest functional consistency score with 0.5908.

Among the 13 miRNAs in mG4, miR-221/222 negatively

regulates estrogen receptor alpha, and is associated with tamoxifen

resistance in breast cancer [20]. The expression of miR-206 is

down-regulated in estrogen receptor alpha-positive human breast

cancer [21]. Recent data [22] indicated that the pattern of

expression of miR-146a and miR-146b was similar, suggesting that

their target genes might be coregulated, although they may be

located on different chromosomes. Furthermore, the expression of

miR-146a/b is high in those samples that have been classified as

Basal-like. In the Basal-like cell lines with the highest miR-146a/b

expression level, the amount of BRCA1 was particularly low.

Further analysis revealed that the expression levels of miR-146b

was significantly elevated only compared to Luminal B and Basal-

like subtype. In addition, miR-143/145 microRNAs were

repressed in Basal-like compared to Luminal subtype [23]. Lu et

al [24] demonstrated that the expression level of miR-155 was

inversely correlated with estrogen receptor. Our results are

consistent with the recent discoveries.

Clustering breast cancer samples using the selected
miRNA subsets

We applied mG4 using SPC to cluster 71 breast samples from

Blenkiron et al. using SPC [8]. Here, the Euclidean distance and

Pearson’s correlation coefficient were used as the sample and the

miRNA expression similarity measures, respectively. We success-

fully partitioned the 71 samples into five subtypes (Figure 2).

To verify the clinical significance of the identified hidden breast

cancer subtypes, we plotted the survival curves by Kaplan-Meier

product-limit method, and assessed the differences between the

survival curves of breast cancer patients with different subtypes by

a log-rank test (Figure 3). The 5 year survival rates for five subtypes

were 45%, 82.4%, 70.6%, 100% and 60% (p = 0.008), respective-

ly.

In order to develop a compact model for clinical use, we further

identified miRNAs that contributed mostly to the high prediction

power. Multivariate Cox proportional-hazards model was used to

analyze miRNAs in mG4. To reduce the number of variables to be

modeled, we applied the stepwise variable selection option (with

the same inclusion and exclusion p value of 0.05) for the

multivariate Cox proportional-hazards regression model. We

found one predictor (miRNAs) in mG4 (Table 2). miR-146b was

Figure 1. The graphic algorithm flow for the proposed SPC-
based two-way clustering.
doi:10.1371/journal.pone.0087601.g001
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selected to be the significant prognostic predictor because of its

importance involved in the underlying pathogenic mechanisms for

breast cancer. We also used the Cox model to select significant

predictor for ER+ and ER-. In surprise, the miR-146b was also

found to be the best predictor (p = 0.038).

Predicting the function microRNAs in mG4

We used the Target-Function-Expression Module of miRGen to

predict the targets of each microRNA in mG4and obtained

miRNA-mRNA pairs. In addition, The corresponding mRNA

expression profiling of 71 samples and 19,061 mRNAs (http://

www.ebi.ac.uk/arrayexpress/experiments/E-UCON-1/) was

downloaded and 5228 pre-proceeded mRNAs [8] was selected

after normalization. The Pearson’s Correlation coefficient of each

miRNA-mRNA pair was computed. Then, anti-associa-

tion(CC,20.4) pairs were regarded as reliability. Here, we only

provided the results of miR-146b targets. The number of predicted

miRNA-mRNA pairs by miRGen is 1,311, among which 664

have information of mRNA expression. 76 miRNA-mRNA pairs

were anti-correlation in expression with CC,20.4 in Table S2. In

these mRNAs, we also mapped all reliable targets to KEGG

by DAVID database [25], and found that the target genes of

miR-146b mainly take part in MAPK signaling pathway, Toll-like

receptor signaling pathway and Pathway in cancer. The targets of

other miRNAs in mG4, such as miR-146a, miR-221 and miR-222,

were also found to be involved in Toll-like receptor signaling

pathway, indicating that this pathway may be associated with the

subtyping of breast cancer.

Discussion and Conclusions

Increasing evidence have suggested that miRNAs are involved

in cancer development through regulating distinct biological

processes, including cellular growth and proliferation, cellular

movement and migration, extra cellular matrix degradation.

Though the expression level of miRNAs is generally low in

cancer, their unique profiles may have significant clinical

outcomes, especially for the phenotypes of cancer. Recently,

many studies have shown that the abnormal expression of

miRNAs is correlated with human breast cancer. In this study

we showed that the two-way clustering algorithm could result in an

improved prognostic accuracy over the breast cancer patients’

survival profiles.

Table 1. miRNA clusters using CTWC

Objects Clusters

mG1(s1) mG2 mG3 mG4 mG5 mG6 mG7 mG8 mG9 mG10 mG11

mG1(S2) mG12 mG13 mG14 mG15 mG16 mG17 mG18 mG19 mG20 mG21 mG22 mG23 mG24 mG25 mG26 mG27 mG28 mG29

mG1(S3) mG30 mG31 mG32 mG33 mG34 mG35 mG36 mG37 mG38 mG39 mG40

mG1(S4) mG41 mG42 mG43 mG44 mG45 mG46 mG47 mG48

mG1(S5) mG49 mG50 mG51 mG52 mG53 mG54 mG55

mG1(S6) mG56 mG57 mG58 mG59 mG60 mG61

mG1(S7) mG62 mG63 mG64 mG65 mG66 mG67 mG68 mG69 mG70 mG71 mG72 mG73 mG74 mG75 mG76

doi:10.1371/journal.pone.0087601.t001

Figure 2. The five partitions of breast cancer were identified using mG4 as the disease feature set in the breast cancer dataset. In the
figure, each microRNA corresponds to a row, and each breast cancer sample corresponds to column. The 71 breast cancer samples were divided into
five subtypes (Subtype 1, Subtype 2, Subtype 3, Subtype 4 and Subtype 5). Red areas indicate increased expression, and green areas decreased
expression. Each column represents a single breast cancer sample, and each row represents a single microRNA. The dendrogram at the top shows the
degree to which each breast cancer subtype is related to the others with respect to microRNA expression.
doi:10.1371/journal.pone.0087601.g002
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Computational discoveries of the hidden subtypes for a complex

disease have to be verified by some means, e.g., a functional assay

using bioinformatics approaches or a clinical validation using

epidemiological approaches such as survival analysis. In unsuper-

vised clustering analysis, however, identifying the best subset for

dissecting clinically heterogeneous disease can be a challenging

task as no cross-validation can be done internally. The underlying

assumption for a clustering algorithm is that microRNA with

similar expression patterns and adjacent chromosome location are

more likely to have a similar biological function(s). However, a

clustering algorithm itself does not provide proof of the best

grouping of microRNA in terms of biological functions. Thus, the

biological interpretation of the disease clustering results relies

heavily on the expert knowledge which often may be subjective

[26]. Therefore, in this study, we designed a functional consistency

score for evaluating a candidate miRNA subset in terms of

functional consistency. In terms of the better-characterized

functionality of subset mG4 and based on the significantly different

survival results for the patients defined by the newly defined

subtypes, the applied two-way clustering algorithm has been

demonstrated to be a feasible and promising toolbox for peeling off

molecular heterogeneities of complex human diseases.

Many methods use all the microRNAs on chips or a large

number of microRNAs to predict patient survival. Since the vast

majority of the microRNAs in a given dataset are irrelevant to the

survival of the studied patients, this may reduce the prediction

accuracy of the model because of the added noise. Hence,

McLachlan et al. [27] proposed a mixture model-based approach

to the clustering of microarray expression data. In this study, we

applied an integrative approach that combines a SPC-based two-

way clustering with a functional consensus to identify the

functionally sounding and the most compact subset of microRNAs

underlying the phenotypic partitions of patients.

Application of the proposed approach to breast cancer datasets

led to identification of microRNA subsets, and further multivariate

Cox proportional-hazards modeling defined microRNA-146b as

one significant predictor for the survival of the breast cancer

patients in the dataset. The individual miRNAs have only limited

impact on their targets and multiple miRNAs are needed to

drastically reduce transcription levels of target. We also found the

targets of serval microRNAs in the optimal miRNA subset

involoved similar pathways. Overall, our results demonstrated

that the proposed approach is highly promising for peeling off the

hidden genetic heterogeneity based on modern omics data, and

may lead to an improved diagnosis and treatment of cancers.

Supporting Information

Table S1 The correlation coefficient of among miRNAs
in mG4.

(DOCX)

Table S2 The anti-association miRNA-mRNA of among
miR-146b.

(DOCX)

Figure 3. Survival curves for five subtypes of the breast cancer patients in the breast cancer dataset.
doi:10.1371/journal.pone.0087601.g003

Table 2. Multivariate Cox proportional-hazards analysis
based on the mG4signature microRNAs relevant to survival
time.

Variable
Estimated
coefficient Wald x2 p value

Hazard
ratio(95%CI)

hsa-miR-146b -3.232 4.021 0.045 0.039(.002–.930)

doi:10.1371/journal.pone.0087601.t002
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