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Background: Recurrent implantation failure (RIF) is an intricate complication following
IVF-ET, which refers to the situation that good-quality embryos repeatedly fail to implant
following two or more IVF cycles. Intrinsic molecular mechanisms underlying RIF have not
yet been fully elucidated. With enormous improvement in high-throughput technologies,
researchers screened biomarkers for RIF using microarray. However, the findings of
published studies are inconsistent. An integrated study on the endometrial molecular
determinants of implantation will help to improve pregnancy outcomes.

Objective: To identify robust differentially expressed genes (DEGs) and hub genes in
endometrium associated with RIF, and to investigate the diagnostic role of hub genes in RIF.

Methods: Raw data from five GEO microarrays regarding RIF were analyzed. Integrated
genetic expression analyses were performed using the Robust Rank Aggregation method
to identify robust DEGs. Enrichment analysis and protein-protein interaction (PPI) analysis
were further performed with the robust DEGs. Cytohubba was used to screen hub genes
based on the PPI network. GSE111974 was used to validate the expression and
diagnostic role of hub genes in RIF.

Results: 1532 Robust DEGs were identified by integrating four GEO datasets.
Enrichment analysis showed that the robust DEGs were mainly enriched in processes
associated with extracellular matrix remodeling, adhesion, coagulation, and immunity. A
total of 18 hub genes (HMGCS1, SQLE, ESR1, LAMC1, HOXB4, PIP5K1B, GNG11,
GPX3, PAX2, TF, ALDH6A1, IDH1, SALL1, EYA1, TAGLN, TPD52L1, ST6GALNAC1,
NNMT) were identified. 10 of the 18 hub genes were significantly differentially expressed in
RIF patients as validated by GSE111974. The 10 hub genes (SQLE, LAMC1, HOXB4,
PIP5K1B, PAX2, ALDH6A1, SALL1, EYA1, TAGLN, ST6GALNAC1) were effective in
predicting RIF with an accuracy rate of 85%, specificity rate of 100%, and sensitivity rate
of 88.9%.
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Conclusions: Our integrated analysis identified novel robust DEGs and hub genes in RIF.
The hub genes were effective in predicting RIF and will contribute to the understanding of
comprehensive molecular mechanisms in RIF pathogenesis.
Keywords: recurrent implantation failure, robust rank aggregation, microarray, differentially expressed genes,
hub gene
INTRODUCTION

Implantation failure is the major limiting step in in-vitro fertilization
and embryo transfer (IVF-ET) success. Approximately 15%
of patients experience recurrent implantation failure (RIF)
following IVF-ET. RIF refers to the situation that good-quality
embryos repeatedly fail to implant following two or more ET cycles
(1). Multifactorial pathogenesis plays a role in RIF, including
embryo factors, endocrine factors, immunological problems,
thrombotic conditions, uterine anomalies, genetic disorders, and
endometrial factors (2). While the endometrial factor is one of the
leading factors that account for RIF (3). However, intrinsic
endometrial molecular mechanisms underlying RIF have not yet
been fully elucidated. Endometrial gene expression profile may be
disrupted in patients experiencing RIF (4). The value of identifying
genetic biomarkers predictive of RIF is important as this would
guide prognosis and inform potential therapeutic intervention for
RIF. Increasing studies are investigating the endometrial gene
expression profiles by microarray or RNA sequencing to identify
biomarkers of prediction or diagnosis for RIF. Biomarkers including
both coding genes and non-coding RNAs which are involved in
implantation failure have been discovered and help to promote our
understanding of pathogenesis underlying RIF (4–12). Nowadays,
a tremendous amount of high-throughput data is piling up in public
databases. However, results from the studies are inconsistent partly
due to the small sample size in most studies or different platforms,
or different bioinformatic methods. Most of these studies does
not subject to validation on an independent cohort. Thus, there is
an urgent need for timely identification and validation of more
robust biomarkers for RIF, to improve pregnancy outcomes
following IVF.

Biomarkers that are identified from a single study often
appear to be biologically irrelevant or false positives. Meta-
analysis allows integrating data from multiple studies to
identify biomarkers across multiple conditions. Its main
advantage is to boost power by increasing sample size and
being able to catch signals that are small but consistent.
Finding robust biomarkers for RIF is important for RIF
prediction, diagnosis, and treatment. Researchers have
characterized genetic cooperation and regulation through the
menstrual cycle progression and characterized the genetic
profiles for the acquisition of endometrial receptivity for a
successful pregnancy (13). Recently, a panel of endometrial
biomarkers acquired by endometrial receptivity test (ERT) was
developed to accurately predict the window of implantation
(WOI) and significantly improve the pregnancy outcomes of
patients with RIF. These studies indicating the clinical potential
of finding RIF related genetic profiles (14).
n.org 2
The purpose of the present study is to collect the available
transcriptional microarray datasets from inconsistent
measurements among various studies and perform an
integrated analysis by robust rank aggregation (RRA) method
(15) to generate more stable and robust DEGs. We perform
protein-protein interaction analysis based on the robust DEGs to
identify hub genes that may contribute to RIF, then validate the
hub genes for prediction of RIF. Our study may help understand
the mechanisms underlying RIF pathogenesis and promote the
development of effective therapeutic targets of RIF.
MATERIALS AND METHODS

Data Collection
To identify gene expression data regarding recurrent
implantation failure, we use the search term “implantation
failure” to search gene expression datasets in Gene Expression
Omnibus (GEO) database-series (https://www.ncbi.nlm.nih.gov/
geo/browse/), The species are limited to humans. The searching
keywords were “implantation homo”. Datasets that met the
following inclusion criteria were included: (1) Gene expression
profile by array; (2) The sample is the endometrium during the
window of implantation; (3) Recurrent implantation patients
and fertile controls were contained in one experiment; (4) The
sample size is at least ten, with at least five patients in each group.
(5) Raw data were available in GEO; (6) Chip platforms were
from “Agilent” or “Affymetrix” or “Illumina”. By searching the
GEO database, we identified 42 records in total. 24 records were
excluded on reading titles and summaries, seven records were
excluded on reading study designs. 11 GSEs were assessed for
eligibility. Six GSEs were further excluded for the following
reasons: duplicate samples and data (n=1, GSE71835); miRNA
arrays (n=2, GSE71332, GSE108966); cirRNA array (n=1,
GSE147442); blood samples (n=1, GSE106307); sample size <
10 (n=1, GSE103465). Finally, five GSEs (GSE26787, GSE92324,
GSE111974, GSE58144, GSE71331) were included for statistical
analysis. Among the five GSEs, four were included for RRA
analysis, one was included in the validation and prediction
process. The diagram of selected studies was shown in
Figure 1. The following information were extracted from each
identified GSE: GEO accession number, platform, sample size,
array type, tissue, biopsy time, year, and country.

Quality Control
The raw data were retrieved from the GEO database. Quality
controls (QC) were conducted using the R-package
ArrayQualityMetrics (16). Raw intensity signals (*.CEL files,
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*.txt files, *.idat files) were extracted and normalized using the
R-package affy and vsn (17, 18). The datasets were annotated
with the R Bioconductor packages hgu133plus2.db,
hugene10sttranscriptcluster.db, and hgu133a.db, depending
on the platform. We excluded non-annotated probes. The
batch effect was removed by removeBatchEffect function in the
limma package if the batch effect was significant (19). When
multiple probes were mapped to the same gene, those probes
were averaged. All codes run under the R environment 4.1.0

Differentially Expressed Genes
(DEG) Screening
The “limma” R package (19) was used to screen the DEGs
between the RIF patients and the fertile control patients. The
significantly DEGs in each GSEs were identified by p-value < 0.05
and |log2 fold change (FC)| >1. DEGs were ranked by p-value
and |log2 FC|.

RRA Analysis of DEGs From
Different GSEs
The “RobustRankAggregation”R package (15) was used to integrate
the ranked gene lists of DEGs to find the robust DEGs. The genes
with adjusted p-value < 0.05 in the RRA analysis were considered as
Frontiers in Endocrinology | www.frontiersin.org 3
robust DEGs. For RRA analysis, we first analyzed the DEGs of each
GSE dataset using the limma R package (19). Each DEG list was
divided into the up-regulated gene list (log2FC > 0) and the down-
regulated gene list (log2FC <0). DEGs (both up-regulated and
down-regulated) of each dataset were ranked according to the p-
value and |log2FC|. RRA for up-regulated genes and down-regulated
genes was performed respectively. RRA is an effective tool to
integrate multiple arrays outcomes. However, considering
different array platforms, the input ranked gene lists only include
the intersection of genes from the five GSEs. Then, all the DEGs
were scored according to the ranked list and aggregately analyzed
using the “Robust Rank Aggregation” R package. The final adjusted
p-value in this method reflects the probability of the highly ranked
genes in the datasets were identified as robust DEGs. We use the
aggregateRanks() function to perform the RRA analysis. The
parameters were set as the following: method=“RRA”, full=T,
exact=T, topCutoff=NA. Details of the Robust Rank Aggregation
(15) is as the following. For instance. let n be the number of
experiments or GSEs and m be the number of genes studies.
Assume that in DEG analysis of each GSEs genes are ordered
according to their impact so that the genes locate in the beginning of
the list are most likely to behave biologically functional. The rank of
a gene is just the position in this ordering. If we divide ranks by the
FIGURE 1 | The diagram of selecting GSE datasets.
February 2022 | Volume 13 | Article 785462
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maximal rank value m, we obtained normalized ranks with the
maximal value of 1. for each gene let the corresponding rank vector
r = (r1,…, rn) be such that rj denotes the normalized rank of the gene
in the j-th preference list. To find the genes that are highly ranked in
m studied ranked lists. We assume that all that all informative
normalized ranks come from a distribution, which is strongly
skewed toward zero and our task is to detect these distributions.
For any normalized rank vector r, let r1…, rn be a reordering of r
such that r(1) ≤ … ≤ r(n) Then we can ask how probable it is to
obtain r̂(k) ≤ ⋯ ≤ r̂(k)when the rank vector r̂is generated by the
null model, i.e. all ranks r̂jare sampled from uniform distribution.
Let bk,n(r) denote the probability that r̂(k) ≤ r̂(k). Then under the
null model the probability that the order statistic r̂(k)is smaller or
equal to x can be expressed as a binomial probability

bk,n(x) : = Sn
‘=k

n
‘ð Þx‘(1 − x)n−‘, (1)

since at least k normalized rankings must be in the range [0,x].
Alternatively, bk,n(x) can be expressed through a beta
distribution, as r̂(k)is the order statistic of n independent
random variables uniformly distributed over the range [0,1].
Since the number of informative ranks is not known, we define
the final score for the rank vector r as the minimum of P-values.

r(r) = min
k=1,…,n

bk,n(r) (2)

The r score is a minimum of bn,k(r) scores, each of which is a
p-value measuring deviance of the k-th order statistic r̂(k) from its
expected distribution. If the null hypothesis holds, then all the bn,
k(r) values follow uniform distribution. If these values would be
independent then the distribution of p scores would be Beta(1,n).
We calculate the exact p-values based onp scores distribution.
We want to calculate probability in the form

Pr ½X ≤ r� (3)

Using the definition of rho we can write

Pr ½X ≤ r� = 1 − Pr ½X ≥ r�
= 1 − Pr½bn,1(r̂ ) ≥ r,…, bn,n(r̂ ) ≥ r�

= 1 − Pr ½r̂ (1) ≥ b−1
n,1(r),…, r̂ (n) ≥ b−1

n,n(r)�
= 1 − Pr ½1 − r̂ (1) ≤ 1 − b−1

n,1(r),…, 1 − r̂ (n) ≤ 1 − b−1
n,n(r)�,

where r̂is sample from uniform distribution with size n
and b−1

n,k(r) is a quantile of Beta(k, n – k + 1) distribution.
Therefore, we can write

Pr ½X ≤ r� = 1 − Pr½r̂ (1) ≤ 1 − b−1
n,n(r),…, r̂ (n)

≤ 1 − b−1
n,1(r)� (4)

The probability in (4) is the exact p-value.

Gene Ontology (GO) and KEGG Pathway
Enrichment Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were performed
Frontiers in Endocrinology | www.frontiersin.org 4
by the “clusterProfiler” R package (20). GO terms or KEGG
pathways were visualized by the “ggplot2” R packages.

Protein-Protein Interaction (PPI)
Network Analysis
The RRA identified robust DEGs (exact p-value < 0.01) was
employed to construct the PPI network. We uploaded the robust
DEG list into the STRING database (http://www.string-db.org/),
the confidence interaction score was set as 0.7 in the PPI analysis.
The network was imported into the Cytoscape (version 3.8.2)
(21) for visualization and further identification of hub genes.
Hub genes are usually of functional importance and highly
interconnected with other genes. We use the Cytohubba plug-
in (22) to screen candidate hub genes. The scores of the genes
were calculated by MMC, DMNC, EPC, and Degree methods.
The genes were then ranked by scores according to MCC,
DMNC, EPC, and Degree, respectively. The overlap of the top
100 ranked genes identified by Cytohubba following four
methods and the top 100 robust DEGs were determined as the
hub genes.

Hub Genes Validation
We further conducted validation of hub genes by using the data
from an Illumina microarray dataset (GSE111974) which
consists of 24 RF patients and 24 fertile controls (8). The raw
data were analyzed using the limma package (19). The
background was corrected and the data was normalized. P-
value <0.05 were considered to be significantly different.

The Diagnostic Role of Hub Genes in RIF
We use the dataset GSE111974 (8) to investigate the diagnostic
role of hub genes in RIF. The dataset was divided into the
training set (60%) and the validation set (40%) by randomization
with the seed number set as 1234. To verify the diagnostic role of
hub genes identified by RRA and PPI analysis, we construct a
prediction model using the differentially expressed hub genes by
the generalized multivariate regression with the training set.
First, we supply the training set into algorithm to construct the
model. Second, we predict the markers of our validation set.
Third, we calculate the number of correct and incorrect
predictions on the validation dataset to assess the model’s
prediction precision and calculate the accuracy rate, sensitivity
rate, and specificity rate. Fourth. We performed the Receiver
Operating Characteristic (ROC) analysis to detect the Area
Under the Curve (AUC).

Statistical Analysis
Continuous variables are presented as mean ± standard deviation
(SD) for normally distributed data, or as median and
interquartile range. Normally distributed data were compared
using the Student’s t-test and non-normally distributed data
using the Mann-Whitney U test. A p-value < 0.05 was considered
to be statistically significant. All analyses were performed using R
software (version 4.1.0). The R scripts and the corresponding
Rdata file were deposited in our Github repositories (https://
github.com/minizenghong/Genetic-meta-analysis-on-RIF).
February 2022 | Volume 13 | Article 785462
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RESULTS

Characteristics of the Included GSE
Datasets From the GEO Database
A total of five microarray datasets (GSE26787, GSE92324,
GSE111974, GSE58144, GSE71331) met the inclusion criteria
were included for subsequent analysis. There are 91 RIF patients
and 114 control patients in the five datasets. The characteristics of
the datasets included in this study were listed in Table 1.
GSE26787, GSE92324, GSE58144, and GSE71331 were included
in the RRA analysis. GSE111974 was selected for subsequent
validation of hub genes and to investigate the diagnostic role of
hub genes in RIF. The diagram of the study was shown in Figure 1.

Identification of DEGs of Each GSE
We performed quality control, background correction, and
normalization with the raw data from each GSE data set. Then
DEGs of each GSE included in the RRA analysis were screened
using the limma R package. The significantly DEGs were selected
by p-value < 0.05 and |log2 FC| > 1. DEGs were ranked by p-
value and |log2 FC|. The volcano plots showing DEGs of each
GSE were shown in Figure 2A. The DEG list of each GSE dataset
was shown in Supplementary Table 1. In summary, 121, 343,
1045 and 128 genes were significantly up-regulated in GSE26787,
GSE92324, GSE58144, GSE71331, respectively. 156, 179, 1168
and 46 genes were significantly down-regulated in GSE26787,
GSE92324, GSE58144, GSE71331, respectively.

Integrative Analysis of DEGs From
Different GSEs
GSE26787, GSE92324, GSE58144, GSE71331 were included in
the RRA analysis. 1532 significantly robust DEGs were identified
by the RRA analysis with the criteria of adjusted p-value<0.05.
438 significantly robust DEGs were identified by the RRA
analysis with the criteria of adjusted p-value<0.01. The
heatmap of the top 25 up-regulated and 25 down-regulated
genes were shown in Figure 2B. The result of the RRA
analysis was shown in Supplementary Table 2.

Gene Ontology (GO) and KEGG Pathway
Enrichment Analysis
We uploaded the 1532 robust DEGs to perform the GO and
KEGG enrichment analysis. GO enrichment analysis showed
that extracellular matrix organization, extracellular structure
organization, external encapsulating structure organization,
positive regulation of cell adhesion, cell-substrate adhesion,
Frontiers in Endocrinology | www.frontiersin.org 5
substrate adhesion-dependent cell spreading, blood
coagulation, hemostasis, cellular modified amino acid
metabolic process, and coagulation were the top 10 enriched
GO terms in biological process (BP) (Figure 3). Extracellular
matrix structural constituent, heparin binding, actin binding,
protease binding, phospholipid binding, extracellular matrix
binding, protein tyrosine kinase activity, glycosaminoglycan
binding, phospholipase activity, DNA-binding transcription
activator activity were the top 10 enriched GO terms in
molecular function (MF) (Figure 3). Collagen-containing
extracellular matrix, endoplasmic reticulum lumen, platelet
alpha granule, cell cortex, vesicle lumen, cytoplasmic vesicle
lumen, high-density lipoprotein particle, secretory granule
lumen, cell-cell junction, platelet alpha granule lumen were the
top 10 enriched GO terms in cell component (CC) (Figure 3).
KEGG enrichment analysis showed that complement and
coagulation cascades, Human papillomavirus infection, NF-
kappa B signaling pathway, Toxoplasmosis, PI3K-Akt signaling
pathway, Osteoclast differentiation, Rap1 signaling pathway,
ECM-receptor interaction, TNF signaling pathway, Human T-
cell leukemia virus 1 infection were the top 10 enriched KEGG
pathways (Figure 3). In summary, the robust DEGs were mainly
enriched in processes associated with extracellular matrix
remodeling, adhesion, coagulation, and immunity. The results
of GO and KEGG pathway enrichment analysis was shown in the
Supplementary Table 3.

Protein-Protein Interaction (PPI) Analysis
and Identification of Hub Genes
The PPI analysis of the 438 robust DEGs identified from the RRA
analysis (p-value < 0.01) was constructed using the String website
and visualized by Cytoscape. The PPI network is comprised of
160 nodes and 174 edges (Figure 4). The interactions of the
proteins were shown in Supplementary Table 4. The network
was then imported into the Cytoscape for subsequent analysis.
The CytoHubba plugin was used to identify the candidate hub
genes in the PPI network. The nodes were ranked by scores
following MCC, DMNC, EPC, and Degree methods, respectively.
Results of the CytoHubba are listed in Supplementary Table 5.
The top 100 ranked nodes were candidate hub genes. The overlap
genes of the top 100 genes identified by Cytohubba following
four methods and the top 100 robust DEGs in the RRA analysis
were determined as the hub genes. Finally, 18 genes (HMGCS1,
SQLE, ESR1, LAMC1, HOXB4, PIP5K1B, GNG11, GPX3, PAX2,
TF, ALDH6A1, IDH1, SALL1, EYA1, TAGLN, TPD52L1,
ST6GALNAC1, NNMT) were determined as the hub genes.
TABLE 1 | Characteristics of the included microarray datasets.

GSE ID Platform Participants (Control/RIF) Array type Tissue Biopsy time Year Country

GSE26787 GPL570 5/5 Affymetrix Endometrium WOI 2011 France
GSE92324 GPL10558 8/12 Illumina Endometrium WOI 2016 India
GSE111974 GPL17077 24/24 Agilent Endometrium WOI 2018 Turkey
GSE58144 GPL15789 72/43 Agilent Endometrium WOI 2014 Netherlands
GSE71331 GPL19072 5/7 Agilent Endometrium WOI 2018 China
February 2022 | V
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The intersection of the top 100 genes identified by Cytohubba
following four methods and the top 100 robust DEGs was shown
by the Venn diagram in Figure 5.

Hub Genes Validation
The expression of the 18 hub genes was then validated in
GSE111974. As the violin plots showed that ALDH6A1, EYA1,
HOXB4, PAX2, PIP5K1B, SALL1 SQLE, ST6GALNAC1 were
significantly increased in the RIF patients compared to control
patients; while LAMC1, TAGLN were significantly decreased in
the RIF patients compared to control patients (Figure 6). The
other hub genes that were not significantly different between the
RIF group and the control group were not shown in the violin plot.

The Diagnostic Role of Hub Genes in RIF
We use the dataset GSE111974 to investigate the predictive effect
of hub genes for RIF. 28 patients (13 controls and 15 RIF
patients) were randomized divided into the training set, and 20
Frontiers in Endocrinology | www.frontiersin.org 6
patients (11 controls and 9 RIF patients) were randomized
divided into the validation set. In the validation set, the
prediction model showed an accuracy rate of 85%, specificity
rate of 100%, and sensitivity rate of 88.9%. The ROC analysis
showed that the AUC is 0.980 (Figure 7).
DISCUSSION

Embryo implantation begins as the blastocyst hatching from the
zona pellucida, followed by blastocyst apposition, adhesion, and
invasion. Recurrent implantation failure (RIF) refers to the
situation that good-quality embryos repeatedly fail to implant
following two or more IVF cycles (1). The endometrial factor is
one of the leading factors account for RIF (3). Therefore,
identifying dysregulated genes in the endometrium of RIF is
very important for understanding the pathogenesis of RIF and is
clinically useful for RIF prediction. To the best of our knowledge,
A B

FIGURE 2 | Results of RRA analysis. (A) Volcano plots showing DEGs of the four microarrays. Red points represented significantly up-regulated genes, while green
points represented significantly down-regulated genes, grey points represented genes without significant difference. The criteria of DEG is |logFC|>1 and p-
value<0.05. (B) Heatmap showing the top 25 up-regulated and 25 down-regulated robust DEGs in the RRA analysis. The number in box represents the log2FC.
Red color denotes up-regulation, blue color denotes down-regulation, the color from dark to light represents the fold change from large to small.
February 2022 | Volume 13 | Article 785462
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this is the first study to explore novel robust DEGs and hub genes
in the endometrium associated with RIF by the RRA method
combined with PPI and other bioinformatic tools. Robust DEGs
were identified by integrating four array datasets. Consistent with
published data, the enrichment of these robust DEGs in several
terms such as extracellular matrix organization, adhesion, and
coagulation were closely related to embryo implantation (23, 24).
In addition, enrichment of these robust DEGs in some KEGG
pathways, such as complement and coagulation cascades, Rap1
signaling pathway, ECM-receptor interaction, also suggest their
relevance in implantation failure pathogenesis. From the
enrichment analysis, we can conclude that the dysregulated
genes in RIF were mainly involved in the processes associated
with cell-cell and cell-matrix adhesion, ECM remodeling,
coagulation, and immune response. All these processes are
essential for embryo implantation (23, 24).
Frontiers in Endocrinology | www.frontiersin.org 7
After the analysis of RRA, PPI, and Cytohubba, we eventually
obtained 18 hub genes (including HMGCS1, SQLE, ESR1,
LAMC1, HOXB4, PIP5K1B, GNG11, GPX3, PAX2, TF,
ALDH6A1, IDH1, SALL1, EYA1, TAGLN, TPD52L1,
ST6GALNAC1, NNMT). Some of them were demonstrated to
play a role in regulating endometrial function and may be linked
to embryo implantation. For example, LAMC1 is produced by
the decidualized cells and serves as a key factor that controls
decidual cell architecture and differentiation. Down-regulation of
LAMC1 can prevent the formation of the basal matrix and lead
to decreased trophoblast outgrowth (25). ESR1 can mediate
estrogen effects and endometrial preparation for implantation,
the expression or polymorphism of ESR1 was reported to be
related to RIF (26). GPX3 plays a major role in reducing ROS
during decidualization with its expression peaks during the
implantation window. While inhibition of GPX3 is associated
FIGURE 3 | The GO and KEGG enrichment analysis. Bubble plot showing the top 10 enriched terms in biological process, molecular function, cell component, and
KEGG pathways, respectively.
February 2022 | Volume 13 | Article 785462
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with a reduced pregnancy rate (27–29). TAGLN expression is
significantly upregulated in the receptive endometrium
compared to the pre-receptive endometrium (28) and is
Frontiers in Endocrinology | www.frontiersin.org 8
involved in regulating cell invasion, migration, and
differentiation (30). One member of the TAGLN family,
TAGLN2, is required for embryo implantation by promoting
FIGURE 4 | Visualization of the protein-protein interaction network. Pink denotes the up-regulated genes while blue denotes the down-regulated genes.
FIGURE 5 | Venn plot showing the intersection of the hub genes.
February 2022 | Volume 13 | Article 785462
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actin polymerization (31). NNMT in the uterine fluid is effective
for the assessment of endometrial receptivity, NNMT protein in
the uterine fluid was significantly decreased in RIF patients
compared to fertile controls (32). IDH1 was expressed
predominantly in the endometrial epithelia and involved in
cellular defense against oxidative damage. IDH1 is required for
a short time up to pregnancy recognition (33, 34). PAX2 is a
known oncogenic gene in endometrial cancer, it is an estrogen-
induced target gene (35). Abnormal increased PAX2 expression
Frontiers in Endocrinology | www.frontiersin.org 9
indicates over activation of the estrogen pathway which may
impede embryo implantation. Consistently, our study confirmed
that the expression of PAX2 was higher in RIF patients. Besides,
some of the top25 up-regulated and down-regulated robust
DEGs are reported to be associated with embryo implantation.
ANG is an essential angiogenesis factor that plays important role
in embryo implantation (36). SOX17 plays a key role in
endometrial receptivity and embryo implantation by regulating
embryo adhesion (37). MSX1 is critical for conferring uterine
FIGURE 7 | The Roc curve of the combined ten hub genes in predicting RIF.
FIGURE 6 | The normalized expression of hub genes validated in GSE111974.
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receptivity and readiness to implantation, it is significantly
down-regulated in the receptive endometrium compared to the
pre-receptive endometrium and reduced MSX1 in the
endometrium is linked to infertility (28, 38–41). PAEP is also a
marker for endometrial receptivity, PAEP was differentially
expressed between RIF patients and fertile controls (7, 42). It is
reported that receptive endometrial status can be determined
based on the evaluation of mRNA expression levels of PAEP,
DPP4, MSX1, and HLA-DOB genes (28). MMP-26 is localized in
the epithelial cells of the human endometrium and its expression
peaks in the early secretory phase. MMP-26 is reported to be an
estrogen-sensitive gene with significantly higher expression at
WOI in HRT cycles compare to natural cycles (43). Increased
MMP-26 expression suggests overstimulation with E2.
Consistently, our study indicates that the expression of MMP-
26 was higher in RIF patients. SERPING1 mRNA is mainly in
luminal and glandular epithelial cells and is significantly down-
regulated in patients with recurrent miscarriage (44). SERPING1
is associated with decidualization and is involved in endometrial
receptivity and immune regulation at the fetal-maternal interface
(45–47). CXCL14 expression peaks at the embryo’s implantation
site during WOI (48). CXCL14 is necessary to recruit natural
killer cells (49) and is associated with a normal epithelial/stromal
gene expression pattern (50). Cxcl14 knockout mice are infertile
(51). It is reported that intrauterine hCG co-cultured with
PBMCs administration induced expression of CXCL14 (52),
while intrauterine injection hCG is reported to increase
implantation rate of RIF patients (53). CCND3 expression
increases upon decidualization progression and peaks at WOI
(54), CCND3 is reported to regulate decidualization of uterine
stromal cells during implantation (55, 56). SLC1A5 is likely
responsible for increases in amounts of neutral and acidic
amino acids in the uterine lumen to support conceptus growth,
development, and survival (57).

In summary, by combining RRA, PPI, and Cytohubba
analysis, we have successfully identified 18 hub genes
associated with RIF and may provide deeper insight into the
comprehensive molecular changes in RIF. Among the hub genes,
ALDH6A1, EYA1, HOXB4, PAX2, PIP5K1B, SALL1 SQLE,
ST6GALNAC1 were significantly increased in the RIF patients
compared to control patients; while LAMC1, TAGLN were
significantly decreased in the RIF patients compared to control
patients in GSE111974 (Figure 6). A combination of the ten hub
genes was effective in the prediction of RIF with an accuracy rate
of 85%, specificity rate of 100%, sensitivity rate of 88.9%, and an
AUC of 0.980 (Figure 7). Though novel robust DEGs and hub
genes were identified, however, the underlying molecular
mechanisms have not yet been fully elucidated. In the future,
large cohorts are needed to validate the actual prediction power
of the hub genes in the real-world population.

The strength of the study is that we obtained a larger dataset
by combining data from four GEO datasets, which increased the
sample size and ensured the stability and relative reliability of the
conclusions. On the other hand, the RRA method was used to
reduce the influences of the measurement platform, the sample
size of datasets, the experimental design, and other factors on the
final results. However, the potential limitations should also be
Frontiers in Endocrinology | www.frontiersin.org 10
underlined: (1) The validity of our conclusions mainly rests on
the reliability of the original microarray datasets. (2) We applied
GSE111974 to validate the expression of hub genes and to
determine the diagnostic role of hub genes in RIF, however,
the results were limited since the sample size is 48. More
experiments are needed to validate the expression and function
of hub genes in the future.

In conclusion, our integrated analysis identified novel robust
DEGs and hub genes in RIF. The hub genes were effective in
predicting RIF and will contribute to the understanding of
comprehensive molecular mechanisms in RIF pathogenesis.
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