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A B S T R A C T

Using an established Ross/Macdonald model variant for mosquito-born parasite transmission, we extend the
formalism to simply incorporate time-dependent control measures. In particular, two interventions are con-
sidered, mass drug administration (MDA) and indoor residual spraying (IRS), whose individual intensities during
their respective campaigns are set to the same intervention-reduced reproductive number R0. The impacts of
these interventions, measured as each campaign’s ability over time to reduce infections in a community, are
found based on the transmission setting, coverage, and their associated durations. These impacts are compared
for both interventions and their joint deployment. Synchronous campaigns of IRS deployed with MDA have a
cooperative, synergistic effect whose impact exceeds that when the campaigns are deployed in isolation.
Simulations with openmalaria, with its more complex model of transmission, are separately performed and show
a similar impact enhancement with these interventions. A new, associated analysis yields simple scaling re-
lationships that estimate the dynamical resurgence time, post-intervention, to infection proliferation in a
community.

1. Introduction

Modeling and simulation are eminently appropriate tools for opti-
mizing malaria control strategies [1], helping elucidate their probable
mechanisms of action, and optimizing intervention timing and co-
ordination. To compare different methods of suppressing infection in a
community with endemic disease, we extend an established Ross/
Macdonald model variant for mosquito-born parasite transmission to
simply incorporate time-dependent control interventions. In particular,
we focus on mass drug administration (MDA) and indoor residual
spraying (IRS), two strongly effective interventions which address, re-
spectively, the human and the mosquito reservoirs of parasitemia.
These interventions have direct and complementary effects on the
transmission dynamics.

There is context and precedence for this investigation from a long
history of both MDA and IRS campaigns, sometimes used in combina-
tion. In the post-WWII era, DDT and Chloroquine prompted large scale
campaigns with the ensuing Global Malaria Eradication Programme of
1955–1969 [2,3]. Subsequent eradication efforts both succeeded and
failed [4,5] and a legacy of this era is acquired resistance [6]. Both

Chloroquine and DDT lost efficacy with successive sprayings and the
regularly high chemical pressure stemming from frequent treatment
with a single pharmaceutical. Later, from 1969 to 1976, the Garki
project investigated and recorded many aspects of transmission, im-
munology, entomology and epidemiology [7] and both IRS and MDA
campaigns were carried out as isolated interventions and in tandem.
When both IRS and MDA interventions were applied in combination,
the regular, high coverage (85%) campaigns were able to achieve a
high level of control, though unable to fully interrupt transmission [8].
Such control, though it does not progress directly to elimination, will be
relevant for the modeling of these interventions below, as we in-
vestigate the mechanism for achieving this pre-elimination level of
suppression. Beyond Garki, many MDA [9–11] and IRS campaigns
[12,13] have been carried out with varying successes, and recently
reviewed for Africa [14,15].

We consider the isolated and combined impact of MDA and IRS
campaigns in a few different transmission settings. Recent modeling
efforts have investigated similar control interventions and combina-
tions of them [16–19]. Generally, the control measures are carried out
as finite programs that are deployed, have a prescribed duration, and
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promptly end. Post-campaign, in the absence of further interventions or
a permanent alteration of the entomological environment, modeled
communities eventually rebound to their previous transmission balance
where malarial infections are again prevalent. As such, eradication
scenarios are not directly considered below but rather the process of
large-scale reductions in the host and vector reservoirs is, and this is an
important component of any elimination program.

The Ross/Macdonald model with control interventions, below, al-
lows MDA and IRS campaigns to be generalized and understood in an
illuminating manner, revealing a significant synergistic effect between
them, which, if robust, has potential utility in malaria control policy.
The aim of the application of this Ross/Macdonald variant is not so
much to emphasize detail or force some precision in its extension, but to
look for general trends and to elucidate the dynamics of parasite
transfer between the host and vector reservoirs, especially when it is
restricted with control interventions. As a result, the modeling is rela-
tively crude and has few parameters. In fact, the IRS intervention
below, other than prescribing a coverage and duration, is a single-
parameter intervention. This sole parameter is also easily interpreted: it
essentially benchmarks the (reduced) reproductive number R I

0 during
the intervention. This adapted and extended formalism is relatively
easy to use and understand, but correspondingly, has somewhat limited
flexibility and muscle. It is best employed, as here, for robust features
and trends.

To ensure that the observed synergistic effect and its size are not a
quirk of the simple semi-analytical model, we have also run openmalaria
simulations. The openmalaria simulations incorporate tremendous de-
tail absent in the simple Ross/Macdonald model, including acquired
immunity, demographic information included for transmission in-
tensities and a health system for case management, and so afford a
meaningful comparison with the much simpler dynamical model.
Interventions are simulated as closely as possible with those described
in the text in the semi-analytic Ross/Macdonald model. However this
comparison is not perfect. Our intention is not to make an absolutely
complete, direct comparison on directly equal footing between the
semi-analytic model and the full malarial transmission model of open-
malaria, but to see if some simple features are in correspondence, and
potentially also find contrast, if it exists.

We also establish a novel scaling result that details a community’s
collective response, post-intervention, to re-infection. Malaria will in-
vade again when campaigns expire and this timeline of re-establishing
parasitemia depends on the transmission intensity and other en-
tomological factors, though it is complicated by many forces wholly
absent in a “clean” modeling environment [20]. Estimated from a sta-
bility analysis in an accompanying appendix, this rate of re-infection is
referenced throughout. The rate enables a general, effective period of
intervention efficacy: the waiting period prior to the need for new
control measures. To our knowledge, it has not been established in the
literature.

2. Methods: A dynamical variant of the classical model

We begin with a simple population model of local mosquitoes

harboring parasites and capable of infecting hosts. Using classical no-
tation, the proportion of this mosquito population is Z, and for sim-
plicity will here consist of a single, short-lived anopheles vector with an
average lifespan of −g 1. This is the sporozoite rate and it grows as more
mosquitoes become infectious, acquiring parasites through bloodmeals
with infectious hosts, and wanes with their death. Among the very
simplest dynamical descriptions of the sporozoite rate is (with others
reviewed in [21]) Smith and McKenzie [22],

= − −−dZ
dt

acX e Z gZ( ) ,gn
(1)

which on the right hand side consists of creation and annihilation terms
for these rates. The second is clearly the force of mortality, which is
here the only means of diminishing the infectious population. The first
creates more infectious mosquitoes through biting events with in-
fectious hosts. If the vector bites hosts periodically at an average rate of
a (or the feeding time interval is −a 1), and the proportion of infectious
humans is X, infectious mosquitoes are created at a rate of acX, where c
is a human-to-mosquito transmission efficiency. New infectious mos-
quitoes are then created at a per-mosquito rate of −acX Z(1 ), essen-
tially the first term in Eq. (1). An extrinsic incubation period for in-
fectiousness n is incorporated here by diminishing the eligible infected
vector population so that only −gnexp( ) of newly infected anopheles
survive to become infectious, a limitation based on the simple hazard
model for mosquito survival. Incorporating the delay in this simple
fashion avoids the distinction of infected and infectious populations of
mosquitoes, and the need to monitor them separately. Mosquitoes
below are thus considered as infectious or not, with the creation rate of
the infectious fraction given by −−acX e Z( )gn . Mosquitoes are assumed
to carry infectiousness, once acquired, to their death.

The evolution of the infectious proportion of humans X in a trans-
mission setting is similarly constructed. First, a host recovers, on
average, from a malarial infection at a rate of r, and is only infectious

−r 1 days post-initiation. The infectious host population evolves similarly
to the above sporozoite rate, and is written [23],

= − −dX
dt

mabZ X rX(1 ) .
(2)

The first term creates the infectious populace, again through coupled
biting events. The rate that uninfected humans − X(1 ) become infected
is mabZ, where a is again the rate of biting events, and b is the efficiency
coefficient for mosquito-to-human transmission [24]. This term is
augmented by the prefactor m, which is the population ratio of mos-
quitoes to humans (and can be very large in high-transmission en-
vironments). This first term, −mabZ X(1 ) is constructed as the creation
rate of new, infectious human hosts from the naive host populace and is
ignorant of the time lag of parasite development in the hosts. Ignoring
this latency, the infectious population of humans is again exactly equal
to that of the infected proportion of humans. A summary of the seven
classical parameters of transmission is given in Table 1.

These dynamics neglect a large number of complicating influences
in both the entomology and epidemiology. First, obviously the spatial
component to transmission [25–27], and the fact that both mosquito

Table 1
The Ross/Macdonald classic transmission parameters and their four elemental combinations to characterize dynamics.

(a) The classic Ross/Macdonald parameters and their units. (b)The basic four unitless transmission parameters.

m Ratio of mosquitoes to humans =
−

R ma bce gn

rg0
2 The basic Reproductive number

a Host feeding rate (bites per mosquito per unit time) =γ ac g/ Number of bites in a mosquito’s
b Transmission efficiency, infectious host to mosquito lifetime that infects it
c Transmission efficiency, infectious mosquito to host =β mab g/ Number of infecting bites per

−g 1 Average mosquito lifetime (time) host in a mosquito lifetime

n extrinsic incubation period (time) = −P ee gn Probability a mosquito
−r 1 Host infectious period (time) survives incubation latency
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and host populations are moving ones is absent [28–30] and is some-
thing that will not be discussed here further. Also, host immunity, ac-
cess to care, and super-infection are wholly neglected, and seem to be
culpable, for instance, in one poor performance of Ross/Macdonald
models in a high-transmission setting [31]. Simple Ross/Macdonald
dynamics also overlook any heterogeneities in host selection, the role of
parasite densities in transmission events, in-host dynamics and a more
proper inclusion of innoculation latencies. A review of models with
these embellishments can be found in reference [32]. Due to these
complications, the regime of validity for either one of expressions,
Eqs. (1) and (2), is generally not known nor discussed. It is reasonable
to suppose, however, that low-to-mid intensity transmission environ-
ments, those considered below, might be most amenable to these simple
dynamics; infectious transactions may be assumed to be prevalent, and
complications such as super-infection play less of a complicating role.
Seasonal entomological trends are also a strong dynamical influence
and are similarly discarded here in order to focus on the effects of in-
terventions in a very simple setting.

Eqs. (1)and (2) describe a dynamical overview of the transmissive
elements for infection and provide perhaps the simplest tranmsmission
model, for host and vector dynamics. Infectious proportions are boosted
with coupled density transmission events and diminished with vector
death or the expiry of host infections; these are the only means in which
infectiousness is gained or lost.

2.1. Analysis: Basic dynamics and stability.

Analyzing the system Eqs. (1)–(2) for fixed points, there are two, as
is well-known [33,34]. The first is the trivial solution, =X 0 and =Z 0,
which is an elimination scenario, with neither infectious mosquitoes
nor hosts present; there are no parasites transmitted in the host/vector
system. The second is a dynamical equilibrium with infectious parasites
present in both human hosts and mosquitoes,

⎜ ⎟= −
+

= ⎛
⎝

⎞
⎠

−
+

X R
R γ

Z
γP
R

R
γ

* 1 and, * 1
1

.e0

0 0

0

(3)

Two definitions, =γ ac g/ and = −P ee
gn have been used and the re-

productive number R0 has been introduced,

⎜ ⎟⎜ ⎟= = ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

−
−R ma bce

rg
me c a

g
b a

g
g
r

.
gn

gn
0

2

(4)

The reproductive number, the number of infected humans created from
a single infected host in an otherwise naive population [23,35], is the
product of the mismatched ratio of populations m, the mosquito’s
probability of surviving the extrinsic incubation period = −P gnexp( ),e

contributions from the two bites necessary for infection transmission,
ac/g and ba/g, and a factor which is the ratio of the amount of time an
average mosquito has with an infectious host, g/r. The product of the
middle terms is a2bc/g, an absolute count of the (lifetime average)
successful number of two-fold transmissive events taking place per
mosquito. Prefactors diminish or augment this simple count: the mos-
quito population in m has more mosquitoes (linearly) causing more
overall transmission, and their mortality during incubation Pe di-
minishes it. The reproductive number R0 alone quantifies transmission
intensity, a result of the balance of the creation and loss terms of
Eqs. (1) and (2).

Rewriting the system above with two transformations, first dividing
the infectious populations by their (nontrivial) stable points, =X X X/ *
and =Z Z Z/ *, and second, scaling time by the mosquito lifetime =τ gt .
The system of Eqs. (1) and (2), transforms to,

= ⎛
⎝

⎞
⎠

− −dX
dτ

β Z
X

Z X X αX*
*

(1 * )
(5)

= ⎛
⎝

⎞
⎠

− −dZ
dτ

γ X
Z

X P Z Z Z*
*

( * ) ,e
(6)

with the following redefined parameters: =α r g/ is the mosquito life-
span divided by the human infectious period (as mentioned above, this
is the ratio of time an average mosquito has with the human infectious
period), =β mab g/ is the lifetime average number of successful in-
fecting bites per host, and =γ ac g/ , as above, is the number of bites in a
mosquito’s lifetime that infects it. It is clear with Eqs. (5)–(6) that γ
mediates human-to-mosquito interactions while β mediates mosquito-
to-human ones. The reproductive number is also simply expressed with
the scaled parameters, =R γβP α/ ,e0 which emphasizes its alternative
interpretation which is that it is the ratio of two rates, that of infections
invading the community γβPe, divided by the rate they leave, α. The
resulting dynamical system in Eqs. (5)–(6) (and thus Eqs. (1) and (2)) is
thus fully specified by just four independent parameters: R0 and γ
specify X* via Eq. (3), adding Pe specifies Z*, and finally α (β) yields β
(α). The complete set is {R0, γ, β, Pe}, consisting of parameters of the
transmission intensity of the setting R0, γ and β are scaled interaction
parameters for mosquito-to-human mediated transmission and vice-
versa, and lastly = −P gnexp( )e is the proportion of mosquitoes that
survive the incubation period. The incubation period n, as in Eq. (1) is
an obvious alternate specification. Table 1 summarizes the seven clas-
sical transmission parameters and the four elemental ones.

The conditions of stability and some other dynamical considerations
for the system of Eqs. (5) and (6) are analyzed in Appendix A. In brief,
stability about the elimination point, = =X Z 0 is lost when condi-
tions merit R0> 1, or when the community has infection rate that
outpaces its recovery. All trajectories for reproductive numbers R0< 1
attract to the elimination point, = =X Z 0 and all others attract
asymptotically to the stable, non-trivial equilibrium point {X*, Z*}, that
of Eq. (3). We mention these domains explicitly, though they are widely
understood, only because the control interventions considered below
will adjust the reproductive number, if temporarily. With good cov-
erage and effective chemoprevention and/or vector control, the re-
productive number can fall below unity for the duration of the inter-
vention (high effect size [36]). In this period, dynamics exist on a
trajectory that attracts towards elimination. Elimination will however
not result from these measures if retraction or intervention expiry
causes only a temporary reduction in transmission, and these are the
cases explored below. A rebounding R0 re-introduces transmission and
results in a dynamical relaxation to the equilibrium of Eq. (3), re-es-
tablishing malaria in the community.

3. Theory: The addition of interventions

In this section, interventions are modeled as control efforts which
change the reproductive number, R0, through (say) enhanced mosquito
mortality or diminished human infectious periods. These approximated
effects perturb the evolution of the infectious populations subject to
estimated impacts. For example, periods of intervention activity/dura-
tion are approximated, and dynamical trajectories are calculated
through the interventions, via Eqs. (5) and (6), but with time periods of
suppressed <R RI

0 0 and associated parameters. Upon intervention ex-
piry, the system dynamically relaxes according to the same ambient
conditions prior to the intervention. Noted above, and in more detail in
Appendix A, globally the system can relax to only one of two fixed
points: the trivial equilibrium of elimination, = =X Z* * 0, or the stable
transmissive environment given by Eq. (3) where parasites are ex-
changed freely and there are measurable populations of infectious hosts
and mosquitoes at modest R0> 1. This relaxation—the slow (or fast)
acquisition of malaria in the community, post-intervention—including
the characteristic times of regaining equilibrium, is also explored
below.

Again, the modeling of MDA and IRS interventions is intentionally
simplified. Our interest is to investigate general trends and extract
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robust, scaling-level effects. For this purpose, three time windows are
isolated for the evolution of the infectious proportions X(τ) and Z(τ),
which are before, during and after the intervention period. The dy-
namics evolve according to transmission intensity of each time-period:
R R, I

0 0 and R0 respectively (superscript I denotes an intervention-period
value), with the bottlenecked dynamics of the intervention explored in
more detail below. Prior to the intervention, the trajectory is static, and
that of a community stuck at the stable equilibrium points of Eq. (3). All
evolving dynamics are stable with freely exchanged parasites from
hosts to mosquitoes and vice-versa. Upon the deployment of either
MDA or IRS (or both) campaigns, the second time period, a proportion
of the host/vector populations is affected by the intervention, and
transmission is immediately reduced. This means, for example, when an
MDA is deployed and the coverage is 85% of a local population is
treated, ∼ 85% of the infectious pool of humans has their parasite load
cleared and their infectious status is exactly voided. This value of the
infectious proportion, =X τ τ( ),0 with τ0 a time of intervention de-
ployment, is then used as an initial condition for the subsequent dy-
namics of the intervention period, with an associated set of parameters
appropriate to the intervention: R γ β P{ , , , }I I I

e
I

0 . The time duration of
this second period is estimated, which for an MDA is based on the
duration of prophylaxis offered by the particular drug administered.
Upon expiry of the MDA, the dynamics return to those of the time
period prior to the intervention, again with the original parameters,
{R0, γ, β, Pe}. The evolved densities +X τ τ( )0 and +Z τ τ( )0 at the
expiry of the intervention period with duration τ are used as initial
conditions for post-intervention system evolution. This is the starting
point for the system’s third window, to dynamically relax to one of the
two fixed points post-intervention: elimination, or proliferation and the
return to an infected populace. In the below, since the pre-elimination
parameter values are instantaneously switched back on after = +τ τ τ0
(for example R0 is once again suddenly large), elimination can only be
achieved with exactly + =X τ τ( ) 00 (never): the elimination fixed point
is unstable for R0> 1.

It should be mentioned with these simplifications that decaying
intervention effects are not present here. There is no decaying efficacy
of an insecticide for example; interventions are taken to be working or
wholly ineffective. We choose not to parameterize individual in-
secticides or medical interventions, but only prescribe an initial impact
and effective duration. As will be seen, these generalizations not only
enable a simple analysis, they illuminate some of the forces responsible
for an intervention’s impact, and in particular engender an under-
standing of the interactions between multiple interventions.

All non-analytic and non-simulation results are full solutions to the
coupled nonlinear Eqs. (5) and (6), integrated numerically with a
fourth-order Runge–Kutta algorithm as the system itself is not (at least
not easily) separably integrable. Parameter values are indicated in the
text or figure captions.

3.1. Mass drug administration

The effects of an MDA campaign are incorporated through estimates
of coverage and duration, as well as adjustments to two internal para-
meters which account for the altered transmission during the cam-
paign’s effective period. First, infections, or here, infectiousness, is
squelched at the time of administration and X τ( )0 is set to just 15% of
its equilibrium value, a number which corresponds loosely to the
campaign’s coverage, but also necessarily involves a chosen drug’s ef-
ficacy, and compliance and/or adherence to its prescriptive treatment.
Second, the duration of the MDA also depends on the selection of ad-
ministered drugs (any parasite resistance is here clearly disregarded),
and for simplicity the period of the MDA is taken to be =τ 2, or two
mosquito lifetimes (maybe three weeks with ≈−g 101 ). Lastly, sys-
tematic effects of the MDA are also ascribed through two internal
parameters, r and b, discussed below. Adjustments to these two para-
meters change the dynamical course of Eq. (2) (or Eq. (5)) through

changes in the coefficients, but the prefactors of Eqs. (1) and (6) remain
as before. The MDA does not change the entomology—Z(τ0) remains
unchanged by the MDA—at the deployment time of the MDA, and the
sporozoite rate responds only after this moment. The local infectious
proportion of anopheles changes with the MDA only through the cou-
pled dynamics of the infectious populations.

As host infections are cleared for the recipients of the MDA, the
average duration of the human infectious period, −r 1 (contained in

=α r g/ above), decreases as a result. Those infections cleared have
shorter durations and, on average, the host infectious period reduces.
Transmission mosquito-to-human is also correspondingly squelched, a
chemoprophylactic effect for treated individuals, so b (in β above) also
diminishes. Through these two modifications, the reproductive number,

=R γβP α/e0 plummets. To accomplish these reductions, the host healing
rate is amplified, r→ ξr (or α→ ξα in the above) with ξ>1. This rate
amplification diminishes the average duration of a host infection, an
obvious effect of administered anti-malarials. The mosquito-to-human
transmission for the short period of the campaign is also greatly re-
duced, a prophylactic effect, and b→ b/μ ( = →β mab g β μ/ / ) is set to
accomplish this. As a consequence, the reproductive number is squel-
ched R0→ R0/μξ for the short duration of the intervention, corre-
sponding to an effect size of =R R μξ/ I

0 0 [18,36,37]. This reduction is
not entirely independent of the coverage, or vice-versa, in that if cov-
erage is weak, the reduction in R0 must correspondingly be modest. We
focus here on relatively high impact interventions and high coverage in
an effort to focus on relatively potent interventions and what may be
achieved with them.

Just after the effective time period of the MDA, these effects
promptly expire and the parameters return to their pre-intervention
values. Succinctly, the MDA campaign has the following settings: an
initial impact related to the intervention coverage X(τ0), the duration of
the MDA effective period =τ 2, the reduction in the human in-
fectiousness period →− −r ξr( ) ,1 1 and the chemoprophylactic effect with
b→ b/μ. The reproductive number =R R ξμ/I

0 0 follows from these,
again, only during the short time window of the campaign.

With these parameter simplifications, infectious host dynamics
during the MDA period < < + −τ τ τ g20 0

1 are determined from,

= ⎛
⎝

⎞
⎠

− −dX
dτ

β
μ

Z
X

Z X X ξαX*
*

(1 * ) ,
(7)

and the intervention values of these prefactors are =α ξαI and
=β β μ/I . The sporozoite rate evolves as before, according to Eq. (6) as

both γ and Pe are unaffected by the intervention: the medical inter-
vention alters only host dynamics directly. The sporozoite rate changes
only “downstream,” through preempted parasite transmission. It is
worth noting that the proportions in Eq. (7) are still normalized by their
pre-intervention equilibrium values, X* and Z*.

After the MDA initially causes human infectiousness to plummet
with the clearing of the host reservoir, =X τ( ) 0.15,0 subsequent host
dynamics are determined from the evolution of Eq. (7) with ξ and μ set
with two conditions. The first is that these rescalings reduce the re-
productive number =R R ξμ/ ,I

0 0 so ξ and μ must be set so that <R 1,I
0 as

host infectiousness should diminish and attract towards the elimination
point =X * 0 during a campaign that is effectively administered with
robust anti-malarials. The second condition is to roughly balance the
terms on the right hand side of Eq. (7). This selection is made as a
sensible estimate: an MDA generally maintains the clearing of the host
reservoir during its effective period. That is, if 85% of the population is
properly treated with an anti-malarial that has a prophylactic period
post-administration, we might expect that host infectiousness X will (at
least) not increase, but also hold relatively steady during the period of
effectiveness of the drug. If, on the other hand, a particular drug does
not have a robust prophylactic effect, μ can be modified (reduced) to
accomplish this. Values for ξ and μ, regardless of R0, in the cases below
are always set with =R 0.5,I

0 which reflects a very effective campaign.
The effect size varies among different ambient transmission settings set
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with R0, meaning that here =R 0.5I
0 is maintained regardless of the

initial, pre-intervention R0.
The integrated dynamical trajectories of the MDA campaign are

shown in Fig. 1, for a low ( =R 2.50 ) and moderate ( =R 250 ) trans-
mission setting. The host and mosquito prevalence curves are normal-
ized by their pre-intervention equilibrium values of Eq. (3), so they both
initiate and, upon expiry of the intervention, bounce back towards
equilibrium at → →X Z1, 1. It is clear that during the period of the
MDA campaign, < < +τ τ τ τ ,0 0 with the diminished reproductive
number, <R 1,I

0 dynamics for both infectious densities decay towards
the elimination stable point (albeit somewhat slowly by construction
for X ). The initial impact of an 85% reduction in X is striking, but the
sporozoite rate also drops with alacrity, i.e. the vector parasite reservoir
depletes quickly, in just a few mosquito lifetimes. The sporozoite rate is
clearly very labile with respect to changes in the host infectious density.
The MDA campaign targets and mostly clears a very large reservoir of
parasites in hosts. The infectious portion of the more ephemeral mos-
quito population adjusts quickly to reflect these changes. At the end of
the MDA campaign, for > + =τ τ τ 12,0 the intervention has expired
and host protection is promptly lost. Mosquitoes continue to bite hosts
and individuals previously receiving treatment and prophylaxis are
eligible to become infected once again. The stable equilibrium of freely
exchanged parasites with X* and Z* in Eq. (3) is regained in time. This
decaying approach to X*, Z*, prompted by these uninfected individuals
from the MDA becoming re-infected takes much more time in the low-
transmission =R 2.50 setting than the high-transmision one, a relatively
obvious result, but one which supports the use of MDA in the context of

elimination. A stability analysis, described in more detail in
Appendix A, estimates the characteristic recovery time(in units of −g 1)
of the infected host population to be,

⎜ ⎟≈
+

= ⎛
⎝

⎞
⎠

+
+τ

γ
αR βP

γ
γ

1 1 1
,

e0 (8)

so that large R0 clearly bounces back faster, as is seen in Fig. 1. This
recovery time, a non-trivial function of transmission parameters, is a
decreasing function of γ, as well as β and Pe. Boosting the human-to-
mosquito (or mosquito-to-human) transmission coefficients decreases
the time to regain equilibrium. The relation in Eq. (8) is also somewhat
unique in that post-campaign, α is conspicuously absent: only those fast
dynamics mediated by the entomology and host-transmission, γ, β and
Pe, are relevant (at first order in R0). As such, while the medical
treatment of an MDA campaign clearly affects the recovery time of
treated individuals (information contained in α), it is the entomology
and parameters of transmission, absent these in-host effects, that causes
the community as a whole to lapse once again into a state with pre-
valent malarial infection. The use of pharmaceuticals for the in-host
clearance of infections can establish impressive gains, but the forces for
invading parasitemia post-prophylaxis are all first-order dependent on
transmission from the vector, despite its depleted reservoir. This fore-
shadows the needed role for vector control that will be considered in
the next sections.

Post-intervention, the rate malarial infections invade the populace
may also be written,
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+ →
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Here fI(X) is the force of infection, the rate of successful infectious bites
received per human. Here, as classically, it is a function of the infected
host proportion. A comparable estimate (note expression (8) is ap-
proximate) is,
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The restoration rate, the rate malarial infections return to the com-
munity, is essentially the force of infection of the pre-intervention en-
tomological setting. It is the rate of planted, viable infectious bites, that
of the entomological setting into which the system relaxes.

Before moving on, it is important to remark on Eq. (8) (or Eqs. (9)
and (11)) as a scaling relation. It is derived in the linearized approx-
imation of the Eqs. (5) and (6), and as such has relevance in the
neighborhood of fixed points such as X*, Z*, while neglecting the
nonlinear coupling in these regions. For this matter, the MDA campaign
above upon expiry is not a small perturbation from the fixed point of
Eq. (3), and the scaling estimate for recovery post-intervention is re-
latively numerically poor here. A better estimate is found with some
further analysis in Appendix A. It is,

⎜ ⎟= ⎛
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+ ⎞
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+τ gf

X
X

k τlog
1

,m I
f

f
f

1

(12)

where = +X X τ τ( )f 0 is the infectious host proportion at intervention
expiry. This recovery time is dependent on the suppressed host in-
fectious proportion Xf at the end of the intervention: the more para-
sitemia is suppressed from the campaign, the longer the period of re-
storation, a sensible result. For this matter, it takes longer for the
malarial infections to return in a community where a more successful
MDA campaign has taken place. This effect amounts to essentially en-
hancing the recovery time to a few multiples ≡ + −k Xlog(1 )f f

1 of the
characteristic time +τ (Eq. (8)), = +τ k τm f above.

Fig. 1. Normalized trajectories for human X , and mosquito Z infectiousness
with an applied, model MDA at (nondimensional) time =τ 10. The application
period is highlighted in both panels. The top figure shows the long-lasting ef-
fects of an MDA campaign in a low-transmission ( =R 2.50 ) environment, which
still has effects tens of mosquito lifetimes later. Below, the same MDA has a
much shorter effect, recovering in a few mosquito lifetimes for a moderate
transmission environment, =R 250 . The average human infectious period is
diminished by an introduced prefactor =ξ 3 during the campaign and μ is set
preserving =R 0.5I

0 during the period of the applied MDA. These two para-
meters are introduced in the text and dictate the chemoprophylactic effect of
the administered anti-malarial (μ) and its associated ability to clear average
host infectiousness (ξ). The other parameters are specified in correspondence
with previous work [29,38,39], which are =γ 0.642, = − −α d d(150 ) /(10 ) ,1 1 and

=P e1/e . More analysis and details of the MDA are in the text.
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Despite these rates and recovery times being valid for a linearized
approximation, the response time of Eq. (8) (or (12)) is certainly not
without merit given that it illuminates the entomology and transmis-
sion properties that are responsible for restoring equilibrium, which is
especially true as X(τ) approaches X* ( →X 1). Also, perhaps the most
conspicuous attribute of Fig. 1 is the difference in recovery times for the
two transmission settings post-intervention. The scaling of this rebound
in Eq. (8) with −R0

1 indicates the relative recoveries of X* differs by an
order of magnitude, which matches the recovery trends in the figure
extremely well: one is almost exactly ten times longer than the other.
One final interesting property explored in Appendix A is that the relapse
time of Eq. (8) does not endlessly shorten with R0 but saturates, ulti-
mately achieving the asymptote ≈ ++τ γ1 , another consequence of the
fast turnover of the vector population.

Of course, in a real setting the force of infection does not in-
stantaneously revert back to pre-intervention levels, as has also been
assumed here, but more likely continuously regains momentum as the
effect of an intervention deteriorates. This waning influence of an in-
tervention should delay, or slow, reemergence from this estimate. Since
immunity is additionally absent in this analysis and it potentially pro-
tects some individuals from re-infection, slowing the influx of para-
sitemia, this estimate is also likely fast from this oversight. Eq. (12) can
thus be regarded as a fast estimate, or short threshold, for the char-
acteristic resurgence time.

3.2. Indoor residual spraying

An IRS campaign changes the local, ambient vector population and
inter alia the reproductive number. Contrasting the MDA campaign, IRS
does not change human infectiousness with deployment, so X τ( )0 re-
mains unchanged at this point; IRS affects human infectiousness dy-
namics only “downstream,” as fewer infectious mosquitoes survive to
bite humans and transmit infections.

To account for the killing effects of an IRS campaign, a skeletal
population model of mosquitoes is required. Killing anopheles with
insecticide is an effect contained in m, the ratio of populations, mos-
quitoes to humans. This ratio m, embedded in the composite parameter
β, has thus far been regarded as constant, but for the next few para-
graphs alone, we regard it as changing in time to account for the in-
secticidal killing effect (it will be shown that this time-dependence is
spurious). Among the simplest of population models [21], mosquitoes
have an emergence/mortality balance,

= −dm
dt

gmϵ ,
(13)

with ϵ a per-host emergence rate and g the force of mortality as above.
In correspondence with the treatment for MDA, all terms are normal-
ized by an unchanging human population of N, i.e. =m M N/ , with M
the total relevant mosquito population: those proximal, female, and
host-seeking. The equilibrium population ratio is =m g* ϵ/ , a balance of
birth and death rates. The population dynamics of Eq. (13) has some
deficiencies (one emphasized below), but is nonetheless capable of
generating insight into the main drivers of transmission reduction.
According to this population model, if an IRS campaign diminishes the
population to m0 from the equilibrium value of m* at =τ τ ,0 the mos-
quito population recovers as,

= + − − −m τ m m m e( ) * ( *) .τ τ
0

( )0 (14)

Note that the characteristic time of recovery is (of course) −g ,1 the
average mosquito lifetime (again, =τ gt, as above and all time is scaled
with the equilibrium mosquito lifecycle). Constant mosquito emergence
replaces the lost population in a matter of just a few mosquito lifetimes.
This highlights one inherent weakness of the emergence/mortality
balance of Eq. (13): the emergence rate is undeterred despite a reduced
population of mosquitoes. If perhaps an application of insecticide kills a
substantial number of adult mosquitoes, their (likely) fewer offspring

do not result. For the same reason, as designed, vector extinction is
similarly impossible. Shortcomings such as these will be overlooked in
the following in favor of a coarse look at vector control that simply
maintains a lower population of mosquitoes when active.

Since IRS kills mosquitoes, with m falling with its deployment, the
mosquito mortality rate g must increase. To capture this, for the ef-
fective length of time of the IRS campaign, i.e. roughly the viable period
of the insecticide, the mortality rate is boosted, g→ κg, where κ>1
here augments the force of mortality and correspondingly diminishes
the average lifetime of anopheles. The reproductive number R0 thus
decreases with both fewer mosquitoes m and their shortened lifecycle,
diminishing transmission. Augmenting the force of mortality in
Eq. (13), with g→ κg,

= + ⎛
⎝

− ⎞
⎠

− −m τ m
κ

m m
κ

e( ) * * κ τ τ
0

( )0

(15)

≈ − > −m
κ

τ τ κ* , for ,0
1

(16)

the mosquito population re-equilibrates to m*/κ, reducing the equili-
bration above by a factor of κ. The recovery time, that to regain the new
equilibrium m*/κ is short, changing from −g 1 to −κg( ) ,1 so that not only
does the population rebound to a reduced equilibrium, it does so
quickly. Because the population recovery time is shorter than an
average mosquito lifetime, the second term in Eq. (15) is a fast transient
effect, and =m m κ*/ alone is sufficient to capture the population re-
duction for all but the very shortest (irrelevant) time scales. In the
following, m no longer contains this time-dependence but during an IRS
campaign their ambient population is reduced by the augmented
mortality rate m→m/κ.

The rescaling of g during the IRS adjusts the mosquito-to-human
transmission prefactor, =β mab g/ as well as the fraction of mosquitoes
that survive the incubation period, = →− −P e ee

gn κgn. With the same
scale normalization as before, the evolution equations for the IRS
transformations are,
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and note the time =τ gt is still measured in units of −g 1 and not −κg( ) 1

with this construction. The IRS evolution is modified with a boosted
mortality rate g→ κg, an altered mosquito-to-human transmission pre-
factor β, and a diminished survival during the incubation period, Pe→
Peκ. Fewer survive to pass on parasites with this amplified mortality.
Other than the initial reduction and the campaign duration common to
all interventions, it should be noted that the IRS evolution is configured
with only a single parameter, κ, which changes these factors. It can be
shown the reproductive number is reduced by,

= ⇒ =
−

R
γβP

α
R R

P
κ

[ ]
,e I e

κ

0 0 0

1

2 (19)

a scaling with κ that has been pointed out previously [22].
A last detail is needed for the IRS, which is the connection between

a campaign’s coverage and how the sporozoite rate adjusts with its
deployment, setting Z τ( )0 . This is a rather subtle point, and we
might expect that the reduction in the number of ambient mosquitoes
m→m/κ be adequate for a description of the insecticide’s effect: mos-
quitoes would be killed indiscriminately and the fraction harboring
infections to be unaffected. This is however not the case because the
boosted mortality rate g→ κg of the campaign modifies the age struc-
ture of mosquitoes, and infectious mosquitoes are by requirement older,
having survived the latency period. To this end, the hazard model for
mosquito survivorship has an age distribution given by

− ≡ −gt τexp( ) exp( ), with average lifetime −g 1. The percentage of the
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total that could be infectious (they are old enough to have survived the
extrinsic incubation period) is = −P gnexp( )e . During the IRS campaign,
the age distribution modifies to −κτexp( ), with shorter average lifetime

−κg( ) ,1 and the proportion of mosquitoes who are old enough to be in-
fectious reduces to −κgnexp( ). Thus, the ratio of those that live long
enough to be infectious, post-IRS to pre-IRS, is = − −−P gn κexp( ( 1)),e

κ 1

and is the fraction affected by a perfect (coverage of unity) IRS cam-
paign. If an IRS campaign affects a fraction of this mosquito population
with coverage c0, the total reduction at deployment is,

= − + −Z τ c c P( ) (1 ) e
κ

0 0 0
1. With =R 25,0 the reduction in Z τ( )0 is 71%

at deployment for 85% coverage, a substantial reduction.
The effects of this model IRS campaign for two transmission settings

are shown in Fig. 2 with 85% coverage, synonymous to the initial re-
duction in X for the MDA. The intervention duration is much longer for
the IRS than the immediate cleansing of an MDA campaign, as in-
secticide is generally viable for months, and set here to =τ 18 (or

≈−g18 1801 d, maybe half a year), a time window highlighted in the
figure. There is no decline in the efficacy in the insecticide: it is either
on and working during the −g18 1 period of the IRS, or exactly off.
Comparable to the MDA above, the augmentation of the mosquito
mortality rate is again set to preserve =R 0.5I

0 for all transmission
environments (which through Eq. (19) sets κ). It is reasonable to expect
the sporozoite rate to decline during the effective period of the IRS
yielding a net killing effect, diminishing Z and attracting to the stable
node of elimination, =Z* 0. Upon retraction, however, prevalent in-
fectious densities again return. Expiry of the IRS here causes the com-
munity to be subject to re-infection from the fast dynamics of the re-
covering vector parasite reservoir. Z quickly bounces back towards the
proliferation stable point and host infectiousness follows, scaling with
the entomology, the ambient force of infection, as before in Eq. (12).

Another important comparison with an MDA campaign illustrated
here is that the host infectiousness X is slow and even comparatively
sluggish to respond to changes in the sporozoite rate Z . This is in direct
contrast with the MDA campaign above, where fast changes in X result
in fast changes in Z . The reverse is not true. Fig. 2 indicates a slow
decay in host infectiousness after the mass killing of infectious mos-
quitoes during the IRS. In fact, the sporozoite rate plummets to roughly
a tenth of its equilibrium value for nearly half a year, and host in-
fectiousness decays consistently and comparably slowly. This asym-
metry is a result of infections lost only through expiry at a rate of r (see
Eq. (2)), a rate directly modified by the MDA but untouched by the IRS.
It is only the long duration of the IRS that allows host infections to clear
and X to wane. The IRS period has only a trickle of new infections due
to a strongly suppressed mosquito population, but with no mechanism
or program in place to actually clear existing host infections, waiting
out the infectious period is the only means to a reduced presence of
parasitemia in the community. The clearing of host infections in an
MDA results in a correspondingly fast clearing of the vector reservoir,
but the cleansing of the vector reservoir with an IRS does not result in
the fast clearing of the host reservoir. Host infections expire only at rate
r (contained in α), i.e. slow.

A final note on the model IRS campaign here regards the domain of
applicability of the intervention. With the labile nature of the spor-
ozoite rate, low transmission environments R0≲ 10 (not shown in
Fig. 2) present a situation where high host infection ≈X 1, and sup-
pressed Z post-deployment, do not balance the creation and destruction
terms of Eq. (1). In these low-transmission environments, anopheles
infection can still outpace the relatively (and necessarily) modest κ
reduction responsible for the accelerated killing of mosquitoes for a
short time. As a consequence, for small pre-intervention R0 there is a
transient period immediately post-IRS deployment where the spor-
ozoite rate grows (responding quickly to the yet-still high X ) but then
subsequently falls, as it must attract to the elimation fixed point =Z 0
with <R 1I

0 by construction. This takes place in a short time post-de-
ployment where briefly the creation term outpaces annihilation. As
configured, the reproductive number =R 0.5I

0 is here preserved abso-
lutely, regardless of initial R0, which may be a tremendous reduction in
high-transmission settings but a fairly modest effect in low transmission
(the effect size varies). Preserving this constraint in low-transmission
settings, chosen in part to coordinate a comparison with the MDA at the
same =R 0.5,I

0 has as a consequence a poor balance of terms in Eq. (18)
during the intervention. For this reason, somewhat larger R0 values are
depicted in Fig. 2 than Fig. 1, avoiding these transients at low R0.

4. Results

4.1. Synchronous IRS and MDA, modeled by the Ross/Macdonald variant

Trajectories for a synchronous deployment of an IRS and MDA are
plotted in Fig. 3. Synchronous deployment has the infectious host
proportion depleted to just 15% and the sporozoite rate rather com-
parably reduced from their pre-intervention equilibrium values, in
correspondence with the individual campaigns considered above. The
interventions are deployed exactly as described in Section 3, with the
same durations and reduction parameters. Here, the MDA campaign is
finished at =τ 12, and dynamics are then determined by the IRS evo-
lution equations, Eqs. (17) and (18), as it continues beyond the MDA
period to =τ 28. Intervention durations are indicated on the figure as
before. Comparable to the cases above, at the expiry of the IRS, the
parameters instantaneously revert to their environmental settings for
transmission prior to the campaigns. Fig. 3 shows this rebound for both
host and vector prevalence post-campaign. The lower transmission
setting regains equilibrium in the long time limit while the high
transmission setting rebounds quickly, again in agreement with the
scaling result of Eq. (12). Also plotted are integrable solutions found by
exploiting the fact that the sporozoite rate responds very quickly to
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Fig. 2. Normalized trajectories for human X τ( ), and mosquito Z τ( ) in-
fectiousness with an applied, model IRS at time =τ 10. The application period,
which has duration =τ 18 (18 mosquito lifetimes, maybe a bit more than a half
year) is highlighted in both panels. The top figure shows the long-lasting effects
of IRS in a low-transmission ( =R 12.50 ) environment, which recovers slowly
post-intervention. Below, the same IRS has a similar effect, but recovers rapidly
post-intervention in the medium-high transmission environment, =R 750 .
Mosquito lifetimes are diminished by an introduced prefactor κ set to preserve

=R 0.5I
0 during the intervention. Other parameters are set as before and more

details are in the text.
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changes in the host infectiousness. Appendix A has more details on
these trajectories.

The most important feature of Fig. 3 is that during the period of the
campaign, prevalence is low, nearly in the pre-elimination regime, even
for the high-transmission setting. Host infectiousness/infections are
first cleared by the MDA to low levels (compare with Fig. 1), and rather
than this depletion of the host reservoir being short-lived, this level of
prevalence is maintained by the diminished force of infection accom-
plished by the IRS. In short, the gains of the MDA are sustained by the
IRS.

These gains in reduction with combined campaigns are notable
because the infection suppression is better than additive. A direct
comparison for the high transmission setting, =R 75,0 is shown in
Fig. 4. Host infectiousness trajectories for isolated MDA and IRS cam-
paigns, deployed individually, are compared with that of the combined,
synchronous IRS/MDA. It is clear the combined deployment has a sy-
nergistic effect, clearing far more infections than either alone.

To measure the robustness of a campaign or campaigns, and to
compare effective interventions or intervention sequences, we define
their impact, deployed individually or together, as,

∫= −I X τ X τ dτ[ ( ) ( )] .c0 (20)

Here X τ( )0 and X τ( )c are the prevalence trajectories for the community
without interventions and with them, respectively. X τ( )c with subscript
c denotes a trajectory with included campaigns. As defined, the impact
clearly simplifies for the Ross/Macdonald variant, with =X τ( ) 1,0 since
the prevalence absent interventions is simply the average value of the
transmission setting. It is written more generally here as it will be ap-
plied for simulation cases, below, where stochastic noise is present and

≠X τ( ) 1,0 but fluctuates about unity. The impact is simply the area in

Fig. 4 bound by the trajectories with campaigns, X τ( )c and those
without, X τ( ),0 and is simply interpreted as the percentage of infections
prevented by the campaign times its effective time. As such, a short
duration campaign that deeply cleanses the host reservoir, such as a
high coverage MDA in a high transmission setting, may have a net
impact I comparable to a different, low coverage intervention with a
correspondingly long duration. The impact measures the total abilities
of the intervention (or a sequence of several) to stem infection.

On this note, the integration limits for Eq. (20) must be large en-
ough to encompass all effects of the intervention(s), especially if their
duration is substantial. Provided the time window begins prior to the
time of the intervention and is suitably large for long term effects, its
duration does not matter. Times τ far in advance or long after the
campaign have ≈X τ X τ( ) ( )c 0 and do not contribute; the impact I is
constant over a (suitably large) window of integration. There are
however a few subtleties for simulations, which are mentioned in
Appendix B.

The impacts for an isolated MDA, isolated IRS, and the synchronous
MDA+IRS are shown in the inset to Fig. 4, and demonstrate the en-
hanced suppression of combined, jointly-administered interventions.
The impact of the synchronous MDA+IRS is roughly double the impact
of an isolated MDA with that of an isolated IRS campaign. This is
particularly noteworthy because campaigns that are scheduled and
deployed strategically, i.e. jointly administered, vastly outperform two
deployed separately, temporally in isolation. This is to say roughly
twice the control can be accomplished by jointly deploying the inter-
ventions.

4.2. Interventions and their impacts with openmalaria simulation

Individual-based simulations are separately run with openmalaria as
a comparison for these transmission settings and interventions, and
especially to test for the robust synergy in Fig. 4. These simulations
include significant detail compared to the semi-analytic model pre-
sented above and common ground for comparison is difficult. Several
features of openmalaria that are wholly absent in the above model in-
clude demographic heterogeneity of transmission, partial immunity of
the population, case management in health systems, and variable
transmission/infectivity based on a list of factors [40–47]. The

Fig. 4. Direct comparison of trajectories for human X infectiousness when
MDA and IRS are deployed individually and together, in a medium-high
transmission setting, =R 750 . All intervention standards are as before.
Suppression from synchronous deployment clearly exceeds that of either IRS or
MDA alone, and the inset demonstrates this synergy. The inset shows the im-
pacts (Eq. (20)) of the interventions, indicating the nearly twofold enhancement
of the combination of synchronously deployed MDA+IRS. This is a synergy of
the interventions.
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Fig. 3. Normalized trajectories for host X , and mosquito Z infectiousness when
both an MDA and IRS are deployed synchronously at =τ 10. All intervention
standards are as before. The MDA clears infectiousness in 85% of the populace
for a duration of =τ 2 (2 mosquito lifetimes), with this time window high-
lighted in the figures. The IRS reduces the sporozoite rate by 85% at the same
time and is effective for a duration of =τ 18, as before, and also highlighted in
the figures. A low transmission figure again has a slow recovery (top, with

=R 12.50 ) and the higher transmission setting bounces back quickly at the
expiry of the effective IRS time-span, at =τ 28. A weakly nonlinear solution
explored in Appendix A is also drawn.
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entomology and vector lifecycles are also separably configurable. An
appendix below (Appendix B) details several aspects of the simulations
run here, and we focus on a comparison that does not necessarily try to
strip down openmalaria and compare the base models of transmission
and interventions, but rather highlight how reasonably comparable
cases yield the same trends. For example, in the below, case manage-
ment is not entirely absent (though it is minimal), and acquired partial
immunity is included in most results, though clearly neither of these are
contained in the Ross/Macdonald model above. However, since these
additions are integral components of the openmalaria model and to
some degree, an elaboration of simpler, underlying transmission
models, the intention below is not to force a comparison of exact si-
tuations but to see if the more sophisticated simulation approach may
also yield a comparable signature of intervention impact and their
timings. As will be seen, adhering to general cases and incorporating
the most essential features of the interventions enables a reasonable
correspondence between the simulation and semi-analytic model.

Fig. 5 shows the three situations described above, an isolated MDA,
an isolated IRS, and the synchronous deployment of both. Plotted in the
tryptic are the Ross/Macdonald semi-analytic theory presented above,
and two sets of simulation trajectories for =R 250 (corresponding to an
annual EIR of = 25aE bites/host*annum with no seasonal variation, see
notes in Appendix B). Here, only the normalized infected host propor-
tion is shown; the sporozoite rate is absent. These trajectories are for
hosts with any parasite density in their blood, i.e. those with 0.01
parasites/μL or greater, and not for patent hosts. This standard has been
chosen for a congruent comparison with the Ross/Macdonald model,
where simply a host either harbors parasites or does not. Intervention
coverages of 85% are used and the durations of both interventions are
those specified above. No decay is specified for the IRS in the simula-
tion, but it is configured generically as a step function, on during its
effective period and then off. Trajectories are normalized by the
average prevalence in this community absent interventions. Separate,
otherwise equivalent, intervention-free simulations are run to de-
termine these averages, which amount to a determination of X* (and Z*
if desired), the prevalence balance points of Eq. (3). Stochastic noise is
clearly evident in the eight trajectories plotted. Some of the simulated
infected host prevalence trajectories shown in Fig. 5 are for a com-
munity absent any immune protection, and others with the openmalaria
default for partial immunity [41]. Again, more details of the simulation
procedure and the interventions can again be found in Appendix B. A
first comparison of all simulations with the Ross/Macdonald variant is
that the recovery times, post-intervention are much longer for the si-
mulation. Eq. (12) indicates the community regains half of its infected
proportion for τm≈ 2 ( =R 250 ), agreeing with the Ross/Macdonald

trajectories of the plot. In contrast, the simulations here with immunity
easily predict three times that. Furthermore, at nearly three months
( ≈τ 8 post-intervention), the Ross/Macdonald theory indicates the ef-
fects of the MDA are essentially gone while it takes perhaps slightly
more than a year for the equivalent equilibration in openmalaria. These
restoration times, the hangover of these interventions, are substantially
different. Malaria invades the community post-intervention with open-
malaria at a much slower rate, with and without acquired immunity in
the populace. Thus post-MDA, the left panel of the figure, shows one
apparent role of acquired immunity in the simulations: it protects the
community from the rapid return of widespread infections. A faster
return to the proliferation of parasitemia is evident when immune
protection is absent. It is, though, not as responsive as the simple Ross/
Macdonald variant model presented above. Which situation better re-
flects a real (idealized) community suffering from invading malarial
infections after a retracted intervention is to us, uncertain. As men-
tioned above, the Ross/Macdonald rates of Eq. (12) should be regarded
as a fast upper limit for recovery due to the abrupt return to the pre-
intervention force of infection (likely an overestimate of transmission at
this point in time), and absent immunity. Partial, acquired immunity is
instated for all further simulation results below, and the more pon-
derous return to equilibrium prevalence will be apparent.

The IRS deployed in the middle panel of Fig. 5 also presents an
interesting comparison. First, IRS simulated by openmalaria is not as
effective as IRS modeled by the Ross/Macdonald variant. As mentioned
in Section 3.2 above, the rate at which host infections are lost (r in
Eq. (2)) essentially determines the diminishing slope, or this effective
rate of infection loss in X during the IRS, as only a trickle of new in-
fections amend that rate. Here, in simulation, infections appear to ei-
ther expire much more slowly, or more than a small number of new
infections take place in the IRS period. As discussed in Appendix B, the
IRS potency is maximized in this application, with pre- and post-pran-
dial mortality affecting essentially all contacted mosquitoes. The het-
erogeneity of host selection, an included sophistication in the trans-
mission model built into openmalaria, may also play a role in the weaker
overall impact of the IRS.

As a comparison, in both left and center panels, it is intriguing that
the rate infections are acquired by a community post-intervention is
slow for openmalaria, which is in part due to effects of acquired im-
munity, but overall the effective force of infection is simply less potent.
The combined MDA+IRS campaigns on the right indicates the same
trend: the interventions indicate a synergy with joint deployment.
Significant gains are again established with synchronous interventions.
An inset in Fig. 5 demonstrates these gains, as measured by the impact
of Eq. (20) for =R 250 . There is first a comparatively weak IRS, but

Fig. 5. Normalized, infected host trajectories for openmalaria simulations and the semi-analytic Ross/Macdonald model in the text, in three intervention scenarios.
For the simulations, these are the normalized proportions of hosts with any parasite density (≥ 0.01 parasites/µL). In the left panel of the tryptic, two sets of
openmalaria trajectories are displayed, with and without immunity. Eight trajectories for these simulation sets are shown in all cases to demonstrate the implicit
stochastic noise. The left panel shows the impact of an MDA campaign deployed at =τ 10, as in cases before. The middle panel shows the impact of an isolated IRS
campaign, and the right shows synchronously deployed campaigns. Effective periods of the interventions are highlighted in all panels. The annual EIR is set to = 25aE

bites/annum, for =R 25,0 a correspondence from ref. [48] and further discussed in Appendix B. The inset shows the corresponding impacts (Eq. (20)) for these three
cases, demonstrating the synergy of synchronous deployment. The small error bars on this inset encompass the stochastic variance in I for all simulated trajectories.
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more significantly, an impact that is better than double for synchronous
deployments of a MDA and IRS. The openmalaria simulations demon-
strate a synergy that is even larger than that of the Ross/Macdonald
model. This is the same simple mechanism at work as seen above: the
host reservoir is cleared by the MDA and the vector control prevents it
from being refilled. Deployed separately, this coordination is clearly
absent and the overall impact is diminished.

5. Discussion

Both MDA and IRS are potent transmission suppressing interven-
tions, if performed with high population coverage. Given their com-
plementary impacts on the human and vector parasite reservoirs, the
uncovered synergy between these interventions is both logical and
potentially valuable for malaria control programming. In order to ex-
plore the nature and size of this potential synergy, we have extended a
simple Ross/Macdonald variant to incorporate these two interventions,
MDA and IRS, and have carried out a concise analysis of their overall
impacts on population infection.

Each intervention is first modeled in isolation, with intensities of
either of the interventions set to the same R I

0 through the duration of
the campaigns, an attempt to put them on equal ground considering
transmission. The factors of amplification: {ξ, μ, κ} are all introduced as
accelerants which manually depress the reproductive number R0 during
the interventions, and are all fairly logical: in an MDA ξ decreases the
duration of host infections and μ provides a prophylactic effect, while κ
is responsible for killing mosquitoes during an IRS campaign.

The MDA campaign cleanses the host parasites of 85% of the po-
pulation and having a modest chemoprophylactic effect, protects the
recipients for a short duration. After this, individuals are again sus-
ceptible and infections are re-established. The dynamics of the Ross/
Macdonald model dictate that these infections restore an equilibrium,
or a balance of parasite transactions, post-intervention. The timeline to
this re-equilibration, that of relaxing to the stable equilibrium point of
Eq. (3), is simply related to the force of infection of the entomological
setting the system relapses into. High transmission has a fast relapse to
the proliferation of parasitemia, a phenomenon explored in greater
detail in Appendix A. This is an approximation, one that is perhaps too
fast as an estimate, but one that enables us to discern the forces re-
sponsible for restoring the equilibrium, and how this rate scales with
R0.

The IRS campaign impacts the vector, changing the effective en-
tomological setting of the community. A simple population model for
the mosquito population is incorporated which, when diminished, af-
fects the effective R I

0 of the intervention. The IRS, with its much longer
duration set by the effective period of the insecticide, inhibits the
transmission of parasites by the vector, and leaves hosts with (poten-
tially) no other means of purging infections except to clear on their own
slow timescale. Host infections/infectiousness wane very slowly but the
populace has protection from new infections through the reduced
vector population.

It is sensible that a strategy with combined campaigns would have
more impact than isolated campaigns. If the IRS can only offer the
protection of reduced biting, while leaving individuals to fight infec-
tions off on their own, it is clear that a simultaneously deployed MDA
offers the additional, and otherwise absent, therapeutic aspect. The
analysis above underlines that a clearing of the host reservoir with an
MDA but aided with the added protection of the IRS is a good strategy;
the MDA clears infections while IRS effectively protects the cleared

individuals from reinfection, adding endurance to these initial gains.
The openmalaria simulations confirm this effect and its size are not
specific to the Ross/Macdonald model. Lastly, the impact of synergy
here is measured in terms of its effect on host-prevalence alone, in terms
of those infections (of any parasite load) averted with interventions. An
analysis of clinical incidence of disease, instead of the impact on pre-
valence, would introduce a layer beyond the simple analysis presented
here. This synergy, with its extremely simple mechanism, is here re-
vealed through its impact on prevalence alone; a standard metric of
malaria in a community.

Simulations were carried out using intentionally simplified settings
in order to unmask the fundamental transmission dynamics, and do not
necessarily represent a real community or reflect a specific en-
tomological environment. For example, vector biting in our simulations
has no seasonal oscillations, and is carried out by a single species. There
is also very weak case management. More sophisticated (and real) en-
vironments could be simulated but these embellishments might obscure
the result (case management, for example, may be represented through
a health system parameterization but functions as an additional
“background” intervention). The Ross/Macdonald model employs the
most basic of transmission dynamics, contains essentially no elabora-
tions, has very few parameters and indicates a strong synergy, together
with the full transparency of the forces and effects that enable it. The
more complex openmalaria simulation, incorporating a much broader
picture of transmission and the many pertinent forces that shape it,
confirms this synergy, and in fact predicts a comparable, if not greater
impact. Our intent has been to eludicate generalities that are scaling-
level trends and, we hope and expect, are model-independent by nature.
We anticipate other transmission models would echo substantively si-
milar results.

6. Conclusion

We have considered the isolated and combined impacts of two in-
terventions, MDA and IRS, and through two disparate modeling efforts
shown the community effects of these interventions is greatly enhanced
by their combined application in the setting. This synergy is found to be
robust both by the semi-analytic Ross/Macdonald variant and open-
malaria. The mechanism of this cooperative impact is illustrated by the
semi-analytic model, and also readily understood in terms of basic
transmission dynamics.

Additionally, we have also presented a scaling relationship that
shows how quickly malaria infections are re-established following an
intervention in a simple scenario absent any immunity effects. Not only
is resurgence in a strong transmission environment swifter than re-
surgence in a weak transmission environment, scaling with −R ,0

1 re-
surgence is shown to be slower for more effective interventions. In the
simple scenarios we are modeling, it is plainly beneficial to perma-
nently alter the entomological environment in order to prevent re-
surgence: this is an obvious result, but one that also highlights the need
for integrated vector management.
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Appendix A. Details of the stability analysis

Eqs. (1)and (2) describe a simple first order, autonomous nonlinear set of equations, and they mimic predator/prey models. Combined with initial
conditions, = =X t t X( )0 0 and = =Z t t Z( ) ,0 0 it constitutes (at least in principle) a solvable system with a unique trajectory. Dynamical stability is
assessed from a Jacobian matrix whose eigenvalues categorize linearized trajectory behavior. For the system of Eqs. (5) and (6), it is written,
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which, evaluated at the trivial, elimination point = =X Z 0 has a larger eigenvalue that determines stability (the other is always negative). The
larger is positive for − >γβP α 0,e or R0> 1 as is well known. All trajectories for reproductive numbers R0< 1 thus attract to the elimination point
and all others greater than unity are unstable with respect to elimination. As long as R0< 1 is maintained, elimination is the only long-term outcome
for system evolution. The analysis below is an extension of work pioneered by Lotka [49] and other, comparable analyses have been performed by
other authors [50,51].

The eigenvalues of the Jacobian for the second equilibrium point {X*, Z*} may be written,
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with
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R γ
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(A.3)

which shows the discriminant is always positive. Eigenvalues are thus never imaginary and as such there are no cyclic, i.e. periodic solutions
common to some predator/prey systems. All trajectories instead exist in attraction basins and terminate at equilibrium points, or potentially run off
to infinity. Further inspection indicates that the latter is only possible for a negative determinant, which upon simplification is only the case for
R0< 1, precisely the region stable for elimination. Thus, the elimination point =X * 0, =Z* 0 and the nontrivial one given in Eq. (3) are both stable
fixed points and as such the system asymptotes to either, based on R0 alone.

The quantities αY and R0/Y are nondimensional “bare” rates at which infections are acquired near X*, Z* for humans and mosquitoes. Closer
examination of Eq. (A.2) shows that the eigenvalues have a crossover region when R0/Y≈ αY, which corresponds to a curious symmetry point where
these parasite acquisition rates are nearly the same in both hosts and mosquitoes. Pre-crossover, expanding for small αY2/R0, these rates are,

≈ − = −
+

−
++λ αY αR

γ
αγ

γ1 1
,0

(A.4)

and

≈ − = −
+

+−λ R Y
R γ

R γ
/

(1 )
.0

0

0 (A.5)

Beyond this crossover, for large R0, the rates swap. In this limit, expanding Eq. (A.2) about small R0/αY2, ≈ −+λ R Y/0 and ≈ −−λ αY . These
expansions, the crossover, and the viability of these expansions can all be seen in Fig. A.6. Again, these expressions swap regions of applicability with
the crossover, i.e. ↔+ −λ λ , so that the approximation for +λ pre-crossover is an adequate approximation for −λ post-crossover.

These eigenvalues are the non-dimensional rates, in units of g, at which the infectious densities regain equilibrium values. To a good approx-
imation (for small α, i.e.momentarily neglecting the small cure rate), host infections are acquired with the elemental solution, +λ τexp( ) with +λ given
by Eq. (A.4) and (A.5) pre- and post-crossover, respectively. In the pre-crossover (low and modest R0) regime, host infectiousness rebounds with a
rate dominated by R0,

= −
+

+
≈ −

++λ α
R γ

γ
αR

γ1 1
.0 0

(A.6)

The constant term in Eq. (A.4) is dwarfed for modest R0 and dropped. Eq. (A.6) indicates the sensible result that a larger R0 has a faster recovery. In
contrast, post-crossover with large R0, the rate saturates to that of −λ above and asymptotes to → +−λ γ1 (see Fig. A.6) which is curiously R0

independent. There is a limit to how fast equilibrium can be recovered—an inertia of the vector reservoir—present even in large R0, which is a

Fig. A1. The eigenvalues of Eq. (A.2) as a function of R0, with the asymptotic expansions of Eq. (A.4)–(A.5). The crossover region referenced in the text is also
indicated. The parameters γ and α are as before.
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limiting rate due to the ephemeral lifecycle of the vector. It is noteworthy that pre-crossover this rate grows with R0 and then post-crossover,
saturates. Even for the highest transmission settings, the rate at which equilibirum is recovered never exceeds + γ1 .

A1. Approximating the time to re-equilibration

In the linearized approximation, post-intervention the system decays to the equilibrium points of Eq. (3) with the general solutions +λ τexp( ) and
−λ τexp( ), which (somewhat unfortunately) tend to be accurate for small perturbations from the equilibrium. As the heavy suppression of infections

with an MDA campaign or the loss of infectious vectors with an IRS are neither small dynamical effects, recovery tracked with this exponential decay
is a poor estimate.

One reasonable approximation to estimate recovery trajectories is to exploit the fact that the sporozoite rate Z τ( ) responds quickly to changes in
the host reservoir of X τ( ), and thus all recovery trajectories in Z τ( ) in Figs. 1–3 track X τ( ) very well. Denoting the host infection proportion at
intervention expiry as = +X X τ τ( )f 0 and simply equating =X τ Z τ( ) ( ) (which is naturally best when they are reasonably close as in Fig. 3), Eq. (5)
simplifies to,

= ⎛
⎝
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*

(1 * )
(A.7)
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The rate prefactor = ≈−
+f g f X λ( *)I I

1 appears without further approximation, and is the ambient non-dimensional force of infection mentioned in
the text (Eqs. (10) and (11)). It is that of the entomological setting the system relaxes into. This governing equation is valid for pre-crossover
dynamics, and the substitution, ↔+ −λ λ , approximates the solution post-crossover.

Eq. (A.8) is easily integrable, with solution,
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and n0 an obvious integration constant determined by the initial condition = =X τ X( 0) ,f the infectious host density at intervention expiry. Here,
the assignment =τ 0 corresponds with the moment these dynamics begin, namely the instant the effective period of the intervention concludes.

Defining a characteristic recovery time as that to regain half of equilibrium, (as is typical), an estimation for the time the community re-acquires
malarial infections is,
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which is, again, measured in units of the average mosquito lifetime −g 1. The final equality defines the unitless number kf which is multiple, kf≲ 5
based on the depth of infection suppression accomplished by the campaign. The recovery time is found to grow substantially with the depth of
suppression of the host infectivity, Xf . Thus, the more effective an intervention is, i.e. squelching X ,f the longer the community takes to rebound back
to equilibrium (Eq. (3)) with prevalent parasitemia. The recovery time is essentially the inverse force of infection stretched by = + −k Xlog(1 )f f

1

(which, for low coverage, is a reduction).
The advantage of this analysis of the nonlinear system is twofold. First, the pre-crossover restoration rate is established to be exactly the ambient,

equilibrium force of infection for the community pre-intervention, f ,I an entirely sensible result since R0 is immediately established post-intervention
as a simplification. This recovery rate also confirms the stability analysis, since for R0> 1,
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the leading term of the relaxation rate above is recovered. Second, the form of regaining equilibrium, Eq. (A.9), yields a characteristic time τm which
is an estimate for the reacquisition of malarial infections in the community. It is dependent on both the reproductive number R0 and the net
effectiveness of the campaign, information contained in Xf . For a campaign such as that of the combined MDA+IRS in Fig. 3 (top), with =R 12.5,0
from Eq. (A.10) it takes τm≈ 6 (6 average mosquito lifecycles, perhaps 2 months) to regain half-again the infection prevalence after intervention
expiry. Furthermore all intervention effects are essentially gone a bit more than half a year post-retraction. Parameters for this estimate are those in
the caption of Fig. 1. In this case, the combined interventions suppress host infections to below 5% and anopheles infections to about 1%. After just 6
months, infections and infectiousness re-establish to roughly pre-intervention levels, which according to Eq. (3), approaches X*≈ 0.875 for human
hosts and Z*≈ 0.13 for anopheles.

Appendix B. Details of the openmalaria simulations

All simulations were run with the base model, which is often referred to as R0001 [40,47] and simulated with version 33. The background and
details of building and the determination of the integral 31 parameters which constitute the transmission model are detailed elsewhere [40–47,52].
Transmission dynamics are discretized into 5-day timesteps for infectious/infectiousness status updates in hosts and mosquitoes, extrapolated
parasite densities, forecasted acquired immunity, and severity of malarial episodes. Clearly the dynamics of immunity are neglected in the simple
Ross/Macdonald variant considered in the text though it is included in simulations here [41]. Many different dynamical elements for transmission
are considered in openmalaria which separate these simulations from the semi-analytic model in the text: superinfection is included, acquired partial
immunity in a few different flavors is built-in (as designed, immunity may be a result of the number of prior episodes or a prior high burden of
parasite densities, or due to maternal protection), demography, and health systems access and effects.

Separately the entomology and dynamics of parasite transmission is specified through a time-lagged deterministic difference equation which
accounts for heterogeneous infection of hosts [53,54]. Transmission may also be seasonal though it is here forced to be constant to afford a simple
and direct comparison. An additional 16 parameters specify the life and feeding cycle of the vector, which is taken to be those of a single vector
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species, anopheles gambiae, whose parameters are chosen as previously specified [55] (in an included supplement). The one exception to these
parameter assignments is that the extrinsic incubation period is set to =n 10 days in accordance with the average lifetime −g 1 mentioned in the text
(which sets = =− −P e e ,e

gn 1 also, for comparison it is =n 11d in the reference). A correspondence between the EIRE and the reproductive number R0

is needed to align the simulations with the semi-analytic model. Ref.[48] details different effective R0 values for openmalariamodel simulations, with
varying treatment probabilities. For the case of the base model without case management, the reproductive number very nearly corresponds with the
annual EIR (total bites per host per annum) aE =365dE . To this end, simulations were run with annual EIR values equal to the reproductive number.

A health system is somewhat generically parameterized, as detailed in the openmalaria wiki pages [56]. Defaults for simulations where case
management is not a primary interest of the simulation are used, including those for access, adherence, and compliance. Uncomplicated cases of
malaria are treated for only 4% of the populace and for 48% of severe episodes. Cure rates are unity for those who access care. This very low level of
care allows reasonable correspondence with cases of ref.[48]. Other case fatality rates are as is typical as well as specified sequelae rates.

Finally, interventions are modeled as closely as possible with those described in the text in the semi-analytic model. The effects of the IRS do not
slowly decay but are on or off through the use of a step function which activates the intervention from deployment for a duration of 36 timesteps, or
18 −g 1. The IRS is modeled and deployed as a GVI (generic vector intervention) and maximized in its mosquito killing impact, with preprandial and
postprandial killing effects set to 0.99; deterrency is set to zero. The MDA is modeled as clearing the liver for 5 days and blood for 4 timesteps, or
2 −g 1. Coverage is 85% for both interventions, corresponding to the text. Since about 15 days are required for a full response in the sporozoite rate
with vector control in openmalaria, to compare the timing of interventions, the time index of intervention deployment is shifted for an apt com-
parison. This means, for the Ross/Macdonald variant model, an IRS deployed at τ0 has the sporozoite rate instantaneously reduced at this moment.
An equivalent openmalaria deployment is then begun at τ0-(15d/10d), since this accounts for a latent response in the sporozoite rate [53]. We take,
for reasons of simplicity, the timing of an IRS campaign as defined to be the very moment that the sporozoite rate plummets. On this note, the MDA
timing is also shifted. An MDA deployed within openmalaria at time =t k tΔ0 has its first effects at timestep +k 1, and thus comparisons are made for
a MDA deployed at τ0-(5d/10d) with a Ross/Macdonald campaign deployed at τ0.

Simulations are performed on a population of =N 10000 individuals with a demographic of that of Ifakara, as detailed in reference [41]. As none
of the analytic results in the text above depend on this demography, the distribution is rather irrelevant in this context, but necessary as the force of
infection is dependent on an age distribution in openmalaria. The distribution was selected for ease of reproducibility and generality, and it also is
representative of the general youthfulness of many sub-Saharan populations. The choice of population size is not selected with a community in mind
but rather to simulate a large enough populace to have statistical relevance with small fractional random error. The multiple simulation results
plotted demonstrate the stochastic variance in trajectories.

One complication with openmalaria and measuring the impacts of interventions is that in higher transmission settings, high-impact interventions
will cause a resurgence in parasitemia that rebounds and can exceed the previous, pre-campaign equilibrium. The impact measure I of Eq. (20)
breaks down in these circumstances. As can be seen in Fig. 5, this is not the case here, largely due to the relatively brief interventions. This does not
mean that the impact measure I is trouble-free in that post-intervention the long-time limit for integration must be set. With the simulated X τ( )
equilibrium not being exactly that of pre-intervention, the noisy post-intervention trajectory likely bounces around a nearby equilibrium. To this end,
we set the impact integration window to roughly 8 years post-intervention. This means we cut off effects of noise ∼ 8 years (580 timesteps) post-
intervention, and this is certainly long after these campaigns. Larger windows add greater dispersal about the values of the impact in Fig. 5, as more
noise contributes to the sum, but the magnitude of the absolute impact is essentially conserved.

Lastly, cases without immunity are run for 80 years without immune protection and interventions are deployed in the last 5 years of this time
window. This is essential to equilibrate the system without the added protection of partial, acquired immunity.
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