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Abstract

Grassland is one of the most widely-distributed ecosystems on Earth and provides a variety

of ecosystem services. Grasslands, however, currently suffer from severe degradation

induced by human activities, overgrazing pressure and climate change. In the present

study, we explored the transcriptome response of Stipa breviflora, a dominant species in the

desert steppe, to grazing through transcriptome sequencing, the development of simple

sequence repeat (SSR) markers, and analysis of genetic diversity. De novo assembly pro-

duced 111,018 unigenes, of which 88,164 (79.41%) unigenes were annotated. A total of

686 unigenes showed significantly different expression under grazing, including 304 and

382 that were upregulated and downregulated, respectively. These differentially expressed

genes (DEGs) were significantly enriched in the “alpha-linolenic acid metabolism” and

“plant-pathogen interaction” pathways. Based on transcriptome sequencing data, we devel-

oped eight SSR molecular markers and investigated the genetic diversity of S. breviflora in

grazed and ungrazed sites. We found that a relatively high level of S. breviflora genetic

diversity occurred under grazing. The findings of genes that improve resistance to grazing

are helpful for the restoration, conservation, and management of desert steppe.

Introduction

Chinese grasslands are diverse and constitute the third largest grassland area worldwide, cov-

ering 41.7% of the country’s territory and stretching from northern China to the Qinghai-

Tibetan Plateau [1–3]. These grasslands are currently in danger of degradation owing to cli-

mate change and anthropogenic activities, and over 33% of the degradation is due to overgraz-

ing [4, 5]. Long-term overgrazing impacts species richness, community biomass, and soil

quality [6–8]. However, plants can adapt to grazing pressure by developing certain characteris-

tics, such as small sizes, fast growth, short life-spans, and low palatability, to avoid livestock
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feeding and increase the survival rate [9]. Stipa species (Poaceae) are the most conspicuous

grassland plants distributed throughout the Eurasian Steppe and are established as zonal vege-

tation in the Inner Mongolia grassland [10–13]. S. breviflora Griseb. is one of the dominant

species and valuable forage resource in the desert steppe and is characterized by palatability,

rich nutrient content, and early greening. Additionally, this species has strong ecological

adaptability to diverse environments and can be a codominant species with S. bungeana and S.

krylovii in warm-temperate steppe and typical steppe, respectively [14–19]. Although S. brevi-
flora is vulnerable to climate change and grazing, it still has great potential for expansion and

evolution via hybridization with other feather grasses [13, 17, 20]. Thus, there is a need for fur-

ther elucidation of the adaptation of S. breviflora to grazing.

Genetic diversity is fundamental to biodiversity [21]. Climate factors, such as temperature

and precipitation, and human activities impact genetic diversity, resulting in changes in genetic

differentiation [22, 23]. Studies have shown that temperature is the key factor in determining

the genetic differentiation of S. breviflora [14]. Anthropogenic activity, such as grazing, can

increase, decrease, or have no significant effects on the genetic diversity of plants. In the genus

Stipa, moderated grazing was found to promote the genetic diversity of S. grandis and S. krylovii
[24]. Similar results were detected in the study by Shan et al. [25], and the genetic diversity of S.

grandis under light grazing conditions was higher than that under no grazing. Other plants,

such as Elymus nutans, had higher intrapopulation genetic diversity in three grazed areas than

in ungrazed areas [26]. However, a negative relationship between grazing and genetic diversity

was also observed. For example, Artemisia frigida displayed restricted gene flow and decreased

genetic diversity under grazing [27]. In some cases, grazing had no significant effect on plant

genetic diversity. Smith et al. [28] investigated the fine-scale spatial genetic structure in Boute-
loua curtipendula var. caespitosa, Bouteloua gracilis and Poa ligularis and observed no differ-

ences in average gene diversity between populations of each species. A study on Festuca
idahoensis revealed that grazing did not significantly alter their genetic diversity [29]. In sum-

mary, although plants respond to climate and human activities by changing their genetic diver-

sity, the molecular mechanisms driving these changes remain poorly understood.

The next-generation sequencing (NGS) technology have provided an efficient way to gener-

ate an abundance of genomic data. Compared with traditional low-throughput EST (Expressed

Sequence Tag) sequencing by Sanger technology, RNA-sequencing (RNA-seq) offers more

transcripts for both marker development and gene discovery, helping us to explore the molecu-

lar mechanism of genetic diversity [30]. Using transcriptome sequencing, Ren et al. [31] devel-

oped 21 microsatellite markers of S. breviflora and tested the polymorphism in six related

species. Klichowska et al. [32] mined 10 microsatellite markers of S. pennata using Illumina

high-throughput. Transcriptome analysis has also been used to uncover the adaptive mecha-

nisms of plants subjected to grazing. For Leymus chinensis, genes related to the systemic synthe-

sis of jasmonate are activated during grazing [33]. Wang et al. [34] conducted de novo assembly

to compare the transcriptomes of two alfalfa varieties that are tolerant and intolerant to grazing,

and identified 21 differentially expressed responsive pathways. For S. grandis, individuals sub-

jected to grazing develop smaller size than those not subjected to grazing, and the expression of

wound-, drought-, and defense-related genes is altered [35]. However, the response of S. brevi-
flora to grazing at the transcriptome level and the changes in genetic diversity remain unclear.

Considering the crucial position of S. breviflora in desert steppe and to meet the needs for

exploring the adaptation mechanism of grasses to grazing, we took this species as an example

to (1) investigate the transcriptome response to grazing; (2) develop simple sequence repeat

(SSR) molecular markers based on transcriptome sequencing data; and (3) explore the impact

of grazing on the genetic diversity. The present study provides insight into the adaptation

mechanisms of plants under grazing.
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Materials and methods

Collecting plant materials

The study area is in Wuchuan, Inner Mongolia Autonomous Region, China (41˚470-41˚230N,

110˚310-111˚530E) at an elevation of 1500–2000 m above sea level. This area belongs to the mon-

soon climate of medium latitudes. The mean annual precipitation and temperature are 354.1

mm and 2.6˚C, respectively. We observed three ungrazed sites (codes 1, 2, and 3) and three

grazed sites (codes 4, 5, and 6) (Table 1). The ungrazed sites have been fenced to prevent grazing

for many years. In contrast, the grazed sites have been subjected to long-term heavy grazing. The

area of each site is more than 1 hm2. These sites are distributed adjacently and are approximately

around 2–10 km apart, indicating that they are under similar backgrounds of temperature and

precipitation. The study was carried out in public land. No specific permissions are required for

collecting samples, and no endangered or protected species are involved in study area.

In June 2016, we collected 33 samples at each site, with 3 samples for RNA-seq and 30 sam-

ples for genetic diversity analysis. For RNA-seq, we chose healthy and intact individuals in

ungrazed sites, and chose individuals in obviously grazed patches in grazed sites. Samples for

RNA-seq were rinsed with RNase-free dd water, mixed with equal amounts, stored in dry ice,

and sent to the Beijing Genomics Institute (BGI, Shenzhen, China) for total RNA extraction

and high-throughput sequencing. For genetic diversity analysis, we chose the healthy and

intact individuals that were at least 10 m apart in both grazed and ungrazed populations. All

samples were immediately frozen in liquid nitrogen and brought back to the Genetics Lab and

stored at -80˚C for genetic diversity analysis.

RNA preparation and cDNA library construction

The total RNA of each sample was extracted using Trizol reagent (Invitrogen, Carlsbad, CA,

USA) according to the manufacturer’s protocol. RNA integrity was examined using an Agilent

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), and poly (A) mRNA was iso-

lated using Oligo (dT) beads. The mRNA fragments were used as templates for reverse tran-

scription to obtain cDNA. After fragment ends were repaired, polymerase chain reaction

(PCR) amplification was performed, followed by poly (A) ligation and fragment length selec-

tion to construct a cDNA library. To obtain a high-quality library, an Agilent 2100 Bioanalyzer

and ABI StepOnePlus real-time PCR system were used for quality control analysis.

RNA-seq and de novo assembly

The libraries were sequenced using the Illumina HiSeq 4000 platform (Illumina, USA). The

raw reads generated by sequencing were filtered by eliminating adaptor sequences and low-

quality reads and then assembled by the Trinity program with the default parameters [36]. The

longest transcripts of each gene were chosen as unigenes.

Table 1. Information of the observed sites of S. breviflora.

Code Position Altitude(m) Utilization Plant community

1 111.21˚E, 41.13˚N 1629 fenced without grazing S. breviflora + S. krylovii
2 111.26˚E, 41.19˚N 1680 fenced without grazing S. breviflora + S. krylovii + Thymus mongolicus
3 111.19˚E, 41.11˚N 1668 fenced without grazing S. breviflora + S. krylovii
4 111.19˚E, 41.11˚N 1647 sheep grazing S. breviflora + S. krylovii + Thymus mongolicus
5 111.29˚E, 41.25˚N 1614 sheep grazing S. breviflora + Agropyron cristatum
6 111.31˚E, 41.29˚N 1572 sheep grazing S. breviflora + S. krylovii + Cleistogenes squarrosa

https://doi.org/10.1371/journal.pone.0244222.t001
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Unigene annotation

Unigenes were aligned using the basic local search tool (BLAST) [37] against databases, includ-

ing the nucleotide collection (Nt, https://www.ncbi.nlm.nih.gov/), National Center for Bio-

technology Information (NCBI) non-redundant protein (Nr, https://www.ncbi.nlm.nih.gov/),

Cluster of Orthologous Groups (COG, http://www.ncbi.nlm.nih.gov/COG), Kyoto Encyclope-

dia of Genes and Genomes (KEGG, http://www.genome.jp/kegg) and Swiss-Prot (http://ftp.

ebi.ac.uk/pub/databases/swissprot) databases. Blast2GO [38] was used to annotate the uni-

genes against gene ontology (GO, http://geneontology.org) based on the results of the Nr

annotation.

InterProScan5 [39] was used for InterPro (http://www.ebi.ac.uk/interpro) annotation.

According to the functional annotation results, the best-matched sequences were defined as

complete coding sequences (CDS) of the corresponding unigenes and saved in FASTA format,

with the following order of priority: Nr, SwissProt, KEGG, and COG. Moreover, the predicted

CDS were used as a model to predict the unigenes without matches in the abovementioned

database through modeling with ESTScan [40].

Differentially Expressed Gene (DEG) identification

The expression levels of each gene were calculated by RSEM [41]. Differential expression anal-

ysis of genes in grazed and ungrazed samples was performed using the NOIseq approach [42].

We set fold change� 2.00 and probability� 0.8 as thresholds to identify the genes that were

expressed at a significantly different level.

Developing grazing-related SSRs

MISA [43] and Primer3 [44] were used to detect SSRs from the transcriptome and design

primers, respectively. We selected 21 SSR molecular markers derived from DEGs to screen

grazing-related SSRs and then determined the optimal annealing temperature by PCR amplifi-

cation (S1 Table). Total genomic DNA was extracted using the TIANGEN plant genomic

DNA kit (Tiangen Biotech, Beijing, China) for all samples following the manufacturer’s

instructions. The quality and quantity of DNA were determined by using a NanoDrop 2000

spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The PCR amplification reac-

tion mixture (25 μL) contained 1 μL template DNA (30–40 ng μL–1), 0.5 μL (10 pM) of each

primer, 12.5 μL Premix Taq (TaKaRa Biotechnology Co., Dalian, Liaoning Province, China),

and 10.5 μL double distilled water (ddH2O). The PCR amplification parameters were as fol-

lows: 4 min at 94˚C; 35 cycles of 30 s at 94˚C, 30 s at a primer-specific annealing temperature,

30 s at 72˚C and a final extension step at 72˚C for 10 min. PCR products were then separated

using capillary electrophoresis and genotyped using an ABI 3730 DNA analyzer with a GeneS-

can 500 LIZ size standard (Applied Biosystems, Beijing, China). Finally, we screened eight

primers with polymorphic loci (Table 2). Polymorphism information content (PIC) values of

markers were calculated using Cervus 3.0.7 [45].

Genetic diversity analysis

We used the eight abovementioned polymorphic SSR markers to analyze genetic diversity

among grazed and ungrazed samples. First, GeneMarker version 2.6.0 (SoftGenetics, State Col-

lege, PA, USA) was used to perform peak identification and fragment sizing. Then, we applied

GenAlEx 6.5 [46] to convert the data format and to calculate the genetic parameters, including

the observed number of alleles (Na), effective number of alleles (Ne), expected heterozygosity

(He) and observed heterozygosity (Ho), gene flow (Nm), and Shannon’s information index
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(I). R version 3.6.3 was used to perform Student’s test to explore the relations of genetic param-

eters between grazed and ungrazed populations.

Results

De novo assembly and unigene annotation

After sequence assembly and redundancy removal, we obtained 111,018 unigenes totaling

125,503,270 bp with an average length of 1130 bp. The N50 and CG contents were 1852 bp

and 49.38%, respectively, which demonstrated adequate assembly quality (Table 3). For the

functional annotation, 88,164 unigenes (79.41%) matched records in seven databases. The

quantity of annotated unigenes in each database was as follows: Nr, 79,283 (71.41%); Nt,

83,097 (74.85%); SwissProt, 57,827 (52.09%); KEGG, 63,044 (56.79%); COG, 37,880 (34.12%);

InterPro, 51,305 (46.21%); and GO, 50,089 (45.12%) (Table 4).

Table 2. Characteristics of eight microsatellite loci for S. breviflora.

Gene ID Primer sequence (5’!3’) Product size Repeats Ta(˚C)a PICb

CL14453.Contig1 GAGGAAGCGTCGATCGTGAC 107 (CGG)7 61.5 0.47

TGTCCACTTTCTGCTCCACG

Unigene12747 GAGCGATGCAACGATTATATAGG 116 (CGACGC)5 58.3 0.38

CATCGTGAAGTGATAAGAAGCCT

CL616.Contig34 AATCAGCTCGTCGGTATTTGAT 124 (GT)6 53.0 0.33

AGAGGGGAAGAACGAAATATCTG

CL1837.Contig15 GGGGAGTTGGACTTGGTAGTG 150 (GGA)5 62.0 0.22

CTTAACCTCCCTTCTCCACCTT

CL15080.Contig2 ATCGTCAAACTCCACCTAATCAA 140 (TC)10 54.3 0.15

AGGCAATATTGGCAACTCACTC

CL966.Contig12 CACTGGGTTCTCTTCGTCTCC 237 (GA)7gg(GA)7 52.5 0.35

TCTCCTCCTGCATCTTTCGTC

CL.5285.Contig5 TATAGGCAGTGGGGAGACGA 192 (CTC)7 55.0 0.42

AGCTTCGAGGGATGAGGAGA

CL966.Contig15 CACCGGATGCAAAGAAACCG 221 (GA)7gg(GA)7 52.5 0.14

CCTCCTGCATCTTTCGTCCTC

a Annealing temperature.
b Polymorphism information content.

https://doi.org/10.1371/journal.pone.0244222.t002

Table 3. Statistical summary of S. breviflora transcriptome data.

Assembly statistics RNA-seq

Number of unigenes 111,018

Total length (bp) 125,503,270

Mean length (bp) a 1130

N50 (bp)b 1852

GC (%)c 49.38

a Mean length of the assembled sequences.
b The length of the content or unigene corresponding to the sequence, which is added to 50% of the total assembled

bases when the assembled sequences are sorted from short to long.
c GC content.

https://doi.org/10.1371/journal.pone.0244222.t003
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Based on the NR annotation, we found species with genes homologous to S. breviflora. The

results showed that 46.02% of unigene sequences matched Brachypodium distachyon, followed

by other species (28.93%), Hordeum vulgare subsp. Vulgare (11.06%), Oryza sativa Japonica
group (7.15%), and Aegilops tauschii (6.84%) (Fig 1).

We matched unigenes to the GO database to clarify the cellular function of the gene products.

We found that 50,089 unigenes were matched to more than 50 functional items, which were

divided into three main groups: biological process, cellular component, and molecular function

(Fig 2). The largest subcategory of biological process was “metabolic process” (26,800), followed

by “cellular process” (26,513). Of the cellular component, “cell” and “cell parts” showed the most

matches with unigenes at 26,939 and 26,833, respectively. Among the molecular function category,

“binding” and “catalytic activity” showed the most matches at 24,708 and 22,732, respectively.

With the aim of validating protein functions, the COG database was used to compare with

unigenes. A total of 37,880 unigenes were annotated into 25 COG functional categories (Fig

3). The “general function prediction only” was the cluster with the most unigenes (10,786), fol-

lowed by “transcription” (7184), “translation, ribosomal structure and biogenesis” (7048), “cell

cycle control” (6488), and “function unknown” (6314), whereas only a few unigenes were

assigned to “extracellular structures” and “nuclear structure”.

KEGG annotation was performed to identify the metabolic pathway to which unigenes

belonged, and 63,044 unigenes had matches in the KEGG database. These unigenes were

assigned to 133 pathways.

Differential expression and pathway analysis

Using the NOI approach, we identified 686 DEGs, including upregulated (304 DEGs) and down-

regulated (382 DEGs). Then, a similarity search of the DEGs in the KEGG database was

Table 4. Summary of functional annotations of the assembled unigenes.

Database Number of unigene hits Percentage (%)

Nr 79,283 71.41

Nt 83,097 74.85

SwissProt 57,827 52.09

KEGG 63,044 56.79

COG 37,880 34.12

Interpro 51,305 46.21

GO 50,089 45.12

Overall 88,164 79.41

https://doi.org/10.1371/journal.pone.0244222.t004

Fig 1. Unigene homology searches against the NR database.

https://doi.org/10.1371/journal.pone.0244222.g001
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performed to explore the pathways associated with a significant enrichment in response to graz-

ing. We found that these DEGs were sorted into 100 pathways. As presented in Table 5, the main

enriched pathways included “alpha-linolenic acid metabolism” and “plant-pathogen interaction”.

Development and validation of grazing-related SSR markers

MISA was used to mine SSR markers from transcriptomes using the following criteria: mono-

nucleotides with at least 12 repeats, di-nucleotides with 6 repeats, tri- and tetra-nucleotides

with 5 repeats, and penta- and hexa-nucleotides with 4 repeats. We examined 111,018

sequences and identified 19,607 SSRs (S2 Table). Additionally, 11,963 tri-nucleotide SSRs and

386 quad-nucleotide SSRs accounted for 61.01% and 1.97% of all the SSRs, respectively, repre-

senting the most and the least of all SSR markers. The CCG/CGG trinucleotide repeats were

the most abundant motifs detected in SSRs (5186, 26.45%), followed by the AG/CT (3117,

15.90%), AGG/CCT (2611, 13.32%), and AGC/CTG (1716, 8.75%) motifs (Table 6). The fre-

quency of the remaining motifs accounted for 35.58% of the SSRs.

To develop grazing-related molecular markers, we preliminarily selected 21 DEGs and

designed primers (S1 Table). After screening polymorphic SSRs, excluding primers with prod-

uct sizes that did not meet the requirements and could not generate PCR products, eight graz-

ing-related genes with SSR polymorphisms were found. In this study, PIC values ranged from

0.14 to 0.47, averaging 0.31, which indicated that these markers were informative and effective

for genetic analysis (Table 2).

Effects of grazing on genetic diversity

The eight primers yielded 29 alleles for 180 samples from the six sites. Among these primers,

CL966.Contig12 and CL.5285.Contig5 produced the largest number of alleles, i.e. five alleles.

Fig 2. GO classifications of the assembled unigenes.

https://doi.org/10.1371/journal.pone.0244222.g002

PLOS ONE Transcriptome response and genetic diversity of S. breviflora to grazing

PLOS ONE | https://doi.org/10.1371/journal.pone.0244222 December 22, 2020 7 / 16

https://doi.org/10.1371/journal.pone.0244222.g002
https://doi.org/10.1371/journal.pone.0244222


The fewest numbers of alleles were exhibited in CL1837.Contig15 and Unigene12747 with two

(Table 7). On average, there were four alleles per primer. Shannon’s information index of the

primers ranged from 0.31 to 0.92, with a mean of 0.62.

The genetic diversity of S. breviflora can be calculated using Shannon’s information index

(I) for each population. As Table 8 indicates, the grazed populations showed the highest Shan-

non’s information index value, with a value of 0.64 (pop4 and pop6). In contrast, the ungrazed

populations showed the lowest level of genetic diversity, with a value of 0.44 (pop2). The

observed numbers of alleles (Na) ranged from 2.13 (pop2) to 3.00 (pop4), with an average of

2.71. The effective number of alleles (Ne) varied from 1.47 (pop2) to 1.71 (pop4), with an aver-

age of 1.62. Compared with the mean observed heterozygosity of 0.04 (Ho), the mean expected

heterozygosity (He) value was high, with a value of 0.34. This result indicated that the inbreed-

ing rate of S. breviflora is high, and the proportion of heterozygotes is relatively low. As shown

in Table 9, both Shannon’s information index (I) and expected heterozygosity (He) in grazed

populations are higher significantly than that in ungrazed populations (p<0.05).

Fig 3. COG classifications of the assembled unigenes.

https://doi.org/10.1371/journal.pone.0244222.g003

Table 5. The top ten KEGG enriched pathway of DEGs.

KEGG terms Gene number Q value Pathway ID

Alpha-linolenic acid metabolism 13 2.90E-05��� ko00592

Plant-pathogen interaction 57 9.96E-04��� ko04626

Pentose and glucuronate interconversions 13 0.12 ko00040

Diterpenoid biosynthesis 5 0.12 ko00904

Biosynthesis of secondary metabolites 80 0.18 ko01110

Starch and sucrose metabolism 20 0.23 ko00500

Linoleic acid metabolism 4 0.27 ko00591

Phenylpropanoid biosynthesis 25 0.61 ko00940

Sesquiterpenoid and triterpenoid biosynthesis 3 0.61 ko00909

Glutathione metabolism 7 0.61 ko00480

���q<0.001, significantly enriched pathway of DEGs.

https://doi.org/10.1371/journal.pone.0244222.t005
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Discussion

NGS strategies and their application to transcriptomics can be used to meet the increasing

demands of acquiring accurate genome information. To clarify the transcriptome responses of

S. breviflora to grazing, we compared the transcriptome changes under grazing and nongraz-

ing conditions and found that 686 unigenes showed differential expression. These DEGs were

significantly enriched in the “alpha-linolenic acid and metabolism” and “plant-pathogen inter-

action” pathways, which may enhance the adaptability of S. breviflora to grazing. Based on

DEGs, we screened eight grazing-related SSR markers to explore the genetic diversity of S. bre-
viflora and found that grazing has a positive effect on genetic diversity. Changes in gene

expression levels help S. breviflora defend against grazing damage, and the increased genetic

diversity provides the potential for its adaptation and evolution; all of these factors contribute

to the survival of plants in different aspects.

Grazing stimulates the expression of wound- and defense-related genes

As a main effect of grazing on herbage, wounding threat is inevitable and occurs over the

entire life [35]. In addition to developing adaptive traits such as low heights, small leaf sizes,

low root biomass [47], few vegetative tillers, and short internode lengths [48], plants also mod-

ulate the expression levels of related genes, for instance, genes related to the jasmonic acid (JA)

family [49], to defend themselves against grazing damage. For S. breviflora, genes such as phos-

pholipases A1 (PLA1) and 13-lipoxygenase (13-LOX), which are known to be involved in the

synthesis of JA, were upregulated. For other plants, leaf wounding response were also related

to JA synthesis [50, 51]. Singh et al. [52] elucidated the expression profile of rice PLA-encoding

genes under salt, cold, and drought stress using microarray data and found that all the DEGs

were upregulated. When tomato (Solanum lycopersicum L.) is exposed to methyl-jasmonate

treatment and damaged, SILOX4, which belongs to the 13-LOX subfamily, is highly expressed

Table 6. Distribution of simple sequence repeat types in S. breviflora transcriptome.

SSR motif SSR motif numbers Ratio (%)

Mono-nucleotide 1059 5.40

AC/GT 678 3.46

AG/CT 3117 15.90

AT/AT 624 3.18

CG/CG 377 1.92

Tri-nucleotide 11,963 61.01

AAC/GTT 149 0.76

AAG/CTT 576 2.94

AAT/ATT 52 0.27

ACC/GGT 812 4.14

ACG/CGT 545 2.78

ACT/AGT 52 0.27

AGC/CTG 1716 8.75

AGG/CCT 2611 13.32

ATC/ATG 264 1.35

CCG/CGG 5186 26.45

Quad–nucleotide 386 1.97

Penta–nucleotide 542 2.76

Hexa–nucleotide 861 4.39

https://doi.org/10.1371/journal.pone.0244222.t006
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[53]. PLA1 and 13-LOX are shared by grazing and other wounding response in different spe-

cies, indicating that plants have some common mechanisms in defense response. Herbivore

grazing, however, is a joint process that includes wounding, defoliation, and saliva deposition.

Chen et al. [54] used rice to study grazing-induced pathway, and found the expression level of

1,3-beta-glucosidase increased. This gene was reported to be associated with resistance in

plant, cell wall construction and modification [55, 56]. In our study, gene related to beta-gluco-

sidase was upregulated under grazing, conferring resistance on S. breviflora.

Grazing provides opportunities for pathogens to infect plants [57]. When plants are

infected by pathogens, they develop disease resistance by activating mitogen-activated protein

kinase (MAPK) cascades [58]. Specifically, MAPK kinase kinases (MAPKKKs) phosphorylate

MAPK kinases (MAPKKs), which then phosphorylate MAPKs [59]. In the present study,

MAPKK genes showed upregulated expression under grazing, suggesting that MAPKK genes

Table 7. Diversity statistics of the eight SSR markers across S. breviflora populations.

Locus Naa Neb Hoc Hed Ie Nmf

CL14453.Contig1 4 2.23 0.05 0.55 0.92 6.76

Unigene12747 2 2.00 0.02 0.50 0.69 4.28

CL616.Contig34 4 1.63 0.02 0.39 0.67 4.16

CL1837.Contig15 2 1.33 0.00 0.25 0.41 11.57

CL15080.Contig2 3 1.19 0.05 0.16 0.34 14.99

CL966.Contig12 5 1.64 0.00 0.39 0.73 11.52

CL.5285.Contig5 5 1.90 0.13 0.47 0.88 6.26

CL966.Contig15 4 1.17 0.00 0.14 0.31 7.11

mean 4 1.64 0.03 0.36 0.62 8.33

a Observed number of alleles.
b Effective number of alleles.
c Observed heterozygosity.
d Expected heterozygosity.
e Shannon’s information index.
f Gene flow.

https://doi.org/10.1371/journal.pone.0244222.t007

Table 8. Genetic diversity statistics of S. breviflora populations.

Code Population size Naa Neb Hoc Hed Ie PPB (%)f

1 29 2.50 1.63 0.05 0.32 0.55 100.00

2 29 2.13 1.47 0.02 0.28 0.44 87.50

3 27 2.88 1.61 0.05 0.33 0.51 100.00

4 30 3.00 1.71 0.03 0.38 0.64 100.00

5 28 2.88 1.61 0.03 0.36 0.62 100.00

6 28 2.88 1.66 0.03 0.38 0.64 100.00

mean 29 2.71 1.62 0.04 0.34 0.57 97.92

aNa: Observed number of alleles.
bNe: Effective number of alleles.
cHo: Observed heterozygosity.
dHe: Expected heterozygosity.
eI: Shannon’s information index.
fPPB: Percentage of polymorphic bands.

https://doi.org/10.1371/journal.pone.0244222.t008
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contribute to the defense against invasion by microorganisms. Gene overexpression in the

MAPK cascade defense mechanism occurs widely in plants, such as rice [60], Arabidopsis [61],

cotton [62], and wheat [63].

Grazing increases the genetic diversity of S. breviflora
Genetic diversity is a fundamental basis for plants to adapt to the environment, and to provide

the potential for evolution. Genetic diversity is shaped by the balance between genetic drift,

inbreeding, recombination, gene flow, mutation, and selection [64]. Grazing affects plant

genetic diversity in different ways. Accompanied by trampling and livestock migration, graz-

ing impacts genetic diversity of populations mainly through gene flow and genome-wide selec-

tion that changes the substitution rate of mutants [65].

Gene flow, one of the important forces leads to improving genetic diversity of natural plant

populations, occurs by the spread of pollen, seeds, spores, and other genetic materials. S. brevi-
flora is a facultatively selfing species. We found that pollen flow may promote sexual reproduc-

tion of S. breviflora. As Table 9 indicates, He in grazing populations are significantly higher

than ungrazed populations. Therefore, pollen-mediated gene flow plays an important role in

maintaining genetic diversity of S. breviflora populations while stressed by grazing [66]. In

general, grazing affects plant reproduction by defoliation. S. breviflora, however, can complete

life circle under heavy grazing by increasing reproductive investment, which brings about

maintaining even increasing seed germination rate [67–69]. Grazing transfers seeds through

livestock migration and fosters seedling establishment, resulting in the enhancement of seed-

mediated gene flow, and consequently increasing genetic diversity [66], though seed-mediated

gene flow was not mentioned in the present study. Another important force driven genetic

diversity changes is gene polymorphism. So, we deliberately mined SSRs derived from DEGs

of S. breviflora. As a result, we found a higher genetic diversity in grazing populations. This

result suggests that grazing promotes the polymorphism of genes with relevance to grazing.

These polymorphisms may endue S. breviflora with more grazing tolerance.

Other factors such as marker systems and grazing intensity might be taken in to account.

SSR system is more efficient for genetic analysis than the ISSR system [70]. We observed that

gene flow of SSR primers in S. breviflora was higher than that of ISSR primers in S. grandis
[25] and S. krylovii [24], which varied from 4.16 to 14.99, with a mean value of 8.33 (Table 7).

In addition, grazing intensity has also been taken into account in other studies. Shan et al. [25]

indicated that the genetic diversity of S. grandis was the highest under light grazing. Similar

results were suggested for Elymus. nutans in the study by Ma et al. [26]. For S. krylovii [24] and

S. purpurea [71], the highest value appeared in moderately grazed populations. Contradictory

results, including a negative relationship [72] and no correlation [73], were reported in other

Table 9. Student’s test of genetic parameters between ungrazed and grazed populations.

Naa Neb Hoc Hed Ie

df 4

P value 0.131 0.196 0.423 0.019� 0.015�

aNa: Observed number of alleles.
bNe: Effective number of alleles.
cHo: Observed heterozygosity.
dHe: Expected heterozygosity.
eI: Shannon’s information index.

�p<0.05.

https://doi.org/10.1371/journal.pone.0244222.t009
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studies. These contradictory results imply the complexity of grazing-induced genetic diversity

that are affected by grazing intensity, differences in species, geographic locations and molecu-

lar marker systems.

Conclusions

Overall, grazing activated plant defense-related genes and increased genetic diversity in S. bre-
viflora. The desert steppe in Inner Mongolia has become severely degraded because of long-

term overgrazing. The S. breviflora community, however, remains stable, and this species

occur with S. bungeana, S. klemenzii, and S. krylovii in different types of steppes under diverse

conditions of precipitation, temperature, and soil attributes. The reason for this may be

explained in part by our findings, i.e., the enhancement of genetic diversity of S. breviflora
under grazing improves the adaptability of the species to stressed environments. For maintain-

ing genetic diversity of S. breviflora, a suitable grazing intensity is needed in order to imple-

ment rational use and conservation of desert steppe.
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