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Abstract

Sensory information is encoded in the response of neuronal populations. How might this information be decoded by
downstream neurons? Here we analyzed the responses of simultaneously recorded barrel cortex neurons to sinusoidal
vibrations of varying amplitudes preceded by three adapting stimuli of 0, 6 and 12 mm in amplitude. Using the framework of
signal detection theory, we quantified the performance of a linear decoder which sums the responses of neurons after
applying an optimum set of weights. Optimum weights were found by the analytical solution that maximized the average
signal-to-noise ratio based on Fisher linear discriminant analysis. This provided a biologically plausible decoder that took
into account the neuronal variability, covariability, and signal correlations. The optimal decoder achieved consistent
improvement in discrimination performance over simple pooling. Decorrelating neuronal responses by trial shuffling
revealed that, unlike pooling, the performance of the optimal decoder was minimally affected by noise correlation. In the
non-adapted state, noise correlation enhanced the performance of the optimal decoder for some populations. Under
adaptation, however, noise correlation always degraded the performance of the optimal decoder. Nonetheless, sensory
adaptation improved the performance of the optimal decoder mainly by increasing signal correlation more than noise
correlation. Adaptation induced little systematic change in the relative direction of signal and noise. Thus, a decoder which
was optimized under the non-adapted state generalized well across states of adaptation.
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Introduction

A goal of systems neuroscience is to achieve a quantitative

understanding of how cortical neurons report sensory events in

their population activity. The interlaced synaptic architecture of

neuronal networks provides anatomical evidence for population

decoding by downstream neuronal structures. Such a synaptic

organization allows an integration model in which the activity of

neurons in the relevant population is summed with different

weights. Under this model, discrimination of different stimuli can

be formalized in terms of a linear classification of the neuronal

responses. Here, we use a biologically plausible method of

decoding: the model downstream neuron (the decoder) assigns a

weight to each neuron before integrating the population activity

(Figure 1A). The weight coefficient represents the synaptic strength

between the input neuron and the decoder. This allows us to

define an optimal linear decoder and establish its dependence on

the adapted state of the network and its tolerance to correlated

trial-to-trial covariability across neurons (noise correlation [1–4]).

In a recent study, we found that sensory adaptation improves

coding efficiency of single neurons and the summed activity across

neurons [5]. The present paper reanalyzes the same dataset with a

focus on decoding. Investigating the behavior of the system under

different adaptation states allows us to compare the performance

of a non-adaptive decoder, which is optimal only under the non-

adapted state, and an adaptive decoder, which adjusts to network

dynamics and is thus optimal for any state of adaptation. In

addition, by decoding simultaneously recorded single neurons, we

quantify the influence of signal and noise correlations on the

information available to downstream neurons.

Methods

Ethics statement
All components of the experiment were conducted in accor-

dance with international guidelines and were approved by the

Animal Care and Ethics Committee at the University of New

South Wales (ACEC 08/77B and 10/47B).

Surgery, electrophysiology and stimulation
For the present study we reanalyzed the recorded neuronal data

in [5]. A brief description of the recording method follows. Six

adult male Wistar rats were used for acute recordings. Anesthesia

was induced by intra-peritoneal administration of Urethane (1.5

gr/kg body weight). Neuronal activity was acquired using a 32-

channel 4-shank multi-electrode probe (NeuroNexus Technolo-

gies, Ann Arbor, MI) from the barrel cortex. The stimulus train

was composed of a 250 ms adaptation stimulus of 80 Hz
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sinusoidal vibration followed by a half-cycle (6.25 ms) pause and a

single-cycle sinusoidal test stimulus (frequency of 80 Hz, 12.5 ms).

We used 10 blocks at each of 3 adaptation amplitudes (0, 6 and

12 mm). Each block contained twelve test stimuli (amplitudes of 0

to 33 mm with equal increment steps of 3 mm) presented in a

random order. Throughout a recording session each test stimulus

was repeated 100 times under every adaptation state. Neuronal

response to different stimulus amplitudes was characterized by

counting the number of spikes generated in each trial over a 50 ms

window post stimulus onset. Previous recordings from barrel

cortex have revealed that most of the information about vibration

stimuli is transmitted within this time window [6,7]. In 6 male rats,

a total of 73 single units and 86 multi-unit clusters were recorded

across a total of 16 sessions (see Table 1 in [5]). Each session

contained a distinct set of simultaneously recorded neurons that

were isolated using an online amplitude threshold and an offline

template-matching procedure.

Receiver operating characteristic (ROC) analysis
To explore population decoding, we quantify the discrimina-

bility obtained from (i) the pooled activity of simultaneously

recorded neurons (i.e. all spike counts summed together), and (ii)

the population activity of neurons when they are integrated after

Author Summary

In the natural environment, animals are constantly
exposed to sensory stimulation. A key question in systems
neuroscience is how attributes of a sensory stimulus can
be ‘‘read out’’ from the activity of a population of brain
cells. We chose to investigate this question in the whisker-
mediated touch system of rats because of its well-
established anatomy and exquisite functionality. The
whisker system is one of the major channels through
which rodents acquire sensory information about their
surrounding environment. The response properties of
brain cells dynamically adjust to the prevailing diet of
sensory stimulation, a process termed sensory adaptation.
Here, we applied a biologically plausible scheme whereby
different brain cells contribute to sensory readout with
different weights. We established the set of weights that
provide the optimal readout under different states of
adaptation. The results yield an upper bound for the
efficiency of coding sensory information. We found that
the ability to decode sensory information improves with
adaptation. However, a readout mechanism that does not
adjust to the state of adaptation can still perform
remarkably well.

Figure 1. Population decoding. A. Schematic representation of linear combination of neuronal activity by the downstream decoder. Coefficients
w1 , wi and wN represent the synaptic weights between the neurons (top row circles) and the decoder (bottom). B. Schematic representation of
pooling (left panel) and optimal decoding (right panel). The green and blue ovals represent the joint distribution of the neurons’ responses to two
sensory stimuli. The solid black line represents the weight vector. The pooling method (left panel) is equivalent to a weight vector along the identity
line. The bell-shaped areas on the weight vector represent the projection of the neuronal response distribution for each stimulus. Dashed lines
correspond to the best criterion to discriminate the two stimuli. The insets show the hit rate versus false alarm rate (ROC) for every possible criterion,
shading indicates area A. C. Average value of A for the pooled neuronal responses plotted against the average value of A for the best neuron. Various
population sizes within a session are plotted with the same color and connected with a line. For each population size, the value of A is averaged
across all possible selections of that size. D. The average value of A, for each stimulus pair, under pooling (upper triangle) and optimal decoding
(lower triangle), across all populations of 8 single neurons. E. Histogram of the optimal weights as a function of the signal-to-noise ratio of the same
neuronal populations as in D. The weights and SNR values are normalized to the best neuron in each population.
doi:10.1371/journal.pcbi.1003415.g001
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applying an optimum set of weights. For a population of N

neurons, the spike counts are represented as a data point in an N-

dimensional space where every dimension corresponds to a neuron

in the population. Each data point is then projected onto the given

weight vector. Pooling gives equal weights to all neurons such that

the weight vector lies along the identity line (Figure 1B, left panel).

An optimum linear decoder assigns different weights to neurons

based on an algorithm (detailed below) to provide maximal

separation between the response distributions (Figure 1B, right

panel). Once the weight vector is determined, population response

histograms are calculated from the projection of data points onto

the weight vector. The overlap between the two histograms is

quantified by applying an ROC analysis considering all possible

values of the decision criterion, ranging from the minimum to the

maximum observed projection values (see left panel in Figure 1B).

Each criterion yields a hit rate and false-alarm rate; plotting the hit

rates versus the false alarm rates leads to an ROC curve (insets in

Figure 1B). Here we use the area (denoted by A) between the ROC

and the identity (non-discriminant) line. The area A is calculated

by approximating the missing parts of the ROC curve between

two consecutive criteria by a trapezoid. The value of A falls within

the range of 0 to 0.5; A = 0 indicates that the hit rate is equal to the

false alarm rate, reflecting complete overlap between two

histograms, thus no discriminability. A = 0.5, on the other hand,

indicates no overlap between the two histograms and thus perfect

discriminability. The value of A takes into account the trial-by-trial

variability in response and characterizes discrimination perfor-

mance supported by the neuronal population. For the whole

stimulus set, the overall discriminability was defined as the average

value of A across all possible pairwise comparisons of stimuli

(n = 66).

Fisher linear discriminant analyses
In order to identify the optimum weight vector for population

decoding, we applied Fisher linear discriminant analysis [8–10]

on the neuronal spike counts. For a population of N neurons, let

the N6100 matrix Rs denote the neuronal responses to stimulus s

across 100 trials, and the N6N matrix Cs denote the neuronal

response covariance matrix for stimulus s. Let the N61 vector �RRs

be the average population responses to stimulus s across 100

trials. Here we calculate the optimal weight vector wopt that

yields maximum discrimination between stimuli. The N elements

of the vector represent the weights applied to the response of

individual neurons in the population. The optimal solution for

the weight vector is obtained by maximizing the signal-to-noise

ratio:

max
w

wT Sw

wT Cw
, ð1Þ

where S~
P12

s~1
�RRs{�RRð Þ �RRs{�RRð ÞT represents the N6N signal

covariance matrix, T denotes the transpose operator, the N61

vector �RR represents the average population responses across all

stimuli (n = 12), and C~
P12

s~1 Cs represents the overall neuro-

nal trial-by-trial covariability. In Equation 1, the numerator is

proportional to the population signal strength along the vector w,

while the denominator is proportional to the noise along the

vector w. The signal to noise ratio calculated in this way is

invariant under scaling w. Thus we can always find an optimal

weight vector wopt such that wT
optCwopt~1. The maximization

problem in Equation 1 is a quasi-convex optimization problem

[11] with the following Lagrangian function:

L v,wð Þ~wT Sw{v wT Cw{1
� �

: ð2Þ

Applying the Karush–Kuhn–Tucker conditions [11] yields:

+wL v,wopt

� �
~2Swopt{2vwopt~0 : ð3Þ

where v represents the Lagrange multiplier corresponding to the

equality constraint. Assuming C is invertible, Equation 3 can be

restated as

C{1Swopt~vwopt , ð4Þ

which is equivalent to eigenvalue decomposition of C{1S ,

where the optimal weight vector wopt is along the eigenvector

corresponding to the largest eigenvalue of C{1S [8,11].

An upper bound on the performance of the linear discrimina-

tion can be achieved by finding the optimum set of weights for

every pairwise stimulus discrimination. In this condition, for the

particular stimulus pair s1 and s2 with average neuronal

population responses �RR1 and �RR2 , and covariance matrices C1

and C2, the signal-to-noise ratio along weight vector w can be

simplified to the following formula:

RT wffiffiffiffiffiffiffiffiffiffiffiffiffi
wT Cw
p , R~�RR1{�RR2 , C~C1zC2 : ð5Þ

Solving for the optimal weight which maximizes the above

equation by applying the same approach as in the problem

formulated in Equation 1 yields wopt~C{1R [8]. This solution is

identical to linear least square error estimation of the two classes

[8,9]. The overall discriminability (A) for the whole stimulus set

was defined as the mean value of A across all possible stimulus

pairs (n = 66). Throughout the paper, we refer to this upper bound

as the pairwise-optimal decoder.

C is not invertible when at least one of the recorded neurons

does not fire any spikes in response to any stimuli. Calculation of

the optimal weight vector is generalized to conditions when C is

singular, simply by removing the neurons with zero average spike

count and then setting their corresponding weight to zero.

Quantifying the decoder tolerance to deviation from the
optimal weight

According to Equation 4, the solution for the optimal weight

vector is the generalized eigenvalue decomposition of the signal

covariance matrix S, and the noise covariance matrix C. The

problem can be transformed into a subspace where C is invertible,

and hence the optimal weight vector is the first eigenvector of

C{1S. However, as C{1S is not a symmetric matrix, other

eigenvectors are not orthonormal. To quantify the level of

tolerance of the decoder to changes in the weight vector direction,

we need a symmetric representation of the effect of rotation in the

space of neuronal activity with respect to the optimal direction.

Thus we transpose the eigenvectors of C{1S to an orthogonal

basis by rotating the eigenvectors according to the Gram–Schmidt

procedure.

Quantification of signal and noise correlations
To characterize signal correlation in a population of more than

two neurons, we applied principal component analysis (PCA) [12]

on the z-scored neuronal average spike counts, similar to the

quantification of noise correlation employed in [5]. For a

Population Decoding in Rat Barrel Cortex
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population of N neurons, let the N612 matrix ~RR denote the z-

scored average neuronal responses to stimulus set averaged across

100 trials. Below we show that signal correlation can be

represented by the largest normalized eigenvalue of the neuronal

response correlation matrix ~SSN|N~
1

12{1
~RR~RRT . The strength of

the signal correlation is proportional to the amount of stretch in

the joint distribution of the average population responses. The first

eigenvalue of the signal correlation matrix – denoted by l1 –

normalized to the sum of all eigenvalues specifies the maximum

covariation in the average z-scored population responses relative

to all dimensions forming the space of population activity. Thus

normalized l1 represents the stretch or skewness in the joint

distribution of population responses, and hence identifies the signal

correlation.

As the sum of all eigenvalues equals the sum of all diagonal

elements of the signal correlation matrix ~SS, which is equal to N,

the normalized l1 can be re-expressed as:

l1PN
i~1 li

~
l1

N
:

However, normalized l1 has a positive constant bias which

depends on the number of neurons in the population and the

number of stimuli: When population size, N, is less than 12 (the

number of stimuli), the maximum number of non-zero eigenvalues

of signal correlation matrix is N, and hence the minimum value of

normalized l1 is 1=N. When population size is 12 or more the rank

of signal correlation matrix is limited to 11. Thus the maximum

number of non-zero eigenvalues of signal correlation matrix is 11,

and hence the minimum value of normalized l1 is 1=11. In order to

provide a measure of signal correlation which is independent of

population size or number of stimuli, we subtracted this bias from

normalized l1 and rescaled the result such that it falls between 0

and 1. We define this measure as the signal correlation index,

denoted by SCI:

SCI~
r

r{1

l1PN
i~1 li

{
1

r

 !
: ð6Þ

where r~min N,11ð Þ. The signal correlation index depends solely

on the correlation between the average responses of neurons.

Similarly, the noise correlation index, denoted by NCI, is defined

as [5]:

NCI~
N

N{1

g1PN
i~1 gi

{
1

N

 !
, ð7Þ

where gi is the ith greatest eigenvalue of the average noise

correlation matrix across stimuli. For the special case of two

neurons, signal and noise correlation indices are identical to the

absolute value of the correlation coefficient between neuronal

responses averaged across stimuli, and the correlation coefficient of

trial-by-trial response variability, respectively [5].

Results

The information that can be inferred from neuronal populations

depends on the ‘readout mechanism’. A biologically plausible

method of decoding applies a weight to each input neuron before

integrating their response (Figure 1A). The weight coefficient

represents the synaptic strength between the input neuron and the

downstream decoder. A simple readout mechanism, called

pooling, sums the activity of input neurons together with equal

weights [13] (Figure 1B, left panel). At the other extreme, a

decoder may only ‘read’ the activity of the most informative

neuron in the population. This scheme, called the ‘lower envelope

principle’ [14,15], gives a weight of 1 to the best input neuron and

a weight of zero to all other input neurons. Figure 1C compares

the performance of these two decoding schemes applied to the

neuronal responses to vibrotactile stimuli of different amplitudes (0

to 33 mm with equal increments of 3 mm), using the discrimina-

bility index, A. This index was averaged across all possible stimulus

pairs (n = 66) in the non-adapted state. For some populations,

pooling outperformed the best neuron, while in other populations

pooling performance was not as good as the best neuron.

A third linear decoding scheme takes signal and noise

correlations across neurons into account and finds the weights

that optimize discriminability (Figure 1B, right panel) by

maximizing the average signal-to-noise ratio (SNR). We will refer

to this optimal linear decoder as the optimal decoder. Figure 1D

quantifies pairwise stimulus discriminability across all possible

populations of 8 simultaneously recorded single neurons in our

dataset. The optimal decoder achieved a 96.8% improvement in

discrimination performance over pooling, as quantified by the

average value of A. In this decoding scheme, neurons with a higher

SNR are expected to obtain a higher weight and thus make a

greater contribution to decoding. To verify this, Figure 1E gives

the distribution of weights as a function of SNR. As predicted, the

decoder assigns weights of higher absolute value to the neurons

with higher SNR.

Figure 2 generalizes the analysis to populations of various sizes.

In Figure 2B a distinct set of weights were found for every stimulus

pair, thus we refer to this decoder as the ‘pairwise-optimal

decoder’. Pairwise-optimal decoding outperformed pooling with

the effect becoming more pronounced at larger population sizes.

In order to apply the appropriate set of weights, such a decoder

requires a priori knowledge about the pair of stimuli to be

discriminated. An arguably more biologically plausible decoding

scheme is to apply an identical weight vector to discriminate across

all stimulus pairs. By analogy with the pairwise-optimal decoder,

we refer to this coding scheme as the ‘groupwise-optimal decoder’.

Figure 2A provides a comparison of the two schemes. Figure 2C

illustrates that the groupwise-optimal decoder outperformed

pooling for every population size. Similar to the pairwise-optimal

decoder, the improvement over pooling increases with population

size. Across all population sizes, the groupwise-optimal decoder

was superior to pooling by 54.8%626.8% (mean 6 s.d. across

sessions). The rest of the analyses will focus on the groupwise-

optimal decoding scheme.

Robustness of the decoder
How well does the decoder generalize to new trials? To address

this question, we obtained the optimal weight vector from half of

the trials (100 random selections of 50 out of 100 trials), and then

applied the weights to the other half. In this analysis, we first focus

on populations of 8 simultaneously recorded single neurons as a

sample population size. On average, the discriminability on

untrained trials was 95.7%61.7% (mean 6 s.d. across sessions)

that on trained trials. This level of generalization was not specific

to the population size of 8 single neurons. Across sessions, the

performance of the decoder on untrained trials was 96.8%62.5%

and 96.7%61.7% of that on trained trials for the whole set of

single neurons ranging from 6 to 11 across sessions, and for the

whole set of single- and multi-units in each session, respectively.

Population Decoding in Rat Barrel Cortex
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We further quantified the extent to which the decoder

approaches the maximum achievable discriminability in terms of

the value of A. In order to do this, we numerically calculated

the weight vector which directly maximizes the value of A,

using the pattern-search optimization method [16]. We compared

the performance of this decoder, A-optimum, with that of the

groupwise-optimal decoder. The weight vectors for both ap-

proaches were obtained from half of the trials (100 random

selections of 50 out of 100 trials), and then were applied to the

remaining half. Across sessions, the performance of the groupwise-

optimal decoder was 99.1%63.2% of A-optimum (for the whole

set of single neurons) and 99.5%61.3% (for the combined set of

simultaneously recorded single- and multi-units).

To what extent does the decoder tolerate a change in the weight

vector? We first examine the relative contribution of individual

weights by setting the weight of one unit to zero while maintaining

the weight of the other units in the population. This is equivalent

to removing one unit from the population. Figure 3A depicts the

relative decline in the performance of this decoder (the suboptimal

decoder) as a function of the original population size. At the

population size of 2, the relative decline in the performance of the

suboptimal decoder was 31.0%61.5% (mean 6 s.e.m. across

sessions), it reached 5% for the population size of 7 single neurons,

and diminished as the population size further increased. The

suboptimal decoder still outperformed pooling for the reduced

population (Figure 3B). The difference between the performance

of suboptimal and pooling increased with population size. We

further compared the performance of the suboptimal decoder with

the decoder optimized on the reduced set of units. On average,

across sessions and population sizes, the performance of the

suboptimal decoder was 99.4% that of the optimal decoder, with a

minimum of 98.6%60.3% (mean 6 s.e.m. across sessions)

observed at the reduced population size of 2.

In order to further quantify the extent to which the decoder

tolerates a change in the weight vector, we gradually rotated the

weight vector from the optimal direction towards the identity line

(Figure 3C). Since decoding along the identity line corresponds to

pooling, this analysis provides a characterization of the transition

from optimal to pooling. Figure 3D illustrates the effect of rotating

the weight vector from optimal direction towards the identity line.

As the optimal direction is not perpendicular to the identity line,

the 180u trajectory of rotation is not symmetric, but longer on one

side (see Figure 3C). The consequence is a minimum in

performance at an angle close to 90u (maximum deviation from

optimal). For each curve, the two ends of the trajectory correspond

to pooling, which in general is neither the best nor the worst

decoding strategy.

Setting the identity line as the endpoint of rotation provides an

intuitive link between optimal decoding and pooling. However,

this represents a specific and rather arbitrary trajectory of rotation.

To further characterize the tolerance of the decoder, we

systematically rotated the weight vector away from the optimal

towards all N-1 other dimensions in the N-dimensional space of

population activity (Figure 3E). The optimal weight vector is the

eigenvector of C{1S corresponding to the highest eigenvalue –

where the separation between the population responses to the

stimuli is maximal in the SNR space. Likewise, other dimensions

correspond to the orthogonalized eigenvectors of C{1S (see

Methods). The separation of the population responses to the

stimuli is correspondingly higher along an eigenvector with a

higher eigenvalue. Accordingly, we expect the decoding perfor-

mance to drop less when the weight vector is rotated toward an

eigenvector with a higher eigenvalue. Figure 3F characterizes

decoding performance when the weight vector is rotated towards

each of the 7 dimensions corresponding to other eigenvectors for a

population size of 8 single neurons. Performance dropped by

34.0%62.9% (mean 6 s.d. across sessions) along the second most

informative dimension and by 69.7%66.9% along the least

informative dimension. Across all dimensions, for a 30u deviation,

we observed an average drop of 10.2%61.8% (mean 6 s.d.).

Effect of noise correlation on decoding
How does the trial-to-trial correlation in neuronal activity (i.e.

the noise correlation) affect the performance of the decoder? To

address this question, we first decorrelated the neuronal responses

by shuffling the order of trials for every neuron in the population.

Shuffling the trial orders eliminates neuronal response covariations

while preserving the marginal distribution of population responses

and the signal correlation. Thus, any observed effect of trial-

shuffling is entirely due to noise correlations. We quantified the

Figure 2. Pairwise- and groupwise-optimal decoding schemes. A. Schematic representation of pairwise- and groupwise-optimal decoding. B.
The average value of A for a range of population sizes. Data from neuronal populations within a session are plotted with the same color and
connected with a line. Filled markers correspond to populations of single units. For each population size of single units, the value of A of all possible
selections of that size was averaged within session. Open markers correspond to further additions of multi-units to the whole population of single
units. Thus the direction of increasing population size is from filled markers to open markers. For every population of mixed single and multi-units,
the value of A was obtained by averaging across a maximum of 400 possible selections within a session. C. as in B, but for groupwise-optimal
decoding.
doi:10.1371/journal.pcbi.1003415.g002

Population Decoding in Rat Barrel Cortex
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effect of noise correlation by DAshuffled denoting the percentage

difference between the performance of the decoder optimized on

the trial-shuffled responses and the performance of the decoder

optimized on the true neuronal responses. Previous analysis [5]

revealed that neuronal covariability is positive and thus detrimen-

tal to the information content of the pooled neuronal responses.

Therefore, removing noise correlation is expected to enhance

decoding performance. For pooling, removing noise correlation

systematically improved decoding, as expected (Figure 4A). This

effect increased with pool size, reaching an average improvement

of 44.0% in the value of A across sessions in our dataset. However,

for optimal decoding, removing noise correlation had no

systematic effect, sometimes improving and sometimes impairing

performance (the average change in the value of A across sessions

was 0.9%, ranging from 29.6% to 12.5% for any population size

in our dataset).

The immunity of the optimal decoder to the presence of noise

correlation implies that the decoder has incorporated the structure

of neuronal covariability. To directly test this idea, we imple-

mented a simpler decoding scheme in which the covariance matrix

was forced to be diagonal such that only signal correlation and the

variability of individual neurons contributed to the optimization.

This is equivalent to optimizing the decoder on the decorrelated

population responses and then applying the resulting weights on

the true population responses. We denote the value of A for this

decoding scheme by Adiag. Figure 4B plots the proportional drop in

the average value of A as a result of ignoring noise correlation, as

denoted by DAdiag. DAdiag increased with population size, reaching

30% in our dataset. This finding reveals that the decoder

successfully accounts for the noise correlation.

Adaptive population decoding
How does sensory adaptation affect the information content of

neuronal populations? The original data set contained not only the

non-adapted responses analyzed thus far, but also responses

collected under two states of adaptation (vibration amplitudes of 6

and 12 mm). This allowed us to investigate how well the optimal

linear readout performs under adaptation compared to the non-

adapted state. The functional specialty of the whisker-barrel

system and the structure of somatosensory cortex as a stand-alone

processing stage in rodents [17] suggest that cortical neurons may

have access to the network dynamics and the adaptation state.

This information can be exploited to optimize the readout under

different states of adaptation, leading to an ‘adaptive decoding

scheme’.

Figure 5A–D quantify the discrimination performance of an

adaptive optimal decoder (in terms of the average value of A)

under different adaptation states. The average value of A for

optimal decoder is higher under adaptation compared to the non-

adapted state. This improvement is most prominent at interme-

diate A values and diminishes at low and high levels of

discrimination performance (Figure 5A and B). These results

extend the finding that sensory adaptation enhances coding

efficiency from pooling [5] to optimal linear integration.

The enhanced discriminability demonstrated in Figure 5C and

D is the average improvement across all pairwise stimulus

discriminations (n = 66). To elucidate how sensory adaptation

affects the coding efficiency for different stimuli, we quantified the

adaptation-induced change in the value of A for individual

Figure 3. Decoder tolerance to weight vector deviation. A. The
relative decline in the performance of the decoder after dropping a unit
by setting its weight to zero. For every population, the performances
were calculated and averaged across all possible 1-unit reductions.
Plotting conventions are the same as in Figure 2. B. The performance of
the decoder after dropping a unit relative to the performance of the
pooling of the reduced population. The abscissa represents the size of
the population after 1-unit reduction. C. Rotating the weights from the
optimal direction towards the identity line which corresponds to
pooling. Rotation was performed along two asymmetric paths. D. The
relative change in the performance of the decoder when the weight
vector was deviated from the optimal direction in steps of 10u towards
the pooling direction (identity line). Every session is represented with a
color and corresponding data points are connected with a line. The two
extreme data points on each curve correspond to the performance of
pooling relative to the groupwise-optimal decoder. For every session,
the population of all single neurons was considered. E. Systematically
rotating the weights from the optimal direction, denoted by u1 , towards
every other dimension in the space of neuronal activities. Dimensions
are orthogonal, and span the space of the neuronal activity. The
trajectory of this rotation lies on the 2-dimensional plane spanned by
the optimal direction and the target dimension, and hence is
perpendicular to all other dimensions. F. The relative performance of
decoder with a deviated weight vector compared to the optimal
direction for all possible populations of 8 neurons averaged across
sessions (n = 5). Colors indicate the 7 trajectories toward associated
dimensions, with red corresponding to the dimension perpendicular to

optimal direction such that it maximizes the separation between
neuronal responses, and blue corresponding to the dimension along
which the separation between neuronal responses is minimal. Error bars
indicate standard error of the means.
doi:10.1371/journal.pcbi.1003415.g003
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stimulus pairs. As illustrated in Figure 5E and 5F, there is an

elevated discriminability for stimuli higher in amplitude than the

adaptor, while there is a decline in discriminability for stimuli

lower than the adaptor. This pattern was consistent across sessions

(correlations for all pairwise comparisons across sessions were

significant, with all p values,0.008, and an average correlation

coefficient of 0.68), as well as across both groupwise and pairwise

optimal decoding schemes (correlation coefficient between average

values across sessions: 0.97). The magnitude of the effect was

larger for the groupwise optimal decoder compared with the

pairwise decoder (linear regression coefficient of 1.14, significantly

higher than 1 with a p value,0.05, regression R2.0.93).

Additionally, the peak magnitudes of the decline and the

enhancement were close: respectively, 20.2360.05 (mean 6

s.e.m. across sessions) vs. 0.2060.04 for 6 mm adaptation, and

20.2860.04 vs. 0.2660.04 for 12 mm adaptation. These findings

represent a shift in discriminability from low amplitudes to

amplitudes higher than the adaptor [18], and are consistent with

the lateral shift in the amplitude response function of the

population [5]. For both adaptation states, the number of stimulus

pairs for which discriminability increased was higher than the

number of stimulus pairs for which it declined. This led to a net

increase in the average value of A.

In order to understand the nature of this improvement in coding

efficiency, we quantify the modulation of sensory adaptation on

the two components of our optimization objective function (SNR):

signal and noise correlations. We then parse out the contribution

of each component (signal and noise) to the improvement in

coding efficiency through adaptation.

Effect of noise correlation on adaptive decoding
What is the functional effect of noise correlation on the

performance of the optimal decoder under different adaptation

states? To address this question, Figure 6A and B illustrate

DAshuffled for the two adapted states and compare it with the non-

adapted state. The comparison reveals two main findings. First,

the magnitude of the effect of noise correlation was greater in the

adapted state. For instance, on average, across populations of 8

single neurons, noise correlation degraded decoding by

3.8%63.7% (mean 6 s.d. across sessions) in the non-adapted

state, 8.9%64.7% in the 6 mm adaptation state and 14.6%65.1%

in the 12 mm adaptation state. This finding is consistent with the

results in our previous study that adaptation increased the overall

noise correlation [5]. The second difference is in the functional

role of noise correlation: contrary to the observation in the non-

adapted state whereby noise correlation exhibited positive as well

as negative effects on decoding efficiency (abscissa in Figure 6A

and B), noise correlation was always detrimental to decoding

under adaptation (ordinate in Figure 6A and B). This was in spite

of the fact that the decoder was optimized on the adaptation data.

Based on this result, one might expect that ignoring noise

correlation to be more detrimental to the performance of a

decoder in the adapted state. However, this was not the case.

Figure 6C and D illustrate the proportional drop in the value of A

when ignoring noise correlation – as captured by DAdiag. The

detrimental effect of ignoring noise correlation on decoding was

less under adaptation. We explore two hypotheses to explain this

discrepancy. Sensory adaptation might modulate the population

responses in two ways: (i) increase in signal correlation and (ii)

decrease in the angle between signal and noise direction. The

following section quantifies signal and noise correlations for

populations of any size.

Effect of adaptation on signal correlation
What is the effect of sensory adaptation on the redundancy of

neurons? As a measure of response redundancy, we quantified the

correlation in the average responses to the stimuli, or signal

correlation, under each adaptation state. A widely-used measure of

signal correlation in the literature is the correlation coefficient

between the response functions of two neurons [1,2,19–26].

However, the cross correlation analysis could not be applied to

dimensions beyond two neurons. Therefore, we further scrutinized

the correlations in the average response of multiple neurons with

principal component analysis (PCA). In mathematical terms, the

first eigenvector of the average neuronal spike-count correlation

matrix identifies the direction of the greatest correlated variability

(signal direction), and the first eigenvalue, denoted by l1, signifies

the magnitude of that variability. The value of l1 normalized to all

eigenvalues quantifies the degree of the stretch in the population

responses and thus the strength of signal correlation.

Figure 4. Effect of noise correlation on decoding. A. The ordinate represents the relative effect of noise correlation. This is captured by the per
cent change in the value of A for a groupwise decoder optimized on trial-shuffled neuronal responses. The abscissa indicates the effect of noise
correlation on pooling scheme. This is captured by the increase in the value of A for pooling after trial-shuffling neuronal responses. Color
conventions and selection of neurons for every population are identical to Figure 2. For every selection of neurons for a given population size, the
values of A for 50 trial-shuffles were averaged. B. The effect of ignoring noise correlation when decoding. DAdiag corresponds to the per cent drop in
the performance of a decoder which ignores noise correlation. Noise correlations were ignored by setting the off-diagonal elements of the total
covariance matrix to zero.
doi:10.1371/journal.pcbi.1003415.g004

Population Decoding in Rat Barrel Cortex

PLOS Computational Biology | www.ploscompbiol.org 7 January 2014 | Volume 10 | Issue 1 | e1003415



We first focus on sample populations of 8 simultaneously

recorded single units. Figure 7A shows the 8 eigenvalues of the

signal correlation matrix for the stimulus set across the five sessions

that contained 8 single units or more. Normalized l1 captures over

57.4% of the covariations in the average population responses to

the stimuli in the non-adapted state. The first three eigenvalues

represent 91.4% of stimulus-driven cross-neuronal response

variability. This is a consequence of the similarity in the intrinsic

response pattern of cortical neurons to stimulus intensity; a

sigmoidal increase with stimulus intensity [7,27]. Normalized l1

was higher in the adaptation states compared to the non-adapted

state. This finding supports the prediction that sensory adaptation

increases signal correlation. This increase in signal correlation is

achieved principally by alignment of neuronal response functions

through a lateral shift in the amplitude response function of

individual neurons [5]. Shuffling the labels of stimuli across

neurons reduced signal correlation and essentially eliminated the

difference between adaptation states (right panel in Figure 7A).

This confirms that the adaptation-induced increase in normalized

l1 is not confounded by the sampling structure of neuronal

responses, or the response variability of individual neurons in the

population, but is a direct consequence of signal correlations

across neurons in the population.

As signal correlation analysis captures correlations in the

‘average’ response of neurons across trials, it can also be applied

to neurons that were not recorded simultaneously. Thus, we

applied this analysis across all single-units (n = 73) in our dataset.

Figure 7B represents signal correlation across various population

Figure 5. Adaptive optimal decoding. A. The value of A for the optimal decoder when optimized on population responses under 6 mm
adaptation, against the value of A for the optimal decoder when optimized on non-adapted population responses. B. As in A, but for 12 mm
adaptation. C. The per cent improvement in the value of A under 6 mm adaptation relative to the non-adapted state. D. As in C, but for 12 mm
adaptation. E. The effect of 6 mm adaptation on the value of A for every stimulus pair, in a sample session with 11 simultaneously recorded single
neurons, indicated by purple color in A–D. The upper triangle corresponds to the groupwise-optimal decoder, while the lower triangle corresponds
to the pairwise-optimal decoder. F. As in E, but for 12 mm adaptation.
doi:10.1371/journal.pcbi.1003415.g005
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Figure 6. Effect of noise correlation on the adaptive optimal decoder. A. The per cent change in the value of A by trial-shuffling, denoted by
DAshuffled, for 6 mm adaptation, against the same measure in the non-adapted state. B. As in A, but for 12 mm adaptation. C. The per cent drop in the
value of A by ignoring noise correlation when decoding, denoted by DAdiag, for 6 mm adaptation, against the same measure in the non-adapted state.
D. As in C, but for 12 mm adaptation.
doi:10.1371/journal.pcbi.1003415.g006

Figure 7. Effect of adaptation on signal correlation. A. The eigenvalues of the signal correlation matrix for populations of 8 simultaneously
recorded neurons, sorted into descending order. Each eigenvalue was normalized to the sum of all eigenvalues. Error bars indicate standard error of
the means across sessions (n = 5). The colors red, green and blue correspond to the non-adapted state, 6 mm adaptation and 12 mm adaptation,
respectively. The right panel illustrates the normalized eigenvalues for stimulus-shuffled neuronal responses. The stimulus labels for each neuron in a
given population were randomly shuffled 100 times, and the corresponding eigenvalues were averaged. B. Signal correlation as captured by the
signal correlation index as a function of population size under the three adaptation states. For population sizes 72 and 73, all possible selections of
neurons (n = 73 and 1, respectively) and for the other population sizes 500 random selections of neurons were used to obtain the signal correlation
index. Color convention is identical to B. C. The performance ratio of groupwise-optimal decoder to pairwise optimal decoder as a function of signal
correlation index for the populations in B. Different population sizes are plotted in different levels of brightness with the colors red, green and blue
corresponding to the non-adapted state, 6 mm adaptation and 12 mm adaptation, respectively. Each data point corresponds to one population. The
inset shows the distribution of correlation coefficients calculated per population size for each adaptation state.
doi:10.1371/journal.pcbi.1003415.g007
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sizes up to 73 single neurons. For this analysis, we calculated the

signal correlation index – a rescaled version of normalized l1

adjusted for population size (see Methods). The signal correlation

index exhibits a constant relationship with population size

signifying that this index is not biased by the number of neurons

in the population. The value of signal correlation index was higher

in the adapted states, revealing that sensory adaptation increased

the homogeneity of cortical neuronal response functions.

We used the same method to quantify noise correlations for the

simultaneously recorded units, as explained in detail in [5]. On

average, adaptation increased the signal correlation index more

than noise correlation index by factors of 4.6 and 3.0 (medians

across sessions) for 6 mm and 12 mm adaptation states, respective-

ly. This explains the observed improvement in the performance of

the decoder with sensory adaptation. In addition, this result reveals

why ignoring noise correlation is less detrimental under adaptation

(see Figure 6). We also quantified the angle between the signal and

noise direction under each adaptation state and observed no

systematic changes across adaptation states. Likewise, across

sessions, there was no systematic change in the first eigenvector

of signal covariance matrix, S with respect to the first eigenvector

of the net noise covariance matrix, C, over the three states of

adaptation.

The performance of the groupwise-optimal decoder approaches

its upper bound, pairwise-optimal decoder, when the neuronal

responses to sensory stimuli are linearly correlated. This is

equivalent to a maximal signal correlation. In this situation,

provided that the noise direction is essentially invariant with

stimulus, the direction of the optimal weight vector for every

stimulus pair is identical, and lies along the groupwise-optimal

weight vector. This indicates that the signal correlation can be

captured as the difference in the performance of the pairwise and

groupwise optimal decoding schemes. Figure 7C verifies this

relationship by quantifying the correlation between the signal

correlation index and the ratio of the groupwise- to pairwise-

optimal decoding performance (Pearson correction coefficient of

0.94; p,0.0001). For over 99% of population sizes and adaptation

cases, the correlation coefficient between signal correlation index

and the ratio of the groupwise to pairwise optimal decoders’ value

of A was significant (p values,0.05).

The increased signal correlation through sensory adaptation

leads to the following prediction: as a result of the increased

homogeneity in neuronal response curves, under adaptation

pooling is expected to be closer to the optimal decoding. We

tested this prediction in the absence of noise correlation. Figure 8

summarizes different decoding schemes as a function of population

size. For each population size, the neurons were selected randomly

from all recording sessions. For those neurons in the population

that were recorded simultaneously, if any, we shuffled the order of

trials in order to eliminate the noise correlation. As predicted,

under adaptation, pooling was closer to groupwise-optimal

decoding. Adaptation enhanced the performance of all decoding

schemes; however this improvement declined with population size

(see insets in Figure 8). The improved decoding efficiency was most

prominent for pooling.

Non-adaptive decoding vs. adaptive decoding
To what extent does the non-adaptive decoder generalize across

states of adaptation? Figure 9 addresses this question by using a

fixed set of weights optimized in the non-adapted state. This figure

compares the decoding performance of the non-adaptive decoder

with the adaptive optimal decoder under each adaptation state.

For this comparison, the performances were always quantified

using untrained trials. To quantify the performance of the adaptive

decoder, non-overlapping sets of training and test trials were

obtained from the same adaptation state. For the non-adaptive

decoder, the training trials were selected from the non-adapted

state while the test trials were from the adapted state. For the 6 mm

adaptation state, non-adaptive performance was 93.2%613.0%

(mean 6 s.d. across sessions) that of the adaptive decoder for all

possible populations of 8 single neurons (Figure 9A). For the

12 mm adaptation state, non-adaptive performance was 83.5%

619.8% that of the adaptive decoder (Figure 9B). In addition to

populations of 8 single neurons, we further investigated the level

of decoder generalization across adaptation states for the whole

set of simultaneously recorded single neurons, as well as the whole

set of single- and multi-units in each session. On average, across

sessions, for the 6 mm adaptation state, non-adaptive performance

was 94.7%610.9% and 99.3%62.5% that of the adaptive

decoder, for each population set respectively (Figure 9C). For

the 12 mm adaptation state, non-adaptive performance was

88.0%617.4% and 91.5%67.1% that of the adaptive decoder

(Figure 9D).

This level of cross-adaptation generalization could either

indicate that the performance of the adaptive decoder is

relatively insensitive to changes in weights, or that adaptation

does not strongly affect the optimal weights. To investigate this,

we first quantified the sensitivity of the adaptive decoder to

deviation of the weight vector from its optimal value in the

adapted conditions. We systematically rotated the weight vector

away from the optimal direction towards all N-1 other

dimensions in the N-dimensional space of population activity

(see Figure 3E). Figure 10A and B demonstrate the sensitivity of

the adaptive decoder for a population size of 8 single neurons.

For both adaptation conditions, the discriminability of the

decoder consistently degraded with the angle of deviation.

Consistent with the non-adapted condition (Figure 3F), the drop

in the value of A was greater along the less informative

dimensions compared with the more informative dimensions;

performance dropped by 36.9%611.1% and 46.0%69.8%

(mean 6 s.d. across sessions) along the second most informative

dimension and maximally dropped by 71.8%611.8% and

64.9%610.5% towards the least informative dimension for

the 6 mm adaptation and 12 mm adaptation, respectively. Across

all dimensions, for a 30u deviation, we observed an average

drop of 4.7%61.5% (mean 6 s.d.) for the 6 mm adaptation,

and a drop of 5.6%61.3% for the 12 mm adaptation, which is

less than the 10.2%61.8% drop for a 30u deviation in the non-

adapted case.

We further quantified the angular difference between the non-

adaptive decoding weight vectors and the adaptive one for 6 mm

and 12 mm adaptation states. The angular difference directly

quantifies the effect of adaptation on the signal and noise

directions, and its subsequent effect on the optimal weight vector.

Figure 10C and D demonstrate the angular difference between the

adaptive decoding weight vector and the non-adaptive one, in

terms of the inverse cosine of their dot product. This measure is

always positive, leading to a potential positive bias in the

estimation of the average angular difference. To estimate this

bias, we measured the angular difference between optimal weight

vectors of the non-overlapping trial-halves within the adapted

state. We then analyzed the correlation between the level of

generalization (as in Figure 9) and the bias-subtracted angular

differences across states of adaptation. The correlation analysis

revealed an anti-correlation between the two measures (Pearson

correlation coefficient: 20.6029, p = 0.0007); the higher the

generalization across states of adaptation, the lower the changes

in the weight vectors.
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Discussion

Here, we characterized the performance of a readout mecha-

nism that linearly combines the responses of neurons in rat barrel

cortex. The coefficients of this linear combination represent the

synaptic weights between the barrel cortex neurons and the

downstream neuron (decoder). We found the weights that

maximized the average signal-to-noise ratio taking into consider-

ation correlated variability across neurons. Such a decoder was less

sensitive to noise correlations and adaptation state compared to a

simple pooling method. In contrast to pooling, where noise

correlation was always detrimental to the information content of

the pooled population responses, for some populations noise

correlation improved the optimal decoding performance. This

motif is consistent with similar results of a recent study which

quantified texture discrimination accuracy of cortical population

responses in awake rats just prior to behavioral responses [28].

Under the optimal coding scheme, the response of less informative

neurons could be exploited to provide information about the

network state and the structure of noise correlations. We found

that adaptation increased noise correlation [5], leading to a greater

effect of noise correlation on decoding than in the non-adapted

state (Figure 6A and B). Ignoring noise correlation led to a decline

in the decoder performance (Figure 4B). This decline increased

with population size. Although noise correlation was stronger

under adaptation, ignoring it during decoding was less detrimental

to the decoding efficiency. This was mainly due to a greater

increase in signal correlation through sensory adaptation.

In the present study, we characterized the pairwise discrimina-

tion performance using a criterion-free metric, A, in the framework

of signal detection theory. Fisher information between neuronal

responses and stimuli provides an alternative measure of

discriminability [29–33]. Fisher information averaged across

stimuli is proportional to the value of A when averaged across

stimulus pairs with minimum difference (3 mm in our study) – see

[33,34]. Furthermore, we found that the optimal decoding scheme

that maximized the signal-to-noise ratio (and not directly the value

of A), did identify the maximal value of A (see Figure 3F).

We employed two parallel methods in order to quantify the

effect of noise correlation on the information content of the

population responses; (1) the effect of trial shuffling on discrim-

inability index, as captured by DAshuffled, directly quantifies the

effect of noise correlation on coding efficiency, and (2) DAdiag

quantifies the cost of ignoring noise correlation. These measures

are analogous to information theoretic measures such as DIshuffled

Figure 8. Performance of various coding schemes under different states of adaptation. A. The discrimination performance of the
pairwise-optimal decoder (solid thick black curve), the groupwise-optimal decoder (solid thin black curve) and pooling (gray line) in the non-adapted
state, as a function of population size. For every population size the value of A was averaged across 500 random selections of single neurons from all
recorded single neurons (n = 73). For population sizes 1, 72 and 73 the possible distinct selections from 73 single neurons were 73, 73 and 1,
respectively. Thus for these population sizes the value of A was averaged across all possible selections. B. As in A, but for the 6 mm adaptation. The
inset represents the relative change in the average value of A through sensory adaptation. C. As in B, but for 12 mm adaptation.
doi:10.1371/journal.pcbi.1003415.g008

Figure 9. Decoding generalization across adaptation states. A.
The abscissa indicates the value of A for the optimal decoder when
optimized on half of the adapted responses and tested on the other
half for 6 mm adaptation across populations of 8 single neurons. The
ordinate corresponds to the value of A for the optimal decoder when
optimized on half of the non-adapted responses and tested on the
same half of the adapted responses as in the abscissa. Error bars
indicate standard error of the means. Colors indicate different sessions.
B. As in A, but for 12 mm adaptation. C. As in A, but for whole session
populations. Filled markers represent populations comprising single
units only, while open markers indicate the whole set of simultaneously
recorded single- and multi-units in a session. D. As in C, but for 12 mm
adaptation.
doi:10.1371/journal.pcbi.1003415.g009
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[5,35–37] and Icor-dep [38–43], as well as other measures based on

signal detection theory such as Dd2
shuffled and Dd2

diag [44–46].

Along the lemniscal pathway, there is a greater than 10 fold

increase in the number of neurons representing a whisker from

brainstem to cortex; from 160–200 neurons per barrelette [47]

and 250–300 neurons per barreloid [48–50] to about 2500 cortical

neurons per layer IV barrel [51,52]. One explanation for this

increase might be the need to represent multiple features (e.g. a

broad range of speeds of whisker motion). For example, the broad

range of perceptually discriminable whisker motions [7,53] can be

broken down into narrower ranges. Each of these narrowed ranges

of whisker motion intensities could then be represented by a

subpopulation of neurons sensitive to that range. The weights of

neurons for these combinations could be optimized using the

solution applied in the present study. Further experiments are

required to investigate the mechanism through which such optimal

synaptic weights could potentially be developed across multiple

subpopulations.

An important question is whether the readout mechanism

adjusts to changes in neuronal response dynamics. This question is

not limited to sensory adaptation. In addition to adaptation

(temporal context), spatial context can also modulate the response

properties of neurons [54,55] and produce similar perceptual

biases and illusions [32]. Likewise, attention also changes the

tuning properties of neurons [56–59] and induces perceptual

illusions [60,61]. The match between perceptual predictions based

on a non-adaptive decoder and psychophysical measures of

perceptual biases and thresholds in the visual system is consistent

with a fixed non-adaptive readout [32,33]. However, several

attributes of an adaptive readout could potentially produce similar

perceptual biases [33]. In addition, cortical neurons may be able to

provide information about network dynamics and adaptation state

to downstream structures. Further experiments are required to

quantify the psychophysical effect of sensory adaptation in the

whisker-mediated touch system in rodents.

Here, we observed a remarkable cross-adaptation generaliza-

tion. In isolation, this could either indicate that the decoding

performance is relatively insensitive to changes in weights or that

adaptation does not strongly affect the optimal weights. Given the

dependence of the decoding performance on the changes in

weights as revealed in Figure 10A and B, we conclude that the

optimal weights remain relatively unchanged after adaptation.

These results can be understood in terms of the changes in the

response function of cortical neurons through sensory adaptation.

Sensory adaptation shifted the response function and response

variability profile of cortical neurons with no systematic modula-

tion on the response saturation level [5]. Thus the set of weights,

which maximize discriminability between a pair of stimulus

Figure 10. Adaptive and non-adaptive decoding tolerance to weight vector deviation. A. The relative performance of adaptive decoding
with a deviated weight vector compared to the optimal direction for all possible populations of 8 neurons averaged across sessions (n = 5) for 6 mm
adaptation state. Colors indicate the 7 trajectories toward associated dimensions, with red corresponding to the dimension perpendicular to optimal
direction such that it maximizes the separation between neuronal responses, and blue corresponding to the dimension along which the separation
between neuronal responses is minimal. Error bars indicate standard error of the means. B. As in A, but for 12 mm adaptation. C. Abscissa represents
the angular difference of optimal weight vectors for non-overlapping trial-halves within the 6 mm adaptation state. Ordinate represents the angular
difference for 6 mm adaptation versus non-adapted state. For each session, the angular differences were averaged across 100 times of random trial-
halving. Error bars indicate standard error of the means. Colors indicate different sessions. D. As in C, but for 12 mm adaptation.
doi:10.1371/journal.pcbi.1003415.g010
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amplitudes in the non-adapted state, are expected to maximize

discriminability between a new pair of stimulus amplitudes that are

in effect simply shifted by the adaptor.

Our previous study showed that sensory adaptation increases

noise correlation across neurons [5]. This increase in noise

correlation tends to decrease the overall signal-to-noise ratio. The

marked level of cross-adaptation generalization indicates that

signal correlation across neurons increases with sensory adaptation

as well. This increase in signal correlation can be explained in

terms of the adaptation-induced lateral shift in the response of

single neurons. In the non-adapted state, neurons exhibit various

sensitivity thresholds. However, sensory adaptation tends to

equalize the threshold of neurons by aligning their response

functions with respect to the adapting stimulus amplitude [5]. This

response alignment homogenizes the population of neurons,

leading to increased signal correlation.

Here, decoding was performed along the first eigenvector of the

C{1S. The decoding scheme can however be expanded to other

eigenvectors of C{1S. As these eigenvectors are not orthonormal

(see Methods), the information along them is correlated, leading to

redundant population coding. An interesting question is how

sensory adaptation changes the direction of these eigenvectors and

the amount of information along them in a multi-dimensional

feature space of sensory stimuli. If through sensory adaptation the

eigenvectors rotate away from each other to form a more

orthogonal basis, the information extracted from them is less

correlated, leading to an adaptive decorrelated representation of

sensory features along these eigenvectors [62,63].

In the present study, and also in previous relevant studies

[28,36,46,64–72] the decoder is commonly optimized to maximize

the discriminability or minimize the estimation error. However, a

behaviorally-relevant question is ‘‘which readout mechanism

matches the perceptual accuracy of subjects?’’ To address this

question, the optimization objective function should be set to a

behavioral measure such as choice probability [73]. Investigating

such a perceptually-matched decoder under different temporal

(adaptation), spatial or attentional contexts would reveal the extent

to which the readout adjusts to context-induced changes in

neuronal response dynamics.
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