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Acute pancreatitis (AP) is a leading cause of hospitalization among non-

malignant gastrointestinal disorders. The mortality of severe AP can reach

30–50%, which is most probably owing to the lack of specific treatment. There-

fore, AP is a major healthcare problem, which urges researchers to identify

novel drug targets. Studies from the last decades highlighted that the toxic cel-

lular Ca2þ overload and mitochondrial damage are key pathogenic steps in the

disease development affecting both acinar and ductal cell functions. Moreover,

recent observations showed that modifying the cellular Ca2þ signalling might

be beneficial in AP. The inhibition of Ca2þ release from the endoplasmic reti-

culum or the activity of plasma membrane Ca2þ influx channels decreased the

severity of AP in experimental models. Similarly, inhibition of mitochondrial

permeability transition pore (MPTP) opening also seems to improve the

outcome of AP in in vivo animal models. At the moment MPTP blockers are

under detailed clinical investigation to test whether interventions in MPTP

openings and/or Ca2þ homeostasis of the cells can be specific targets in

prevention or treatment of cell damage in AP.

This article is part of the themed issue ‘Evolution brings Ca2þ and ATP

together to control life and death’.
1. Ca2þ is controlling secretory events in pancreatic acinar
and ductal cells

Intracellular Ca2þ signalling plays central role in the regulation of the secretory

processes of the exocrine pancreas. It is a well-known fact that in the exocrine pan-

creas acinar cells secrete digestive enzymes and pancreatic ductal epithelial cells

secrete HCO�3 rich alkaline fluid that washes the digestive enzymes out from the

pancreas. The prompt coordination of the secretory events of the two cell types

is essential and Ca2þ has a central role in both pancreatic physiology and patho-

physiology. Recent studies suggest that these two cell types cannot be handled

separately since they are more likely integrated into a functional unit [1]. This is

further amplified by the neurohormonal regulation of exocrine pancreatic

secretion. It has been demonstrated that acetylcholine (the main stimulatory neu-

rotransmitter of the pancreas) is released from the parasympathic nerve endings,

releasing digestive enzymes from the acinar cells [2], whereas at the same time

enhances the pancreatic ductal fluid and HCO �
3 secretion via M3 metabotropic

cholinerg receptor (M3R) mediated Ca2þ release [3]. In addition, the circulating

hormone cholecystokinin (CCK) regulates pancreatic secretion via oscillatory

Ca2þ signals [4]. In pancreatic ductal epithelial cells (PDECs), the role of CCK

stimulation differs between species, in humans it has negligible direct effects,

but remarkably potentiates the stimulatory effect of secretin on the HCO �
3

secretion [5]. The proper control of secretion is further potentiated by the strong

synergy between Ca2þ and cAMP signalling [6]. The physiological roles of
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Figure 1. Hypothetical sequence of events in the pathogenesis of AP. Pancreatitis inducing toxic stress factors can release the intracellular Ca2þ from the stores, such
as the endoplasmic reticulum (ER), or acidic organelles. However, the constant presence of toxins will lead to the elongation of the Ca2þ signals via multiple
mechanisms. First, the ER Ca2þ depletion activates the influx of extracellular (EC) Ca2þ. Second, the direct mitochondrial toxicity of the stress factors (such as
bile acids or non-oxidative ethanol metabolites), increases reactive oxygen species production and the sustained Ca2þ increase will lead to the opening of the
MPTP that will damage the mitochondria. The lack of intracellular ATP impairs the function of Ca2þ extrusion and reuptake pumps such as PMCA or SERCA.
These changes together will generate a vicious cycle leading to inhibited secretion and intracellular activation of digestive enzymes in acinar cells and impaired
ductal fluid and HCO �3 secretion. Altogether, these changes will trigger cell necrosis and AP.
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Ca2þ signalling in epithelial secretion have been outlined in

more detail in excellent reviews [7–10].
2. The price of versatility: Ca2þ toxicity in acute
pancreatitis

Although it is well established that physiological Ca2þ signalling

controls the normal pancreatic functions on multiple levels,

it is also well documented that uncontrolled cellular Ca2þ over-

load leads to cellular damage and pathogenesis of acute

pancreatitis (AP; figure 1). In this chapter, we will summarize

the effects of the common stress factors that cause AP.

(a) Bile acids
Biliary pancreatitis is one of the most common forms of AP,

although the exact pathogenesis is not known in detail. One

possible explanation is the ‘common channel’ theory, which

suggests that an impacted gallstone creates communication

behind the stone connecting the common bile duct to the pan-

creatic duct. This would theoretically allow bile acids (BAs) to

reach the pancreatic ductal lumen or even the acinar cells [11].

However, this hypothesis was questioned by several studies

suggesting that instead of the reflux mechanism, increased

luminal pressure would cause the pancreatic damage [12–15].

Whether or not BAs reach the pancreatic tissue directly from

the luminal side, several observations suggest that BA reaching

the ductals cells from either basolateral or luminal sides can

trigger multiple cellular responses in acinar and ductal cells

that might contribute to the development of AP.

Earlier, our group showed that the hydrophobic, non-con-

jugated BA, chenodeoxycholate (CDCA) dose-dependently

affects HCO �
3 secretion of pancreatic ductal epithelia [16].

We found that lower concentration of CDCA (100 mM) stimu-

lated and high concentration (1 mM) severely inhibited the
ion transport activities including the ductal HCO �
3 secretion.

The explanation for this dual effect might be the type of Ca2þ

signals triggered by CDCA. Luminal administration of

100 mM CDCA evoked short oscillatory Ca2þ signals, which

were fully abolished by IP3 receptor inhibition. On the

other hand, challenging the pancreatic ductal cells with

1 mM CDCA caused a sustained Ca2þ elevation [16] and

severe damage of the mitochondrial morphology and

function [17]. Interestingly, in our hands N,N0-[1,2-ethane-

diylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-

oxoethyl]]-,bis[(acetyloxy)methyl]ester (BAPTA-AM) failed

to prevent the mitochondrial damage and therefore the inhibi-

tory effect of CDCA on the HCO �
3 secretion [16], which might

be explained by the existence of a Ca2þ-independent direct

mitochondrial toxicity of bile acids [18]. Similarly to ductal

cells, pancreatic acinar cells respond with intracellular Ca2þ

elevation to BA challenge [19] due to IP3R and ryanodine

receptor activation. It is also well documented that taurolitho-

cholicacid 3-sulfate diminishs cellular ATP production [20] and

dissipate the mitochondrial membrane potential (DCm), which

was not affected by BAPTA-AM treatment [21]. Although BA

directly affects the acinar cells, the observations of Perides

et al. actually suggest that biliary pancreatitis is a receptor

mediated disease [22]. They showed that the G-protein-

coupled cell surface bile acid receptor (Gpbar1, or TGR5) is

expressed at the apical membrane of pancreatic acinar cells

and its activation is associated with pathological Ca2þ signals,

intracellular activation of digestive enzymes and cell injury, i.e.

the hallmarks of AP. Whereas the genetic deletion of Gpbar1

markedly reduced the severity of taurolithocholic acid 3-sulfate

(TLCS)-induced, but not caerulein-induced AP. Very recently,

Katona et al. provided solid evidence that specific BA might

be used as treatment option against biliary pancreatitis [23].

They showed that pre-treatment of pancreatic ducts with

ursodeoxycholate (UDCA) remarkably ameliorated the toxic

effects of UDCA. Chenodeoxycholate-induced intracellular
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ATP depletion, mitochondrial injury, and as a consequence, cell

death were completely prevented by UDCA, whereas the

activity of the epithelial acid–base transporters was preserved

in in vitro experiments. In addition, in vivo experiments

showed that oral administration of UDCA significantly reduced

the severity of CDCA-induced AP. Interestingly, UDCA had no

effect on the sustained Ca2þ elevation triggered by CDCA, rais-

ing the possibility of a direct mitochondrial protective effect,

which is yet to be determined. These observations nicely sup-

plement the previous results of Seyhun et al., who showed that

the endoplasmic reticulum (ER) chaperone tauroursodeoxy-

cholic acid inhibits the unfolded protein response (UPR) in
vitro [24] and in vivo [25]. This effect reduced the activation of

UPR components and reduced intracellular trypsin activation,

oedema formation and cell damage in pancreatic acinar cells.

(b) Ethanol and non-oxidative ethanol metabolites
The second most frequent form of pancreatitis is alcohol-

induced AP [26]. Whereas genetic factors seem to be involved

in the disease development [27], several studies investigated

the direct effects of ethanol and different ethanol metabolites

on the exocrine pancreas. Ethanol and its oxidative metabolite

acetaldehyde have moderate effects on the [Ca2þ]i in pancreatic

acinar cells even in extremely high concentrations [28].

Whereas the non-oxidative ethanol metabolites (fatty acid

ethyl esters, FAEE) induced sustained [Ca2þ]i elevation and a

drop of cellular ATP leading to necrosis [28–30]. Importantly,

the breakdown of FAEE to fatty acids (FA) by intracellular

hydrolases significantly contribute to the toxic effects of

non-oxidative ethanol metabolites [30]. This fact has been

further emphasized in a recent elegant study by Huang et al.
[31]. They showed that the inhibition of oxidative ethanol

metabolism significantly enhance, whereas inhibition of non-

oxidative ethanol metabolism augment pancreatic damage in

an in vivo model of ethanol-fatty acid induced AP. On the

other hand pancreatic ductal cells respond to low to high con-

centrations of alcohol, likewise to BA. Yamamoto et al. showed

that 1 mM ethanol induces [Ca2þ]i, elevation and augments

fluid secretion, whereas high concentration moderately inhibits

the stimulated fluid secretion in secretin-stimulated guinea pig

pancreatic ducts [32]. Our group recently investigated the

effects of ethanol and ethanol metabolites in more detail [33].

We showed that alcohol and fatty acids inhibit fluid and

HCO �
3 secretion, as well as cystic fibrosis transmembrane con-

ductance regulator (CFTR) activity, in pancreatic ductal cells.

Interestingly, in the case of FAEE only the inhibition of the

CFTR channel was observed in high concentrations [34]; how-

ever, the inhibition of HCO �
3 secretion was not observed [33].

The remarkable inhibitory effects of alcohol and fatty acids

were mediated by sustained increase of intracellular Ca2þ,

inhibited adenosine 3’,5’-cyclic monophosphate and ATP pro-

duction and depolarization of DCm. We also showed that

ethanol reduced expression of CFTR via multiple pathways,

which in turn augmented the severity of experimental alco-

hol-induced AP in mice.

(c) Other stress factors
As demonstrated above, the two most common pathogenic

factors of AP—BA and ethanol—damage the exocrine pancreas

via Ca2þ toxicity and mitochondrial injury. Notably, these

cellular changes seem to be the key of AP pathogenesis since

a considerable number of studies showed that other stress
factors provoke the same alterations in Ca2þ signalling and

energy metabolism. Intrapancreatic trypsinogen activation is a

hallmark of AP pathogenesis and we showed earlier that tryp-

sin acting via PAR2 on the luminal membrane induces

intracellular Ca2þ elevation and inhibits the luminal acid/

base transporters in PDEC [35]. Moreover, the inhibitory

effect was abolished by BAPTA-AM preincubation, similarly

to the inhibitory effects of ethanol and fatty acids. Very recently,

Jin et al. investigated the pathomechanism of an iatrogen form of

AP, the post-ERCP pancreatitis [36]. Using sophisticated in vitro
and in vivo models, they showed that exposure of pancreatic

acinar cells to iohexol (a radiocontrast agent) triggered sustai-

ned intracellular Ca2þ elevation. The downstream activation

of NF-kB and NFAT is completely abolished by the suppression

of the Ca2þ signals. Moreover, they proved that the downstream

effects of Ca2þ were mediated by calcineurin since genetic,

or pharmacological inhibition of calcineurin prevented the

radiocontrast-induced damage. This interesting study further

underlines the central role of pathophysiological Ca2þ signalling

in the pathogenesis of AP regardless of the etiological factor.
3. Sources of Ca2þ in pancreatic acinar and
ductal cells

(a) Ca2þ release from the endoplasmic reticulum
Agonist binding (Ach, ATP) to G-protein-coupled receptors acti-

vate phospholipase C b (PLCb) in pancreatic acinar and ductal

cells. The activated PLCb releases inositol trisphosphate (IP3) by

hydrolysing phosphatidylinositol 4,5-bisphosphate (PIP2) [37].

Under physiological conditions, the intracellular Ca2þ signals

have a strict spatio-temporal localization [38,39], mostly limiting

Ca2þ signals to the apical pole of the cells. As in other non-excit-

able cell types, this is ensured by two ATP-dependent pumps

that clear the cytosol from the free Ca2þ. The sarco/endoplasmic

reticulum Ca2þ-ATPase (SERCA) pumps and the plasma mem-

brane Ca2þ-ATPase (PMCA) pumps move Ca2þ from the

cytosol to the ER and the extracellular space, respectively. This

activity restores basal intracellular Ca2þ levels and refills the

ER Ca2þ stores. In PDEC, the Ca2þ signalling is not character-

ized in such detail; however, the overall polarity of the ductal

cells including the ion channels and transporters, IP3 receptors

and mitochondria [17], suggest a very similarly regulated

Ca2þ signalling, like in acinar cells. Further studies are required

for the clarification of these questions.

(b) Extracellular Ca2þ influx
The complex role of extracellular Ca2þ influx to orchestrate non-

excitable cell functions has been established several decades ago

[40]; however, the molecular components participating in the

process remained unknown until 2005. Hoth et al. found that

agonist-mediated depletion of the intracellular Ca2þ stores

induced a Ca2þ selective sustained inwardly rectifying current,

which was termed ICRAC (calcium release-activated calcium cur-

rent) [41]. The real revolution of the field began by the discovery

of the ER Ca2þ sensor stromal interaction molecule 1 (Stim1) [42]

and the plasma membrane Ca2þ channel Orai1 [43,44]. Briefly,

the process of store operated Ca2þ entry (SOCE) consist of the

following elements. In resting conditions the ER Ca2þ stores

are refilled and Stim1 distributes in the ER membrane. However

during physiological stimulation the ER Ca2þ stores are quickly

depleted, which induces the dissociation of the bound Ca2þ
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from the EF hand of Stim1. This is followed by a conformational

change and translocation of Stim1 to defined ER-PM junctions,

termed as puncta formation [45]. This translocation is required

for the activation of the plasma membrane Ca2þ influx channel

Orai1, where the Stim Orai1-activating region (SOAR) and poly-

basic domains of Stim1 interact with different binding sites of

Orai1 that results in clustering and activation of the channel

[46]. In addition to Orai1, other possible Ca2þ entry channels

that seem to play a role in Stim1-mediated SOCE are the TRPC

channels [47,48]. These channels function as Ca2þ-permeable

non-selective cation channels mediating receptor evoked Ca2þ

influx in many cells [49]. SOCE have been investigated mostly

in acinar cells of various exocrine glands, as models of polarized

epithelial cells [50–52]. Interestingly, the role of SOCE in the

physiological functions of PDEC, especially in HCO �
3 secretion

remained elusive. Kim et al. found that intracellular Ca2þ

elevation, caused by the activation of SOCE might play a role in

exocytosis in pancreatic ductal cells isolated from dog main pan-

creatic duct [53,54]; however, they did not investigate HCO �
3

secretion of PDEC, which therefore needs further investigation.
0425
4. Mitochondrial Ca2þ handling and Ca2þ

overload of mitochondria
During physiological Ca2þ signalling, mitochondria takes up

Ca2þ, which has been shown to directly increase energy

output by enhancing the activity of tricarboxylic acid cycle

dehydrogenases and the ATP synthase [55]. The pioneer

work of Rizzuto et al. highlighted that the cytosolic Ca2þ sig-

nals propagate to the mitochondria [56] and a couple of years

later Csordas et al. found that ER membrane and the outer

mitochondrial membrane form a quasi-synaptic connection

[57] that is the structural bases of the Ca2þ hotspots [58].

Despite the functional characterization of the mitochondrial

Ca2þ signalling the molecular background of the process was

not known. In 2011, two groups independently identified the

mitochondrial Ca2þ uniporter (MCU), an inner mitochondrial

membrane protein that is responsible for the mitochondrial

Ca2þ uptake [59,60]. The Ca2þ efflux from the mitochondria

is mediated by the mitochondrial Naþ/Ca2þ exchanger

(NCLX) [61], thus the mitochondrial Ca2þ level is tightly

regulated under physiological conditions. However, patho-

physiological signals can lead mitochondrial injury, which

can activate both apoptosis and necrosis. The classical mito-

chondrial apoptotic pathway involves the outer membrane

permeabilization by Bax and Bak (two members of the

pro-death Bcl-2 family) that will allow apoptotic factors like

cytochrome c, Smac/DIABLO and apoptosis inducing factor

to be released from the intermembrane space into the cytosol,

leading to cell death by apoptosis [62]. On the other hand,

Ca2þ overload or increased reactive oxygen species (ROS) pro-

duction can cause the opening of mitochondrial permeability

transition pore (MPTP) that results in the loss of mitochondrial

inner membrane potential, uncoupling of the respiratory chain

with a consequent drop of mitochondrial ATP synthesis, and

increased permeability of the inner mitochondrial membrane

that eventually leads to mitochondrial swelling, rupture and

necrotic cell death [63,64]. Notably, recent studies lead to the

reconsideration of the role of MPTP in cellular physiology,

since it has been proved to be important in several physiologi-

cal processes such as energy metabolism [65], mitochondrial

Ca2þ efflux [66] and ROS signalling [67] as well. The molecular
identity of MPTP is still a matter of investigation [68]. The his-

torical model of MPTP included the voltage-dependent anion

channel (VDAC) in the outer mitochondrial membrane, the

adenine nucleotide translocator (ANT) in the inner mitochon-

drial membrane, and CypD as its regulator in the matrix of

the mitochondria [69]. However recent intensive efforts

revealed new molecules that might contribute to the MPTP for-

mation (reviewed in detail [68,70]). A growing number of

evidence suggest that VDAC is not very likely to contribute

to the MPTP formation. On the other hand, studies on ANT

suggest that it is not required for MPTP formation, but it regu-

lates MPTP activity [71]. CypD is an important regulator of

MPTP as supported by genetically modified mice [72] and

pharmacologic inhibition of CypD by cyclosporine A [73]. On

the other hand, several studies suggested that the activity of

F1F0 ATP synthase or the proapoptotic Bax/Bak proteins [74]

are required for proper MPTP function [75], whereas other pro-

teins, such as mitochondrial phosphate carrier, might impact the

pore opening indirectly [76]. At the moment the role of MPTP in

the pathogenesis of AP is supported by limited, but still solid

evidence. Mukherjee et al. demonstrated that both genetic and

pharmacologic inhibition of MPTPopening (using the Cyclophi-

lin D-deficient Ppif gene knockout mice, or in vivo treatment with

cyclosporine A derivates, respectively) significantly ameliorated

pancreatic damage in different experimental AP models in mice

[77]. Importantly MPTP blockade protected the pancreatic

acinar cells from necrosis whereas apoptosis was not affected,

which is in strong agreement of earlier studies [72].
5. Novel therapeutic targets in acute pancreatitis
In pancreatic acinar cells, IP3-mediated Ca2þ release from the

ER is an essential component of the physiological response to

agonist stimulation, but it could also contribute to the patho-

logical Ca2þ overload of the cells evoked by toxic factors that

induce AP (cerluien hyperstimulation, bile acids, or ethanol

and ethanol metabolites) [39]. Caffeine is a known inhibitor

of IP3Rs due to multiple actions that include the inhibition of

phospholipase C-mediated production of IP3 [78], antagonism

of IP3Rs [79] and direct binding to IP3Rs that reduce the

channels open-state probability [80]. Interestingly, coffee con-

sumption moderately reduces the risk of alcohol-associated

pancreatitis suggesting that the inhibitory effect of caffeine on

IP3-mediated Ca2þ signalling may be protective in AP [81].

Based on these considerations Huang et al. recently studied

the effects of caffeine and its xanthine metabolites on pancreatic

acinar IP3R-mediated Ca2þ signalling and experimental AP

[82]. They found that caffeine and dimethylxanthines (but

not monomethylxanthines) blocks IP3-mediated Ca2þ oscilla-

tions in response to uncaged IP3 or toxins, prevented

mitochondrial depolarization and necrotic cell death in vitro
and significantly impaired the severity of experimental AP

in three different models. These observations suggest that

caffeine, or its metabolites might be suitable starting points to

develop therapy for AP (figure 2).

As discussed above, store operated Ca2þ entry could be a

key component in the development of cellular Ca2þ overload.

Earlier Kim et al. showed that genetic [83] or pharmacological

inhibition (using the TRPC3-specific inhibitor pyrazole 3) [84]

of TRPC3 significantly reduce the sustained Ca2þ elevation in

pancreatic acinar cells evoked by cell stressors (bile acid or

fatty acid ethyl ester). In addition, it prevented the pathological
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inhibition of digestive enzyme secretion and markedly reduced

intracellular trypsin activation and excessive actin depoly-

merization in vitro and the severity of pancreatitis in vivo.

Recently, Gerasimenko et al. demonstrated the pharmacological

inhibition of another Ca2þ entry channel Orai1 by a specific

inhibitor called GSK-7975A which prevents acinar cell necrosis

in vitro [85]. This important observation was supported by Wen

et al., who tested the effects of two specific Orai1 inhibitors

(GSK-7975A and CM_128) in isolated human and rodent

pancreatic acinar cells and in different experimental AP

models [86]. They showed that both Orai1 inhibitors prevented

the sustained Ca2þ elevation in vitro and significantly impaired

signs of pancreatic injury including pancreatic oedema,

inflammation and necrosis in all tested experimental models.

Mitochondrial permeability transition is a key feature of

cellular damage in many cell types and diseases (see above);

therefore, MPTP blockers are under detailed clinical investi-

gation in different studies. In a recent clinical study, the

efficacy and safety of TRO40303 (an MPTP inhibitor) have

been evaluated for the reduction of reperfusion injury in
patients undergoing revascularization for ST-elevation myo-

cardial infarction (MITOCARE study) [87]. This study did

not show any effect of TRO40303 in limiting reperfusion

injury of the ischaemic myocardium. In another recently

completed CIRCUS trial, the effects of i.v. administrated

cyclosporine have been evaluated on the clinical outcome of

patients with anterior STEMI [88]. Similarly to the MITOCARE

study, CIRCUS trial did not report any improvement in the

cyclosporine-treated patients. The reasons for the failure of

the studies might be explained by pharamological limitations

of the administrated compounds [89] that include low tissue

penetration due to the lack of collateral blood flow and high

metabolism of the compound in the blood. In addition,

MPTP blockers have been suggested to be beneficial in hepa-

titis C therapy, since they inhibited hepatitis C virus (HCV)

replication by preventing a cyclophilin-A induced cis–trans

isomerization in domain II of NS5A [90]. However, it was

not investigated in clinical trials further. Very recently,

Mukherjee et al. tested the effect of MPTP inhibition on the

severity of AP in rodent experimental AP models [77]. They

have shown that the inhibition of MPTP with pharmacological

compounds (two cyclosporine A derivate: DEB025 or

TRO40303), or genetic deletion of the Ppif gene (that encodes

cyclophylin D, a component of MPTP) significantly decreases

the severity of AP in different independent models. These

observations suggest that the MPTP inhibition might be poten-

tially beneficial in the AP therapy. Other indirect evidence for

this hypothesis has been provided by Judak et al., who showed

that the supplementation of cellular ATP in vitro diminished

the inhibitory effect of ethanol metabolites on the ion transport

activities in isolated guinea pig pancreatic ductal cells [34].

These results suggest that the restoration of the cellular

energy level can be beneficial in AP, which can prevent the

cellular dysfunction and cell damage.
6. Closing remarks
Although there are several promising results and potential

drug targets that play a role in the pathogenesis of AP,

it remains a great challenge for researchers and clinicians.

A number of unanswered questions are waiting for answers.

Moreover, it will take several years to test the experimental

results on clinical patients as well. To be able take up these

challenges, clinicians and researchers should work closely

together in the future.
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