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ABSTRACT
In Gentiana lutea two varieties are described: G. lutea var. aurantiaca with orange
corolla colors and G. lutea var. lutea with yellow corolla colors. Both color varieties
co-occur in NW Spain, and pollinators select flower color in this species. It is not
known whether a hybridization barrier exists between these G. lutea color varieties.
We aim to test the compatibility between flower color varieties in G. lutea and its
dependence on pollen vectors. Within a sympatric population containing both
flower color morphs, we analyzed differences in reproductive success (number,
weight, viability and germinability of seeds) depending on fertilization treatments
(autogamy and xenogamy within variety and among varieties). We found a 93%
reduction in number of seeds and a 37% reduction in seed weight respectively of
autogamy treatments compared to xenogamy crossings. Additionally, reproductive
success is higher within color varieties than among varieties, due to a 45% seed
viability reduction on hybrids from different varieties. Our results show that
G. lutea reproductive success is strongly dependent on pollinators and that a partial
hybridization barrier exists between G. lutea varieties.

Subjects Biogeography, Conservation Biology, Ecology, Evolutionary Studies, Plant Science
Keywords Pollen vectors, Gentiana lutea, Flower color morphs, Self-incompatibility,
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INTRODUCTION
Pollen vectors can drive plant evolution and diversification throughout their selection

on floral traits (Darwin, 1859; Darwin, 1862; Thompson, 1994; Barrett & Harder, 1996;

Charlesworth, 2006). Most angiosperms need vectors for pollen transfer between plants,

which are mainly insects but can also be other animals and to a lesser extent wind or water

(Harder & Barrett, 1996; Ackerman, 2000; Ollerton, Winfree & Tarrant, 2011). Different

floral strategies were developed to attract these animals (Ghazoul, 2006), which may affect

plant fitness to a large degree (Waser, 1983; Conner & Rush, 1996). This plant–pollinator

relationship promotes evolution of species involved in such an interaction. Thus, the

degree of dependence on animal pollinators might affect the strength of selection and

therefore the likelihood of species diversification.
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Gentiana lutea L. shows flower color variation from orange to yellow both, within and

among populations (Sobral et al., 2015) at the western extreme of the distribution range.

Two different varieties are described for Gentiana lutea L. depending on flower color:

Gentiana lutea L. var. aurantiaca (M. Laı́nz) showing orange corolla colors and Gentiana

lutea L. var. lutea showing yellow corollas (Laı́nz, 1982; Renobales, 2003). Gentiana lutea’s

flower color is a trait with a genetic basis (Zhu et al., 2002; Zhu et al., 2003) and there

are genetic differences among populations (González-López et al., 2014). We know that

flower color variation among populations in this species across NW Spain, is not related

to abiotic environmental factors such as elevation, temperature, radiation and rainfall

(Veiga et al., 2015a). Additionally, we know that pollinators exert selective pressures on

G. lutea flower color (Veiga et al., 2015b) and play a role in flower color differentiation

among G. lutea populations (Sobral et al., 2015). Rossi (2012) described G. lutea as a partial

self-compatible species. However, others cite G. lutea as a self-incompatible species, which

may need animal pollinators to reproduce (Hegi, 1927; Kèry, Matthies & Spillmann, 2000;

Kozuharova & Anchev, 2006; González-López et al., 2014).

The aim of this study is to test if there is some degree of incompatibility between

Gentiana lutea color varieties due to a partial hybridization barrier. If a hybridization

barrier exists between G. lutea color morphs, we might expect crossings among varieties

to have a lower reproductive success (Hauser, Jørgensen & Østergård, 1998; Hauser, Shaw

& Østergård, 1998). Additionally, if G. lutea color morphs result from selective pressures

exerted by pollinators (Veiga et al., 2015b; Sobral et al., 2015), we would expect G. lutea to

strongly depend on the pollinating vectors exerting this selection. Thus, G. lutea crossings

among different individuals would have higher reproductive success than fertilizations

within-individual plants. In order to investigate our hypothesis, we proposed the following

questions; (i) Are there any differences in reproductive success (seed number, seed

weight, seed viability and seed germinability) between within-color variety crossings

and among-color variety crossings? (ii) Are there any differences in reproductive success

between self-pollinated seeds and seeds coming from among individual crossings?

MATERIALS & METHODS
Gentiana lutea L. (Gentianaceae) is a herbaceous perennial plant distributed along the

Central and Southern European mountains typically growing on livestock grazing grass-

lands and hillsides from montane to sub-alpine habitats, approximately from 800 to 2.500

m a.s.l. (Hesse, Rees & Müller-Schärer, 2007; Anchisi et al., 2010). This long-lived species

presents a rhizome, which develops one (rarely two or three) unbranched stout stem with

basal leaves, up to 200 cm tall (Renobales, 2012). Flowering occurs in summer (June–July)

when the fertile stems show flowers, grouped in pseudo-whorls, which bloom spirally;

and the inflorescence develops in succession from apex to base (Kozuharova, 1994). There

are two different varieties that differ in flower color: Gentiana lutea L. var. aurantiaca (M.

Laı́nz) with orange flowers and Gentiana lutea var. lutea L. with yellow flowers (Laı́nz,

1982; Renobales, 2003). Gentiana lutea flowers show rotate corollas with lobes (Renobales,

2012), which facilitate the access of pollinators to the nectaries and are visited by at least 11
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families of insects, belonging to four orders (Rossi et al., 2014). The main flower visitors

of G. lutea plants at the Cantabrian Mountains are bumblebees, followed by cuckoo

bumblebees and honeybees (Sobral et al., 2015). Fruits hold many flattened, elliptic and

winged seeds disseminated through anemochory (Struwe & Albert, 2002).

We carried out experimental manipulations at one G. lutea population in León, Spain

(43◦03′N; 6◦04′W; 1,600 m a.s.l.) in July 2012. For field experiments, we received field

permit from Environmental Territorial Service from León, Territorial Delegation of Gov-

ernment of Spain, Regional Government of Castilla and León (Identifier:12 LE 325 RNA

PuebladeLilio INV; Reference: 06.01.013.016/ROT/abp; File number: AEN/LE/103/12).

Note that in this study, we will distinguish two different flower color classes (orange and

yellow). Both varieties do not differ in their UV reflectance but they do differ in their

visible reflectance (see Veiga et al., 2015b); thus, we use visible reflectance to identify color

varieties. We haphazardly chose five flowers on each of 25 orange-flowered plants and 25

yellow-flowered plants. Flower buds, except the control group, were bagged with tulle be-

fore flower opening and until fruit formation in order to avoid contact with pollen vectors.

We created the following treatments: (1) Control group (C), in which we applied no

treatment, so natural pollination occurred; (2) Spontaneous autogamy (Sa), in which

pollen was not applied manually and only pollen from the same flower may spontaneously

arrive to the ovary; (3) Facilitated autogamy (Fa), in which we applied pollen manually

from the flower’s own anthers; (4) Facilitated xenogamy within varieties (Fxw), in which

we emasculated flowers by cutting the stamens before pollen release in order to prevent the

entry of flower’s own pollen, and applied pollen manually from other plants of the same

flower color; (5) Facilitated xenogamy among varieties (Fxa), in which we emasculated the

flowers and applied pollen manually from plants with different flower color.

Reproductive success can be quantified as the number of fertile descendants produced

by an individual throughout its life. It is not feasible to quantify reproductive success

in long-lived species in these terms, so seed production is considered a good estimate

(see the review of Kingsolver et al., 2001). Other measures of reproductive success are

proportion of viable seeds and seed germinability. We used four measures of reproductive

success: number of seeds, weight of seeds (mg), proportion of viable seeds (seed viability)

and proportion of germinated seeds (seed germinability). Due to manipulations some

bags were opened, thus plants with the five treatments were down to 26 (18 orange and

8 yellow-flowering individuals). One hundred and thirty ripped fruits were collected

before opening, being careful to ensure that the seeds were fully formed. On each fruit we

measured seed weight (mg) and counted the number of seeds and the number of ovules

not developed; from the sum of non-fertilized ovules and the seeds, we obtained the total

number of ovules. Total number of ovules did not vary among treatments (please see

Supplemental Information 2), thus we used the absolute number of seeds produced in each

fruit, instead of calculating the seed production relative to the ovules on each fruit.

We also measured seed germinability and seed viability. We haphazardly chose up to

20 seeds in each fruit and distributed them on filter paper in petri plates. Seed number

was very low in the autogamy treatments; thus, seeds from spontaneous autogamy (Sa)
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and facilitated autogamy (Fa) treatments were grouped. In total, we analyzed viability and

germination rate of 1,800 seeds (10 plates per treatment and between 30 and 50 seeds per

plate). Germination was induced with gibberellic acid 100 mg/L at 24 h of darkness and

constant temperature of 23 ◦C (Bell et al., 1995). The state of germination and wetting of

the plates were controlled on alternate days; the filter paper was removed every 2–3 days to

reduce fungal infection. Seeds with a radicle of at least 2 mm were considered germinated.

Seed germinability is the percentage of germinated seeds. We measured germination rate

for a period of 45 days. After 45 days we tested seed viability by crushing the seeds with

the tip of the tweezers. Soft and dark seeds were not considered viable and hard and

light-colored seeds were considered viable (as Hesse, Rees & Müller-Schärer, 2007). These

seeds along with the germinated seeds were considered the total number of viable seeds.

We calculated the Self-Compatibility Index (SCI) to describe the G. lutea breeding

system (as Lloyd & Schoen, 1992). SCI is assessed as the average seed set for facilitated

autogamy (Fa) divided by the average seed set for facilitated xenogamy (Fxw or Fxa) and

gives information about the self-compatibility of the species. SCI values range from 0 to

1.5 and a species is considered self-incompatible when its values are between 0 and 0.75

(Lloyd & Schoen, 1992).

To assess the occurrence of self-fertilization, we calculated the Auto-Fertility Index

(AFI) dividing the seed set for spontaneous autogamy (Sa) by the seed set for facilitated

xenogamy within varieties (Fxw or Fxa) (Lloyd & Schoen, 1992). AFI gives information

about the autonomous autogamy degree of the species.

In order to analyze the differences in seed number and seed weight among treatments,

we used a generalized linear mixed model (GzLMM); the fixed factors were the treatment

(five categories: C “Control group,” Sa “Spontaneous autogamy,” Fa “Facilitated auto-

gamy,” Fxw “Facilitated xenogamy within varieties,” Fxa “Facilitated xenogamy among

varieties”), the maternal flower color (color variety) and the interaction between color

variety and treatment. Plant individual was a random factor nested within maternal flower

color (color variety).

To test for differences in seed viability and germinability depending on treatment,

we used a generalized linear model (GzLM) for each response variable. Treatment

was a fixed factor (with four categories, since the seeds of spontaneous and facilitated

autogamy treatments were joint to have a sufficient sample). Note that first, we performed

a generalized linear mixed model (GzLMM), where treatment was a fixed factor and

plate number was a random factor nested within treatment, but it did not converge.

Additionally, we could not test if the germination rate varied between colors or individuals

because of insufficient sample size. Error distribution and link function were selected to

minimize the AICC: number of seeds was fitted to a Poisson distribution and a logarithmic

link function; whereas weight of seeds was fitted to a Linear distribution and identity

link function. Both seed viability and seed germinability were adjusted to a Binomial

distribution and probit link function. Analyses were performed with SPSS software (IBM

Corp. Released, 2011).
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Table 1 Effect of different treatments of pollination on female reproductive success (number of seeds,
seeds weight, seed viability and seed germinability). We marked in bold the statistically significant
factors (P < 0.05).

Response
Variable

N Factors S.E. Wald
Chi-Square

d.f. P

Number 130 Random effect

Plant (Color morph) 0.016

Fixed effects

Treatment 504.389 4 0.000

Color morph 0.001 1 0.971

Color morph ∗ Treatment 23.222 4 0.000

Weight (mg) 108 Random effect

Plant (Color morph) 3.112

Fixed effects

Treatment 44.347 4 0.003

Color morph 0.004 1 0.949

Color morph ∗ Treatment 0.177 4 0.950

Viability (%) 1,800 Fixed effects

Treatment 30.906 3 0.000

Germinability (%) 1,800 Fixed effects

Treatment 32.966 3 0.000

Notes.
Number, seed number; Weight (mg), seed weight (N = fruits); Viability (%), proportion of viable seeds; Germinability
(%), proportion of germinated seeds (N = seeds).

RESULTS
The most successful reproductive mechanism for Gentiana lutea was found to be

cross-pollination between individuals within the same color variety. Conversely, cross-

pollination among flower color varieties reduced plant reproductive success. In addition,

we found that G. lutea depends on pollinators to reproduce.

Number of seeds, seed weight and germinability were similar for within-color variety

crossings as for among-color variety crossings (Table 1, Figs. 1 and 2). However, seeds from

crossings within varieties present 45% higher viability than seeds from among-variety

crossings (Fig. 2). Thus, seed viability decreases when pollen donor and receptor belong

to different color varieties (Fig. 2). This fact may imply that seed viability decrease is an

important component of the partial hybridization barrier between G. lutea color morphs.

Fruits under autogamy treatments produced fewer (a reduction of 93% in the

number of seeds) and lighter (a reduction of 37% in seed weight) seeds than fruits from

inter-individual crossings. In addition, the effect of treatments on seed weight was the

same for both color varieties (no significant color variety * treatment interaction: P > 0.05;

Table 1 and Fig. 1); although, we found that under natural pollination, orange-flowering

individuals produced more seeds per fruit than yellow-flowering individuals (significant

simple effect of flower color: P < 0.001; Table 1 and Fig. 1). On the contrary, within the

spontaneous autogamy treatment, yellow-flowering individuals produced more seeds per

fruit however both morphs produced very few seeds (a reduction of 93% in the number of
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Figure 1 Reproductive success assessed by seed number (A) and seed weight in mg (B), in function of
different pollination treatments. Pollination treatments were: Spontaneous autogamy (Sa); Facilitated
autogamy (Fa); Control group (C); Facilitated xenogamy within varieties (Fxw) and Facilitated xenogamy
among varieties (Fxa). Significant statistical differences between treatments (P < 0.001 for seed number
and P < 0.01 for seed weight) are marked with different letters, and significant statistical differences
between color varieties (orange: black-colored bars; yellow: grey-colored bars) are marked with an
asterisk. Bars show the Standard Error (S.E.).
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Figure 2 Reproductive success assessed by seed viability (A) and seed germinability (B), in function
of different pollination treatments. Pollination treatments were the following: Spontaneous autogamy
(Sa) + Facilitated autogamy (Fa); Control group (C); Facilitated xenogamy within varieties (Fxw) and
Facilitated xenogamy among varieties (Fxa). The statistical significant differences between treatments
(P < 0.001) are marked with different letters. Bars show the Standard Error (S.E.).
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seeds) relative to outcrossed flowers (P < 0.001; Table 1 and Fig. 1). Additionally, we found

significant differences among treatments for both, seed viability and seed germinability

(P < 0.001; Table 1 and Fig. 2). Note that both xenogamy treatments resulted in greater

seed germinability than the autogamy treatments and control group (Fig. 2).

The Self-compatibility index scored 0.0687. SCI ranges from 0 to 1.5, with values of

SCI under 0.75 meaning that the species is self-incompatible. Thus, Gentiana lutea is a

self-incompatible species which relies in cross-pollination to successfully reproduce. Auto-

Fertilization Index (AFI) scored 0.0695 meaning that G. lutea is a non-autogamous species.

DISCUSSION
The most advantageous reproductive mechanism for Gentiana lutea L. is cross-pollination

between the same color morphs. Our results suggest that a partial hybridization barrier

exists between G. lutea flower color morphs, likely due to a genetic incompatibility that

reduces seed viability between G. lutea varieties. It seems that the differentiation between

both varieties is driven or reinforced by the strong dependency of G. lutea on pollen vectors

which exert selective pressures on flower color (Veiga et al., 2015b; Sobral et al., 2015).

Angiosperm diversification may derive from reproductive isolation due to changes

in pollinator habitat composition (Bradshaw & Schemske, 2003; Streisfeld & Kohn, 2007;

Hoballah et al., 2007; Dauber et al., 2010). A speciation process among flower color varieties

of the same species can occur (Straw, 1955; Waser, 1998; Gegear & Burns, 2007) and may

be driven by differences in pollinator community, which shows a higher preference for one

morph as many studies suggest (Dronamraju, 1960; Quattrocchio et al., 1999; Hopkins &

Rausher, 2012). We know that Gentiana lutea’s pollinators show different color preferences

among populations at the Cantabrian Mountains (Spain), partially due to differences on

the pollinator spectrum within each population and specific flower color preferences from

each pollinator species (Sobral et al., 2015). Sympatric speciation could originate due to

selective pressures exerted by the pollinators (Quattrocchio et al., 1999; Hopkins & Rausher,

2011) that facilitate isolation between flower color varieties when cross-pollinations are

avoided or reduced (Hopkins & Rausher, 2012).

Additionally, the geographic isolation produced by the Quaternary climatic changes has

been identified as the main cause of divergence in several mountain plant species (Hewitt,

2000; Thompson, 2005; Gómez & Lunt, 2007; Vargas et al., 2009; Mart́ın-Bravo et al., 2010;

Alarcón et al., 2012; Blanco-Pastor & Vargas, 2013; Fernández-Mazuecos et al., 2013). A

subsequent secondary contact between both color morphs in Gentiana lutea L. could

generate a similar situation to that shown in our study population and the surrounding

area; whether it is a recent or an old contact, it seems that the maintenance of different

color morphs is reinforced by the fitness reduction on hybrids and the pollinator behavior,

as our results confirmed (Table 1, Figs. 1 and 2).

The Self-Compatibility Index obtained here suggests that Gentiana lutea L. is a

self-incompatible species (Lloyd & Schoen, 1992). Therefore, this species relies on pollen

vectors for a successful reproduction, as in the case of the most flowering-plant species

(Axelrod, 1960; Tepedino, 1979). The Self-Compatibility Index (SCI = 0.068) results were
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similar to the Auto-Fertilization Index (AFI = 0.069). Note that SCI is the ratio between

the average seeds produced in facilitated autogamy treatment and the average seeds

produced in facilitated xenogamy, whereas AFI is assessed from the ratio between seeds

set from spontaneous autogamy and facilitated xenogamy treatments. Similar values of the

two indexes imply that the number of seeds produced when a flower’s own pollen arrives

both, naturally and manually is similar. This fact may suggest that self-incompatibility in

this species might be caused by some pre-zygotic barrier mechanism in which pollen from

same flower is not fertilizing the ovules, or by some post-zygotic barrier that may produce

a lower quality and number of self-pollinated seeds (Charlesworth & Charlesworth, 1987;

Hopkins, 2013).

It is an interesting fact that seed number and weight, and to a lesser extent seed

germinability, from natural pollination is intermediate between autogamy treatments

and xenogamy crossings (see Figs. 1 and 2). This result suggests that pollen vectors carry to

a plant, in natural conditions, both pollen from that plant and pollen from different plants.

Therefore, those animal pollinators that have higher mobility between plants and lower

mobility among flowers within plants would pollinate more successfully (Dauber et al.,

2010; Rossi et al., 2014).

On the other hand, yellow-flowering plants set a greater number of seeds (than orange-

flowering plants) when spontaneous self-pollination occurs, which might suggest that the

self-incompatibility degree in this species varies among varieties and is actually higher for

orange-flowering individuals (Fig. 1). Additionally, we found differences in seed number

within the natural pollination treatment, in which orange flowers set a greater number of

seeds. We know that pollinator assemblage shows preferences for yellowness within our

study population, in which yellow-flowering individuals have a greater total seed set (Veiga

et al., 2015b). However, our results suggest that although orange-flowering plants have

lower fitness than yellow ones, they produce more seeds per fruit (see Table 1 and Fig. 1).

We know that pollinators exert selective pressures on Gentiana lutea L. flower color

(Veiga et al., 2015b) and that these selective pressures drive flower color differentiation in

this species (Sobral et al., 2015). Additionally, we know that abiotic factors such as tem-

perature, radiation, elevation and rainfall are not related to flower color variation among

G. lutea populations (Veiga et al., 2015a). With the available information, it is not clear

whether color differentiation is due to an allopatric or sympatric process; however, our

results bring to light the existence of a hybridization barrier among G. lutea color varieties.
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• Javier Guitián, José Guitián and Pablo Guitián contributed reagents/materials/analysis

tools, reviewed drafts of the paper.

• Mar Sobral analyzed the data, wrote the paper, prepared figures and/or tables.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving

body and any reference numbers):

Institution: Environmental Territorial Service from León, Regional Government

of Castilla and León, Territorial Delegation of Government of Spain—Identifier:

12 LE 325 RNA PuebladeLilio INV—Reference: 06.01.013.016/ROT/abp—File number:

AEN/LE/103/12.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.1308#supplemental-information.

REFERENCES
Ackerman JD. 2000. Abiotic pollen and pollination: ecological, functional, and evolutionary

perspectives. Plant Systematics and Evolution 222(1–4):167–185 DOI 10.1007/BF00984101.
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Gómez A, Lunt DH. 2007. Refugia within refugia: patterns of phylogeographic concordance in
the Iberian Peninsula. In: Weiss S, Ferrand N, eds. Phylogeography of Southern European refugia.
Dordrecht: Springer, 155–188.
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