
RESEARCH ARTICLE

A Screen for Epigenetically Silenced
microRNA Genes in Gastrointestinal Stromal
Tumors
Mai Isosaka1☯, Takeshi Niinuma2☯, Masanori Nojima3, Masahiro Kai2,
Eiichiro Yamamoto1,2, Reo Maruyama1, Takayuki Nobuoka4, Toshirou Nishida5,
Tatsuo Kanda6, Takahiro Taguchi7, Tadashi Hasegawa8, Takashi Tokino9, Koichi Hirata4,
Hiromu Suzuki2*, Yasuhisa Shinomura1

1 Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University
School of Medicine, Sapporo, Japan, 2 Department of Molecular Biology, Sapporo Medical University,
Sapporo, Japan, 3 Center for Translational Research, The Institute of Medical Science, The University of
Tokyo, Tokyo, Japan, 4 Department of Surgery, Surgical Oncology and Science, Sapporo Medical University
School of Medicine, Sapporo, Japan, 5 National Cancer Center Hospital East, Kashiwa, Japan,
6 Department of Surgery, Sanjo General Hospital, Sanjo City, Niigata, Japan, 7 Division of Human Health
and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Japan,
8 Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan,
9 Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of
Medicine, Sapporo, Japan

☯ These authors contributed equally to this work.
* hsuzuki@sapmed.ac.jp

Abstract

Background

Dysregulation of microRNA (miRNA) has been implicated in gastrointestinal stromal tumors

(GISTs) but the mechanism is not fully understood. In this study, we aimed to explore the

involvement of epigenetic alteration of miRNA genes in GISTs.

Methods

GIST-T1 cells were treated with 5-aza-2’-deoxycytidine (5-aza-dC) and 4-phenylbutyric

acid (PBA), after which miRNA expression profiles were analyzed using TaqMan miRNA

arrays. DNA methylation was then analyzed using bisulfite pyrosequencing. The functions

of miRNAs were examined using MTT assays, wound-healing assays, Boyden chamber

assays and Matrigel invasion assays. Gene expression microarrays were analyzed to

assess effect of ectopic miRNA expression in GIST-T1 cells.

Results

Of the 754 miRNAs analyzed, 61 were significantly upregulated in GIST-T1 cells treated

with 5-aza-dC plus PBA. Among those, 21 miRNA genes were associated with an upstream

CpG island (CGI), and the CGIs of miR-34a and miR-335 were frequently methylated in

GIST-T1 cells and primary GIST specimens. Transfection of miR-34a or miR-335 mimic

molecules into GIST-T1 cells suppressed cell proliferation, and miR-34a also inhibited
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migration and invasion by GIST-T1 cells. Moreover, miR-34a downregulated a number of

predicted target genes, including PDGFRA. RNA interference-mediated knockdown of

PDGFRA in GIST-T1 cells suppressed cell proliferation, suggesting the tumor suppressive

effect ofmiR-34a is mediated, at least in part, through targeting PDGFRA.

Conclusions

Our results suggest that miR-34a and miR-335 are candidate tumor suppressive miRNAs in

GISTs, and that they are frequent targets of epigenetic silencing in GISTs.

Introduction
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the
gastrointestinal tract [1]. GISTs occur predominantly in the stomach (50–60%) and small
intestine (30–35%), and are thought to originate from interstitial cells of Cajal (ICC) or their
precursor cells. More than 80% of GISTs have a gain of function mutation within KIT, which
results in the constitutive activation of the c-KIT receptor. Alternatively, approximately one-
third of GISTs with no KITmutations carry mutations in PDGFRA, which encodes platelet-
derived growth factor receptor α. In addition to KIT and PDGFRAmutations, a majority of
GISTs acquire other genetic and epigenetic abnormalities during their malignant progression.
For instance, earlier cytogenetic, fluorescence in situ hybridization (FISH) and comparative
genomic hybridization (CGH) studies revealed frequent losses at 14q and 22q [2]. Moreover,
recent array CGH analyses identified a number of chromosomal imbalances that could be rele-
vant to the pathogenesis of GISTs [2, 3]. In addition to genetic alterations, aberrant DNA
methylation has also been implicated in the development of GISTs. We previously showed that
hypomethylation of repetitive sequences, including LINE-1, correlates with increased chromo-
somal aberration and GIST malignancy [4], and a recent genome-wide DNA methylation anal-
ysis revealed that hypermethylation of three genes (REC8, PAX3 and p16) is strongly associated
with aggressive clinical behavior and an unfavorable prognosis [5].

MicroRNAs (miRNAs) are a group of small noncoding RNAs that negatively regulate the
translation and stability of partially complementary target messenger RNAs [6]. miRNAs are
highly conserved among species and play critical roles in a variety of biological processes,
including development, differentiation, cell proliferation and apoptosis. Consistent with their
role in these processes, a number of studies have shown widespread alterations in the expres-
sion patterns of miRNAs in various malignancies, including GISTs [7, 8]. For instance, the pat-
terns of miRNA expression in GISTs reflect the status of 14q loss, tumor locations and risk
grades [9, 10]. We recently reported that elevated miR-196a expression is tightly associated
with the malignant characteristics of GISTs [11], while other groups have reported downregu-
lated expression of the putative tumor suppressors miR-137 and miR-218 in GISTs [12, 13].
Although the mechanisms underlying miRNA dysregulation in cancer are not yet fully under-
stood, recent studies have shown that the silencing of several miRNAs is tightly linked to epige-
netic mechanisms, including histone modification and DNA methylation. Treatment with
histone deacetylase (HDAC) and DNAmethyltransferase (DNMT) inhibitors restored expres-
sion of various miRNAs in cancer cells, and the list of miRNA genes methylated in cancer is
rapidly growing [14]. When we screened for epigenetically silenced miRNA genes in colorectal
(CRC), gastric and bladder cancers, we found a number of miRNA genes silenced in associa-
tion with methylation of CpG islands (CGIs) in their promoter regions [15–18]. However, the
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involvement of epigenetic alterations in the dysregulation of miRNAs in GIST has not been
reported up to now.

In the present study, we aimed to identify miRNAs associated with the pathogenesis of
GISTs. To that end, we searched for miRNA genes epigenetically silenced in GIST cells by
screening for miRNAs whose expression was upregulated by DNA demethylation and HDAC
inhibition. We found that miR-34a and miR-335 are frequent targets of epigenetic silencing in
GISTs, and that they may act as suppressors of GIST development.

Material and Methods

Cell line and tissue samples
GIST-T1 cells have been described elsewhere [19]. The cells were treated first for 72 h with a
2 μM concentration of the DNMT inhibitor 5-aza-2’-deoxycytidine (5-aza-dC; Sigma-Aldrich),
and then for 48 h with a 3 mM concentration of the HDAC inhibitor 4-phenylbutyric acid
(PBA; Sigma-Aldrich), replacing the drug and medium every 24 h. Thirty-nine fresh frozen
GIST specimens were obtained from Sapporo Medical University Hospital and Osaka Univer-
sity Hospital, and formalin-fixed, paraffin-embedded tissue sections from 98 GIST specimens
were obtained from Niigata University Hospital, as described previously [11]. Informed con-
sent was obtained from all patients before collection of the specimens, and this study was
approved by the institutional review board. Risk grades were assigned based on tumor size and
mitotic activity using the risk classification system proposed by Fletcher et al. [20]. Total RNA
was extracted using TRIZOL reagent (Invitrogen) or RNeasy Mini Kits (Qiagen). Genomic
DNA was extracted using the standard phenol-chloroform procedure.

miRNA expression analysis
Expression of a set of 754 miRNAs was examined using a TaqMan microRNA Array v3.0
(Applied Biosystems). The PCR was run in a 7900HT Fast Real-Time PCR System (Applied
Biosystems), and SDS 2.2.2 software (Applied Biosystems) was used for comparative delta Ct
analysis. U6 snRNA (Applied Biosystems) was used as an endogenous control.

DNAmethylation analysis
Genomic DNA (1 μg) was modified with sodium bisulfite using an EpiTect Bisulfite Kit (Qia-
gen), after which methylation analysis was carried out as described previously [17]. For bisulfite
pyrosequencing, the biotinylated PCR product was purified, made single-stranded and used as
the template in a pyrosequencing reaction run according to the manufacturer’s instructions.
The pyrosequencing reaction was carried out using a PSQ96 system with a PyroGold reagent
kit (Qiagen), and the results were analyzed using Q-CpG software (Qiagen). Sequence informa-
tion for primers is shown in S1 Table.

Transfection of miRNA mimics and siRNA
GIST-T1 cells (3 x 106) were transfected with 100 pmol of mirVana miRNA mimics (Ambion)
or mirVana miRNA mimic Negative Control #1 (Ambion) using a Cell Line Nucleofector kit L
(Lonza) and a Nucleofector I electroporation device (Lonza) according to manufacturer’s
instructions. For RNA interference-mediated knockdown of PDGFRA, cells were transfected
with 100 pmol of a Silencer Select siRNA targeting PDGFRA (Applied Biosystems) or a Silencer
Select Negative Control (Applied Biosystems) using a Cell Line Nucleofector kit L (Lonza).
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Cell viability assay
GIST-T1 cells were transfected with miRNAmimics or siRNA as described above, and seeded
into 96-well plate to a density of 1 x 105 cells per well. After incubation for 72 h, cell viability was
examined using a Cell Counting kit-8 (Dojindo) according to the manufacturer’s instructions.

Wound healing assay
GIST-T1 cells were transfected with miRNA mimics or a negative control as described above.
Cells were then seeded onto 35-mm dishes containing a Culture-Insert (Ibidi). The insert was
removed 24 h after transfection, leaving a 0.5 mm cell free wound field. Photographs of cells
invading the wound area were taken at the indicated times, and wound areas were measured
using the ImageJ software (NIH).

Cell invasion and migration assays
For Matrigel invasion assays, GIST-T1 cells were transfected with miRNAmimics or a negative
control as described above, after which 5 x 104 transfectant cells were suspended in 500 μL of
serum-free Dulbecco’s Modified Eagle medium (DMEM) (Sigma-Aldrich) and added to the
tops of BD BioCoat Matrigel Invasion Chambers (BD Biosciences) prehydrated with phosphate-
buffered saline (PBS), and 700 μL of DMEM supplemented with 10% fetal bovine serum (FBS)
were added to the lower wells of the plate. For migration assays, a control insert (BD Biosciences)
was used instead of a Matrigel Invasion Chamber. After incubation for 24 h, invading or migrat-
ing cells were stained and counted in five randomly selected microscope fields per membrane.

Gene expression microarray analysis
GIST-T1 cells were transfected with miRNAmimics or a negative control as described above, and
total RNA was extracted 48 h later. One-color microarray-based gene expression analysis was
then carried out according to manufacturer’s instructions (Agilent Technologies). Briefly, 100 ng
of total RNA were amplified and labeled using a Low-input Quick Amp Labelling kit One-color
(Agilent Technologies), after which the synthesized cRNA was hybridized to a SurePrint G3
Human GEmicroarray v2 (G4851; Agilent Technologies). The microarray data were analyzed
using GeneSpring GX version 13 (Agilent Technologies). The genes targeted by the miRNAs
were predicted using the TargetScan system integrated into the GeneSpring GX software package.
The Gene Expression Omnibus accession number for the microarray data is GSE68743.

Luciferase reporter assay
Oligonucleotides containing the two putative miR-34a target sites in the 3’ untranslated region
(UTR) of PDGFRA or mutant target sites were annealed, digested using SpeI andHindIII and
cloned into pMIR-REPORT (Ambion) according to the manufacturer’s instructions. The
sequences of the oligonucleotides are listed in S1 Table. GIST-T1 cells (1×105 cells/well in
24-well plates) were transfected with 100 ng of one of the reporter plasmids, 1 ng of pRL-CMV
(Promega) and 15 pmol of a miRNA mimic or a negative control using Lipofectamine 3000
(Invitrogen). Luciferase activities were then measured 48 h after transfection using a Dual-
Luciferase Reporter Assay System (Promega).

Quantitative RT-PCR
Single-stranded cDNA was prepared using SuperScript III reverse transcriptase (Invitrogen).
Quantitative reverse transcription PCR (RT-PCR) of PDGFRA was carried out using a TaqMan
Gene Expression Assay (Assay ID, Hs00998018_m1; Applied Biosystems) and a 7500 Fast
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Real-Time PCR System (Applied Biosystems). GAPDH (Assay ID, Hs02758991_g1; Applied
Biosystems) served as an endogenous control.

Statistical analysis
Comparisons of continuous variables were made using t tests or one-way ANOVA with post-
hoc multiple comparisons (Tukey HSD test). P values of<0.05 (two-sided) were considered
significant. All data were analyzed using SPSS Statistics 20 (IBM Corporation) or GraphPad
Prism version 5.02 (GraphPad Software).

Results

Identification of miRNA genes epigenetically silenced in GIST-T1 cells
To identify miRNA genes epigenetically silenced in GIST, we assessed miRNA expression pro-
files in GIST-T1 cells treated with or without the DNMT inhibitor 5-aza-dC plus the HDAC
inhibitor PBA (Fig 1A). Of the 754 miRNAs analyzed, 61 were expressed at low levels in
GIST-T1 cells and were significantly upregulated (>50-fold) by the drug treatment (S2 Table).
We excluded miRNA genes located on X chromosomes from further analysis, as well as
miRNA genes in the miRNA cluster on chromosome 19, which are placenta-specific and are
epigenetically silenced in normal adult tissues. Among the upregulated miRNAs, we selected
the 21 in which the predicted transcription start sites were associated with a CGI (Figs 1B and
2A). We next used bisulfite pyrosequencing to analyze the methylation status of the CGIs in the
selected miRNA genes in GIST-T1 cells (Fig 2B and 2C). As summarized in Fig 2B, 6 miRNA
genes (miR-335, miR-152, miR155, miR-34a, miR-375 and miR-886) were almost fully methyl-
ated in GIST-T1 cells, and another 6 genes (miR-489, miR-615, miR-203, miR-582, miR-618
and miR-9-3) were partially methylated to some degree. The CGIs of the remaining 9 genes
were methylated at low levels (<15%) or were completely unmethylated, indicating that CGI
methylation was likely not be the major mechanism underlying the silencing of these genes.

Methylation analysis of miRNA genes in primary GIST tumors
We next analyzed the methylation of miRNA genes in primary GIST specimens. Of the 12
miRNA genes methylated in GIST-T1 cells, a precursor of miR-886 (pre-miR-886) was
recently reported to be a novel noncoding RNA [21] and was deleted from the miRNA data-
base (http://www.mirbase.org/). We therefore excluded miR-886 from further analysis, and
carried out bisulfite pyrosequencing analysis of the remaining 11 miRNA genes in a series of
primary GIST specimens (Fig 3A and 3B, Table 1). As summarized in Fig 3A, miR-335 was
methylated to the greatest degree among the 11 genes, and the majority of the GIST specimens
exhibited significantly elevated levels of miR-335 methylation (Fig 3C). Subsequent bisulfite
sequencing in selected samples confirmed that the CGI region of miR-335 was densely methyl-
ated in both GIST-T1 cells and primary tumors (S1 File). We also noted that miR-34a, which is
known to be tumor suppressive and is downregulated in various types of malignancies, was
also methylated (>10%) in 33 of 123 GIST specimens (26.8%) (Fig 3C). In addition, when we
analyzed the relationship between miRNA gene methylation and the clinicopathological fea-
tures of GIST patients, methylation of neither gene correlated with age, gender, risk grade,
metastasis, tumor size or mitotic counts (Table 1). Levels of miR-335 methylation were lower
in tumors in stomach and small intestine than in the esophagus or colon, but due to the limited
numbers of samples in the latter groups, significant association was not observed by the post-
hoc pair-wise test (Table 1). miR-335 methylation was also lower in low-risk and very low-risk
tumors, although not to a statistically significant degree (Table 1).
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Functional analysis of miR-34a and miR-335
To investigate whether miR-34a and/or miR-335 act as tumor suppressors in GIST, we trans-
fected GIST-T1 cells with miRNA mimic molecules or a negative control, and then carried out

Fig 1. Identification of epigenetically silencedmiRNAs in GIST-T1 cells. (A) Workflow of the screen to identify epigenetically silenced miRNAs. (B)
Summarized TaqMan array results for 22 candidate miRNAs in GIST-T1 cells treated with or without 5-aza-dC plus PBA. Expression levels were normalized
to that of U6 snRNA expression.

doi:10.1371/journal.pone.0133754.g001
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cell viability, migration and invasion assays. We found that 72 h after transfection, ectopic
expression of miR-34a and miR-335 suppressed GIST-T1 cell growth (Fig 4A). In wound heal-
ing assays, GIST-T1 cells expressing ectopic miR-34a tended to migrate toward the wound
more slowly than control cells, though the effect was not statistically significant (Fig 4B). Boy-
den chamber assays showed that miR-34a suppressed migration and Matrigel invasion by
GIST-T1 cells (Fig 4C and 4D). By contrast, miR-335 did not suppress cell migration or inva-
sion (Fig 4B and 4C).

Fig 2. Analysis of CGI methylation at predicted transcription start sites of miRNA genes. (A) Representative examples of miRNA gene structures. Host
genes encoding miR-34a and miR-335 are shown. CGIs and pre-miRNA regions are shown below. (B) Levels of CGI methylation in the selected miRNA
genes were analyzed using bisulfite pyrosequencing in GIST-T1 cells. (C) Results of bisulfite pyrosequencing of miR-335 and miR-34a in GIST-T1 cells.

doi:10.1371/journal.pone.0133754.g002
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Fig 3. Analysis of miRNA genemethylation in primary GIST specimens. (A) Summarized results showing the methylation levels of selected miRNAs in
primary tumors analyzed using bisulfite pyrosequencing. (B) Representative results of bisulfite pyrosequencing of miR-335 and miR-34a in primary tumors.
(C) Summarized results showing bisulfite pyrosequencing of miR-335 and miR-34a in primary GIST specimens.

doi:10.1371/journal.pone.0133754.g003
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To further clarify the effect of these miRNAs, we also carried out a gene expression microar-
ray analysis of GIST-T1 cells transfected with miRNA mimic molecules or a negative control.
We found that 2,621 probe sets representing 1,933 unique genes were downregulated
(>1.5-fold) by ectopic miR-34a expression. Gene Ontology (GO) analysis revealed that
“anchored component of membrane,” “epidermal cell differentiation” and “multicellular
organismal development” genes were enriched among the downregulated genes (S3 Table).
Microarray analysis also revealed that that 49 predicted miR-34a target genes were downregu-
lated by a miR-34a miRNA mimic in GIST-T1 cells (Fig 5A, S1 File). Among those, we focused
on PDGFRA, which has been strongly implicated in the pathogenesis of GIST [22]. PDGFRA
mRNA contains putative miR-34a binding sites in its 3’ UTR [23, 24] (Fig 5B). Reporter assays
using a luciferase vector containing wild-type miR-34a binding sites revealed that cotransfec-
tion of a miR-34a mimic markedly downregulated luciferase activity in GIST-T1 cells (Fig 5C).
Such downregulation was not observed when cells were transfected with a luciferase vector
containing mutant miR-34a binding sites (Fig 5B and 5C). Suppression of PDGFRA expression
by miR-34a was further confirmed by quantitative RT-PCR using GIST-T1 cells (Fig 5D). In
addition, PDGFRA knockdown using a specific siRNA suppressed the viability of GIST-T1
cells, suggesting the tumor suppressive effect of miR-34a may be mediated at least in part
through targeting PDGFRA (Fig 5E and 5F).

We also performed a gene expression microarray analysis using GIST-T1 cells transfected
with a miR-335 mimic, and found that 1,095 probes representing 853 unique genes were down-
regulated (>1.5-fold). Gene ontology analysis showed that “D-aspartate transport,” “neuronal
action potential” and “epidermis development” genes were enriched among the downregulated

Table 1. Correlation betweenmethylation of miRNA genes and the clinicopathological features of GIST patients.

miR-34a methylation (%) miR-335 methylation (%)

N Mean SD P N Mean SD P

Age �65 60 7.5 6.0 66 56.8 14.3

>65 63 8.2 6.8 0.579* 68 53.4 12.0 0.146*

Gender Male 58 7.7 6.8 62 55.6 15.1

Female 64 8.0 5.9 0.805* 72 54.6 11.6 0.677*

Tumor location Esophagus 4 1.8 3.7 4 71.4 19.1

Stomach 98 8.1 6.4 108 54.6 13.7

Intestine 17 9.0 5.9 18 53.1 7.1

Colon 2 1.2 1.2 0.083# 2 66.6 4.4 0.045#¶

Risk grade High risk 37 8.1 8.0 43 57.5 13.3

Intermediate risk 29 6.7 5.6 33 57.4 14.7

Low or very low risk 54 8.3 5.6 0.518# 55 52.4 11.9 0.094#

Metastasis + 22 8.1 7.8 24 57.4 14.8

- 100 7.8 6.1 0.824* 102 54.4 13.3 0.328*

Tumor size (cm) �5.0 43 7.7 5.3 50 54.7 13.0

>5.0 75 8.4 8.1 0.553* 79 88.8 14.4 0.655*

Mitotic count (/50 HPF) �5 97 7.6 6.1 99 54.5 12.6

>5 15 9.8 9.0 0.231* 21 59.9 18.2 0.099*

*P value was determined using Student’s t test.
#P value was determined using ANOVA.
¶Overall testing by ANOVA was statistically significant, but no significant difference was observed by the post-hoc pair-wise Tukey HSD comparison.

doi:10.1371/journal.pone.0133754.t001
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genes (S4 Table). Microarray analysis also revealed that 16 predicted target genes, including
EIF5A2, ZMPSTE24 andMAT2B, were downregulated by miR-335 in GIST-T1 cells (S1 File).

Discussion
In this study, we tried to identify miRNA genes that are potentially inactivated through an epi-
genetic mechanism in GIST cells. Despite applying a stringent criterion (>50-fold induction
by 5-aza-dC plus PBA) in the first step of our screening, we found 61 miRNAs to be

Fig 4. Functional analysis of miR-34a andmiR-335. (A) Cell viability assays using GIST-T1 cells transfected with miR-34a or miR-335 mimics or a
negative control. Cell viabilities were determined 72 h after transfection. Shown are the means of 8 replications; error bars represent standard deviations; P
values were determined using Student’s t test. (B) Wound healing assay using GIST-T1 cells transfected with a miRNAmimic or a negative control. Shown
on the right are the means of 4 replications; error bars represent standard deviations; P values were determined using Student’s t test. (C,D) Cell migration
(C) and Matrigel invasion (D) assays using GIST-T1 cells transfected with a miRNAmimic or a negative control. Arrowheads indicate migrating or invading
cells. Shown on the right are the means of 5 randommicroscopic fields per membrane; error bars represent standard deviations; P values were determined
using Student’s t test.

doi:10.1371/journal.pone.0133754.g004
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Fig 5. Downregulation of predictedmiR-34a target genes in GIST-T1 cells. (A) Venn diagram for genes downregulated by ectopic miR-34a expression in
GIST-T1 cells (>1.5-fold) and predicted miR-34a target genes. Of the 49 downregulated target genes, the top 10 genes are listed on the right. Expression
levels and fold-changes are also indicated. (B) Putative miR-34a binding sites in the 3’ untranslated region (UTR) of PDGFRA. Mutant binding sites used for
the luciferase assay are shown in red. (C) Reporter assay results using a luciferase vector containing the wild-type PDGFRA 3’ UTR (PDGFRA) or the mutant
3’UTR (PDGFRA-mut) in GIST-T1 cells cotransfected a miR-34a mimic or a negative control. Shown are means of 4 replications; error bars represent
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upregulated by the drug treatment in GIST-T1 cells, indicating that a large number of miRNAs
may be epigenetically regulated in GIST cells. We then selected 21 miRNA genes in which the
predicted promoter regions contains a CGI, and found that 6 of those genes were methylated at
high levels in GIST-T1 cells. In an earlier integrative analysis of miRNA expression profiles
and genome-wide chromatin signatures of miRNA genes in CRC cells, we observed a similar
discrepancy between the number of miRNAs upregulated in tumor cells by epigenetic drug
treatment and the number of genes methylated [17]. Although more than 100 miRNAs were
upregulated by DNA demethylating treatment in CRC cells, we ultimately identified CGI
methylation of only 22 primary miRNA genes. One possible explanation for this discrepancy is
that the transcription start sites of miRNA genes, especially those in intergenic regions, are not
fully identified. A second possibility is that mechanisms other than DNAmethylation, such as
repressive histone modification, may be associated with the miRNA gene silencing. In addition,
some miRNAs may be upregulated due to indirect effects of the epigenetic drug treatment.

We found that the promoter CGI of miR-335 was frequently methylated in GISTs. Several
studies have implicated miR-335 in human malignancies. For example, the tumor suppressive
functions of miR-335 have been reported in breast, lung, pancreatic, gastric and ovarian cancers
and neuroblastoma [25–29]. miR-335 suppresses metastasis and/or invasion in gastric and ovar-
ian cancer by targeting Bcl-w [27, 28], and it inhibits small cell lung cancer metastasis by target-
ing IGF-IR and RANKL [26]. miR-335 also suppresses neuroblastoma cell invasiveness by
targeting multiple genes encoding mediators in the TGF-pathway [29], and it is involved in the
regulation of BRCA1 in breast cancer [30] and is silenced through genetic and epigenetic mecha-
nisms in metastatic breast cancer cells [25]. In addition, miR-335 and its host gene,MEST, are
silenced in association with CGI methylation in hepatocellular carcinoma (HCC) [31], and
replacement of miR-335 exerts tumor suppressive effects in lung, pancreatic and breast cancer
cells, which is suggestive of the therapeutic potential of miR-335 [32–34]. In contrast to the
observations summarized above, several studies suggest miR-335 exerts oncogenic effects. Strong
expression of miR-335 is reportedly associated with a poor prognosis in gastric cancer and glioma
[35, 36], and the tumor promoting actions of miR-335 have been demonstrated in astrocytoma
cells, suggesting that it could be a potential target for the treatment of astrocytoma [37]. These
results indicate that miR-335 may play opposite roles during tumorigenesis in different organs.

In the present study, although miR-335 did not inhibit migration or invasion by GIST-T1
cells, it did suppress the viability of GIST cells. Gene expression microarray analysis revealed
that 16 predicted target genes were downregulated by ectopic miR-335 expression. Among
them, EIF5A2 (eukaryotic initiation factor 5A2) is a candidate oncogene isolated from the
amplified region at 3q in ovarian cancer [38]. EIF5A is also reportedly overexpressed in lung
cancer, HCC, esophageal cancer and CRC, and it is associated with cancer cell aggressiveness
and metastasis [39–42]. MAT2B is a regulatory subunit of the cellular enzyme methionine ade-
nosyltransferase (MAT), which catalyzes the synthesis of S-adenosylmethionine and is
involved in the growth of HCC and CRC [43]. ZMPSTE24 is a metalloproteinase mutated in
human progeria and is involved in nuclear prelamin A maturation [44]. A recent study showed
that silencing of ZMPSTE24 reduces cancer cell invasion, suggesting that it could potentially
serve as a new therapeutic target [45]. The results from these reports together with our present
findings are indicative of the potential tumor suppressive roles of miR-335 in GISTs.

standard deviations; the P value was determined using Student’s t test. (D) Quantitative RT-PCR of PDGFRA in GIST-T1 cells transfected with a miR-34a
mimic or a negative control. (E) Quantitative RT-PCR of PDGFRA in GIST-T1 cells transfected with a siRNA targeting PDGFRA (siPDGFRA) or a control
siRNA (siCONT). (F) Cell viability assays using GIST-T1 cells transfected with siCONT or siPDGFRA. Cell viabilities were determined 72 h after transfection.
Shown are means of 8 replications; error bars represent standard deviations; the P value was determined using Student’s t test.

doi:10.1371/journal.pone.0133754.g005
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In this study, we also found that miR-34a CGI is methylated in cultured and primary GIST
cells. Although the degree and frequency of miR-34a methylation in clinical GISTs were much
lower than those of miR-335 methylation, miR-34a is located at 1p36, which is frequently
deleted in GISTs [2]. The miR-34 family has been strongly implicated in tumorigenesis. All
three miR-34 family members (miR-34a, -34b and -34c) are directly regulated by p53, and
ectopic expression of miR-34s induces cell cycle arrest and/or apoptosis in human cancer cells
[46–49]. The tumor suppressive activity of miR-34a has been reported in CRC, HCC, pancre-
atic cancer and glioblastoma [50–53]. We also found that ectopic expression of miR-34a in
GIST cells suppresses cell proliferation, migration and invasion. Inactivation of miR-34a due to
CGI methylation has been observed in malignancies of the colon, pancreas, breast, ovary, uri-
nary tract and kidney, and in hematological malignancies [54, 55]. Taken together with these
reports, our findings suggest that miR-34a may act as a tumor suppressor in GIST, and epige-
netic silencing of miR-34a may contribute to GIST development. Given its tumor suppressive
function, restoration of miR-34a expression would seem to be a potentially therapeutic strat-
egy. In mouse xenograft models of lung cancer, systemic delivery of a miR-34a mimic using a
lipid-based delivery vehicle inhibited tumor growth [56]. miR-34a also reportedly inhibits
prostate cancer stem cells, and the therapeutic efficacy of its systemic delivery has been con-
firmed in a mouse xenograft model [57]. Our results thus suggest miRNA replacement therapy
may be an effective therapeutic strategy for the treatment of GISTs.

miR-34a regulates multiple cellular processes by targeting genes involved in cell cycle, dif-
ferentiation, apoptosis and growth signaling [58]. Using gene expression microarray analysis,
we found that 49 predicted miR-34a target genes were downregulated by ectopic miR-34a
expression in GIST-T1 cells. Among them, PDGFRA was recently reported to be a direct target
of miR-34a in malignant glioma, lung cancer and gastric cancer [23, 24, 59]. It is well docu-
mented that gain-of-function mutations in KIT or PDGFRA play essential roles in the develop-
ment of GISTs [1]. In that context, imatinib (formerly STI571), which was developed as a
tyrosine kinase inhibitor and was found to inhibit KIT and PDGFRA, is currently being used
for the treatment of metastatic GISTs [1]. Our data suggest that loss of miR-34a may be an
alternative event leading to the activation of PDGFRA in GIST cells, and that replacement of
miR-34a could potentially exert a therapeutic effect through downregulation of PDGFRA. We
observed that PDGFRA knockdown in GIST-T1 cells suppressed cell viability, though the effect
was relatively limited, as compared to that of miR-34a. GIST-T1 cells harbor a gain of function
mutation in exon 11 of the KIT gene [60], and the effect of PDGFRA downregulation may be
limited in GIST cells with the KITmutation. Further studies will be necessary to clarify the
functional role and clinical significance of miR-34a inactivation in GISTs.

Conclusions
We have shown that miR-335 and miR-34a are targets of epigenetic silencing in GISTs. This is
the first report of epigenetic silencing of miRNA genes in this disease. Although their specific
functions in the development of GISTs are not yet fully understood, restoration of miR-335
and miR-34a may be an effective anticancer therapy. Further study of miRNA dysregulation
and its functional significance in GISTs may provide new strategies for the treatment of GIST
patients.
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