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Abstract: Estrogen-specific endocrine disrupting compounds (EDCs) are potent modulators of neural
and visual development and common environmental contaminants. Using zebrafish, we examined
the long-term impact of abnormal estrogenic signaling by testing the effects of acute, early exposure
to bisphenol-A (BPA), a weak estrogen agonist, on later visually guided behaviors. Zebrafish aged
24 h postfertilization (hpf), 72 hpf, and 7 days postfertilization (dpf) were exposed to 0.001 µM or
0.1 µM BPA for 24 h, and then allowed to recover for 1 or 2 weeks. Morphology and optomotor
responses (OMRs) were assessed after 1 and 2 weeks of recovery for 24 hpf and 72 hpf exposure
groups; 7 dpf exposure groups were additionally assessed immediately after exposure. Increased
notochord length was seen in 0.001 µM exposed larvae and decreased in 0.1 µM exposed larvae
across all age groups. Positive OMR was significantly increased at 1 and 2 weeks post-exposure in
larvae exposed to 0.1 µM BPA when they were 72 hpf or 7 dpf, while positive OMR was increased
after 2 weeks of recovery in larvae exposed to 0.001 µM BPA at 72 hpf. A time-delayed increase in
eye diameter occurred in both BPA treatment groups at 72 hpf exposure; while a transient increase
occurred in 7 dpf larvae exposed to 0.1 µM BPA. Overall, short-term developmental exposure to
environmentally relevant BPA levels caused concentration- and age-dependent effects on zebrafish
visual anatomy and function.

Keywords: optomotor response; vision; development; endocrine disrupting compound; estrogen;
BPA; Danio rerio

1. Introduction

Endocrine disrupting compounds (ECDs) are exogenous chemicals of natural and
synthetic origin that affect hormonal function, synthesis, and/or downstream signaling
pathways [1,2]. In addition to being common aquatic contaminants [3], exposure to EDCs
has been documented through contact with plastics, food and beverage packaging, pesti-
cides, pharmaceuticals, and cosmetics [4]. Notably, EDCs are effective at low concentrations
(nM to µM), levels that are consistent with the median value recorded in US streams [5,6],
and mirror the modest hormonal concentrations needed to facilitate an amplified, down-
stream response in an organism [7]. As such, the effects of EDCs on reproductive and
neuronal development have been well characterized [8,9].

While EDCs are most noted for their influence on reproductive physiology, especially
on estrogens and estrogenic pathways, developmentally irregular estrogen synthesis is as-
sociated with thinning [10] and apoptosis in retina [11], corneal thinning [12], and abnormal
and delayed eye growth [13]. Age-related estrogen level changes in humans are associated
with neurodegenerative retinal diseases [14] and estrogen modulation as a clinical treat-
ment for breast cancer has been linked to retinal hemorrhaging [15], macular edema [16],
and color perception changes [15], underscoring the role of estrogen-specific EDCs in more
than reproductive development. Yet, despite the viable connection between estrogen and
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vision, we still know very little about the long-term impact of altered estrogenic signaling
on visual sensation, perception, and system development.

Zebrafish are a well-established vertebrate model for vision, development, and molec-
ular biology [17]. Logistically, zebrafish are easily maintained, low cost and available
year-round. Rapid and prolific asynchronous breeders, their embryos develop externally
and are easily accessible, allowing for non-invasive exposure to experimental conditions and
direct observation of development [18,19]. Zebrafish central nervous and endocrine system
development are similar to that of humans [20,21]; zebrafish and humans also possess
similar retinal anatomy [22]. Zebrafish retinal anatomy, physiology, and visually guided
behaviors are well known [23–25], and the role of estrogen signaling pathways in both
developmental and adult neurogenesis are well established [10,26,27]. Moreover, altered
visually guided behaviors have been correlated with altered retinal physiology [28–30].

Bisphenol-A (BPA), also known as 2,2-bis(4-hydroxyphenyl)propane, is a weak estra-
diol agonist and known aquatic contaminant predominantly used in the manufacture of
polycarbonate and epoxy resins. BPA is present in plastic water bottles, food containers,
and dental sealants [5] resulting in significant levels in ~93% of the population [31], BPA
is effective at extremely low doses, can be measured in various human tissues and flu-
ids [32–34], and is able to cross the placenta [34–36], resulting in comparable titers in human
fetuses [34,37]. Though the 2004 National Health and Nutrition Examination Survey found
BPA present in 96% of the pregnant women studied [38], at present there is no published
work on the developmental effects of BPA on humans. However, it has been shown that in
utero exposure to BPA causes multiple behavioral deficits in rodents [9,39–41] and there is
a growing body of BPA-related zebrafish work.

In fish, the effects of BPA exposure on estrogen signaling are similar to those of ex-
ogenous estradiol [42,43]. BPA binds estrogen receptors [44] in the brain, and increases
the expression of estrogen receptor mRNA [45]. In zebrafish, larvae embryonically exposed
to BPA are hyperactive [46,47], likely due to BPA’s deleterious impacts on neurogenesis,
including decreased estrogen-induced spine formation in the prefrontal cortex and hip-
pocampus [35], reduced survival of nascent hippocampal neurons [40], poor outgrown of
motor neurons [48], and reduced midbrain size [49]. Sensory systems are also impacted:
zebrafish developmentally exposed to BPA possess malformed otoliths [50] and display
inhibited regeneration of lateral line neuromasts [51], the second continuing even after
treatment with BPA has stopped [52]. Clearly, a functional estrogen signaling system
is critical for sensory development, and early developmental exposure to BPA has long-
term, adverse effects. However, the long-term consequences of developmental estrogenic
manipulation on vision remain undefined.

We hypothesized that transient developmental exposure to environmentally relevant
concentrations of BPA will have long-term effects on the visual system. We assessed visual
system function using the optomotor response (OMR), a reliable, vision-based behavior;
changes in length and eye size were also assessed. Our results show BPA exposure increases
the number of fish displaying a positive OMR, an effect observed 1 and 2 weeks after
removal from treatment. These behavioral differences depend on developmental age,
with the largest differences occurring when exposure occurred at 72 hpf and 7 dpf, when
significant differences in eye diameter were also noted.

2. Materials and Methods
2.1. Animal Maintenance

All experiments were approved by the Institutional Animal Care and Use Committee
(IACUC) of American University (Protocols #1700 and #20-03). Wild type zebrafish (Danio
rerio) embryos and larvae were obtained from in-house spawning at the American Uni-
versity Fish Facility, or from a commercial supplier (LiveAquaria, Rhinelander, WI, USA).
Adult zebrafish were maintained in an Aquatic Habitat (AHAB, Pentair, Apopka, FL, USA)
system at 28–29 ◦C, on a 14-h light: 10-h dark photoperiod and were fed Tetramin and live
brine shrimp twice daily [53,54]. To obtain eggs, 5–6 adult females and 3–4 adult males
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were placed in a 16” mesh-bottomed breeding chamber overnight. The following morning,
approximately one hour after light onset, fertilized eggs were collected, staged (shield to
75% epiboly), cleaned, and maintained at the same photoperiod and water temperature
as adults until placed in experimental treatment conditions. Embryos and larvae were
housed in 100 mm glass Petri dishes in temperature-controlled incubators (Heratherm,
ThermoFisher, Waltham, MA, USA), at densities of ≤ 50. Embryos and larvae were trans-
ferred to new dishes of system water daily, during which time larval mortality was also
recorded; larvae were fed AP100 (Aquatic Habitats/Pentair, Apopka, FL, USA) once daily
and were transferred to new dishes of system water after 30 min of feeding. Embryos
received from the commercial supplier were cleaned and staged upon arrival in the lab
and maintained as described above.

2.2. Exposures

At 24 h post-fertilization (24 hpf), 72 h post-fertilization (72 hpf) or 7 days post-
fertilization (7 dpf), embryos or larvae were placed into one of four experimental treatments
for 24 h: (1) system water control, (2) dimethyl sulfoxide vehicle control (DMSO, Sigma
Chemical Co., St. Louis, MO, USA), (3) low (0.001 µM), or (4) high (0.1 µM) BPA (TCI,
Portland, OR, USA). The final concentration of DMSO was 0.0003% in the high BPA expo-
sure group and 0.000003% in the low BPA exposure group. The higher DMSO concentration
(0.0003%) was used for the vehicle control. These exposure ages were selected based on
their correspondence with key events in zebrafish visual system development, specifically:
development of the neural retina at 24 hpf [24], the vertical transduction pathway becomes
functional at 72 hpf [24], and at 7 dpf OMRs are reliably evoked [55], as well as the presence
of active estrogen synthesis (aromatase activity) in the brain [56]. BPA concentrations
were selected based on their use in other studies [46–48,52,57–59] and because they are
comparable to reported levels in natural water systems [6] and human tissue [32,33]. After
24 h of exposure, embryos/larvae were removed from treatment, returned to new dishes
of system water, and allowed to recover for 1 or 2 weeks.

2.3. Behavioral Assays

Embryonic (24 hpf) and early larval (72 hpf) exposure groups were assessed for startle
response and OMR changes after 1 and 2 weeks of recovery. The older exposure group,
7 dpf, was assessed immediately after exposure and after 1 and 2 weeks of recovery. These
time points were selected because OMRs are not reliably elicited before 7 dpf [55,60,61]. All
behavioral assays occurred in system water at 28–29 ◦C and were recorded with a Canon
FS40 handheld video camera that was mounted directly above the behavioral chamber.
Recordings were analyzed by a trained, blinded observer.

2.3.1. Startle Response

The startle response was assessed following established protocols [62–64]. Briefly,
≤ 10 larvae were placed in a 100 mm Petri dish and allowed to acclimate for 30 s.
The dish was located inside a black-lined behavioral chamber to prevent external stimuli
from confounding the results. A handheld video camera (Canon, Melville, NY, USA) was
mounted above the dish so larval responses could be recorded. After acclimation, the startle
stimulus (a 200 g weight) was dropped from a uniform height adjacent to the chamber.
Larval responses recorded for 60 s and fish were assessed as to whether they responded to
the stimulus or not. Fish that did not display a startle response or otherwise did not appear
to move were removed from further analysis.



J. Dev. Biol. 2021, 9, 14 4 of 18

2.3.2. Optomotor Response

Optomotor responses (OMRs) were recorded following published protocols [65,66]. In
brief, OMRs were elicited using a Fourier motion stimulus, displayed as a rotating black and
white pinwheel projected onto a 36 inch Dell flat screen computer monitor directly below
the fish. The stimulus was generated using PsychoPy software (PsychoPy3; Nottingham,
United Kingdom) and a MacBook Pro laptop (Apple, Cupertino, CA, USA) [65].

To evoke the OMR, larvae (≤ 10 at a time) were placed into a 100 mm Petri dish,
the sides of which were covered with white tape to reduce external distractions.
The Petri dish was placed on top of the monitor and the fish were allowed to acclimate for
1 min. A small cylindrical object was placed into the center of the chamber to provide an
annulus where the fish could swim and to cover the convergence point of the pinwheel.
The pinwheel rotated clockwise for 30 s and then counterclockwise for 30 s with a gray
resting screen in between. This stimulus sequence was presented twice to each group of
fish in succession. Larvae were considered to have a positive OMR when they swam in
the direction of the stimulus and such that their heads were oriented at a 55–105 angle
in respect to the midline of the stimulus. Scan sampling of recorded videos was used to
identify fish with a positive OMR [66].

2.4. Morphometric Analysis

After behavioral assessments, larvae were anesthetized and euthanized in a 0.02%
tricaine methanesulfonate solution, flash frozen, and stored at −80 ◦C. All sampled larvae
were flash frozen to increase potential use in subsequent assays. Those that were to be
measured (4–5 per age and treatment group) were thawed and placed in 4% paraformalde-
hyde. Fixed larvae were then imaged using a Leica MZ10F stereomicroscope fitted with
a DFC700T digital camera (Leica Microsystems, Heerbrugg, Switzerland) and pictures of
individual larvae were captured with accompanying software (LAS v. 4.6.1). Notochord
length and eye diameter (anterior-posterior) were measured from captured images using
ImageJ (https://imagej.nih.gov/ij/download.html, accessed on 11 February 2021). Each
measurement was made three times and then averaged to reduce error.

2.5. Statistical Analysis

Survival was analyzed using a general linearized model, with treatment as the fixed
factor and day as the co-variate. Survival of larvae exposed at 7 dpf was analyzed by
one-way ANOVA, followed by a Tukey post hoc test at the 1- and 2 week recovery points.
Differences in notochord length and eye diameter across treatment were also assessed
using a one-way ANOVA followed by a Tukey post hoc test at each exposure age. Eye
diameter measurements were normalized to notochord lengths prior to statistical analysis.
Startle responses were analyzed using a one-way ANOVA performed separately for each
age and treatment group. If significance was noted, a Tukey post hoc test was performed to
identify differences. OMR was analyzed using a one-way ANOVA, followed by a post hoc
multiple comparison (with a Bonferroni correction). All statistical tests were performed
with SPSS software (v. 27, IBM, Armonk, NY, USA) and evaluated at an α-level of 0.05.

3. Results
3.1. Suvival

Daily survival was compared across treatment groups for each exposure age
(Figure 1). Treatment was not found to significantly affect survival of larvae exposed when
they were 24 hpf (p = 0.702; Figure 1a) with ~80% of larvae surviving across all treatment
groups. In contrast, differences across day were significant (p < 0.001), reflecting the lower
survival at the end of the experiment. There was no significant treatment * day interaction
(p = 0.238), however, further supporting no differences in survival across treatment groups.

https://imagej.nih.gov/ij/download.html
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daily survival of larvae exposed at 7 dpf was significantly impacted by treatment (p = 0.005). For the 7 dpf exposure groups, 
survival between treatment groups was assessed at 1 week and 2 week postexposure using one-way ANOVA, followed 
by a Tukey post hoc test; survival at these points was not significantly different: p = 0.191 at 1 week (14 dpf), and p = 0.811 
at 2 weeks (21 dpf). For 7 dpf exposures, initial populations were system water = 231; DMSO = 221; low BPA = 293; high 
BPA = 226. Asterisks denote significant differences. 

For larvae exposed at 72 hpf, both treatment (p = 0.012; Figure 1b) and day (p < 0.001) 
significantly impacted survival, and there was a significant treatment * day interaction (p 
< 0.001). Survival across all treatments was constant for the first 5–6 days of recovery, after 

Figure 1. Survival trends across all exposure ages and recovery sampling points. Survival was
analyzed using a general linearized model, with treatment as the fixed factor and day as the co-
variate. Values are reported as mean percent daily survival ± SD for each treatment group. (a)
Overall daily survival of larvae exposed at 24 hpf was unaffected by treatment (p = 0.238). For 24 hpf
exposures, initial populations were as follows: system water = 341; DMSO = 250; low BPA = 355;
high BPA = 250. (b) Overall daily survival of larvae exposed at 72 hpf was significantly impacted by
treatment (p < 0.001). For 72 hpf exposures, initial populations were system water = 293; DMSO = 250;
low BPA = 298; high BPA = 250. (c) Overall daily survival of larvae exposed at 7 dpf was significantly
impacted by treatment (p = 0.005). For the 7 dpf exposure groups, survival between treatment groups
was assessed at 1 week and 2 week postexposure using one-way ANOVA, followed by a Tukey post
hoc test; survival at these points was not significantly different: p = 0.191 at 1 week (14 dpf), and
p = 0.811 at 2 weeks (21 dpf). For 7 dpf exposures, initial populations were system water = 231;
DMSO = 221; low BPA = 293; high BPA = 226. Asterisks denote significant differences.
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For larvae exposed at 72 hpf, both treatment (p = 0.012; Figure 1b) and day (p < 0.001)
significantly impacted survival, and there was a significant treatment * day interaction
(p < 0.001). Survival across all treatments was constant for the first 5–6 days of recovery,
after which time survival in the low BPA treatment group decreased compared to the other
treatment groups, resulting in ~50% survival at the end of the experiment.

Treatment did not significantly impact survival of larvae exposed at 7 dpf (p = 0.598;
Figure 1c), though day was identified as a significant main effect (p < 0.001). There was
also a significant treatment * day interaction (p = 0.005), with the lowest survival overall
observed in the vehicle control (DMSO) group. However, subsequent analysis at the
1 week and 2 week post-exposure time points identified no significant differences (p = 0.191
and p = 0.811, respectively) across exposure groups.

3.2. Morphometric Results
3.2.1. 24 hpf Exposures

When exposed to high BPA as 24 hpf embryos, larval notochord lengths measured
1 week after removal from treatment were significantly smaller (p < 0.001) than measure-
ments of larvae in the low BPA group (Figure 2b). Larvae within the low BPA exposure
group were also significantly larger than vehicle controls.
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and measured after 2 weeks of recovery, though the result was only significantly different 
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noted at either the 1-week (p = 0.642; Figure 2a) or 2-week (p = 0.093; Figure 2c) time points. 

Figure 2. Twenty-four hours postfertilization anatomical measurements. (a) Larvae exposed at 24 hpf
did not display any differences in eye diameter after 1 week of recovery. (b) However, larvae in the
low BPA treatment group were significantly larger than vehicle controls and larvae exposed to high
BPA (p < 0.001) at 1 week post-exposure. (c) After 2 weeks, larvae exposed at 24 hpf still displayed
no differences in eye diameter, despite the larger values in the high BPA treatment group. (d) Larvae
exposed to high BPA had the smallest mean length at 2 weeks post-exposure. Significant differences
were noted across treatments (p = 0.006), however these values were not different from the vehicle
control. At each recovery point n = 5 for all treatment groups. Differences in notochord length and
eye diameter across treatment were assessed using a one-way ANOVA followed by a Tukey post hoc
test at each exposure age. Eye diameter measurements were normalized to notochord lengths prior
to statistical analysis. All values are reported as mean ± SE. Different letters denote significance.
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Notochord length was also reduced in larvae embryonically exposed to high BPA and
measured after 2 weeks of recovery, though the result was only significantly different from
water-treated controls (p < 0.001; Figure 2d). No differences in eye diameter were noted at
either the 1-week (p = 0.642; Figure 2a) or 2-week (p = 0.093; Figure 2c) time points.

3.2.2. 72 hpf Exposures

Measurements of larvae exposed to BPA at 72 hpf revealed a significant (p = 0.014)
decrease in notochord length after 1 week of recovery compared water-treated controls
(Figure 3b). No differences in notochord length were observed at the 2 week postexposure
timepoint (Figure 3d). However, at 2 weeks postexposure, eye diameter was significantly
larger in both BPA treatment groups (p = 0.006; Figure 3c). No differences in eye diameter
were noted 1 week postexposure (Figure 3a).
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Figure 3. Seventy-two hours postfertilization anatomical measurements. (a) Larvae exposed at 72 hpf
displayed no significant differences in eye diameter after 1 week of recovery. (b) Though significant
differences in length were observed (p = 0.014), BPA- and vehicle-treated animals were not different.
(c) Eye diameter was significantly increased in both low and high BPA exposure groups at the 2 week
time point (p = 0.006). (d) No significant differences in notochord length were evident after 2 weeks of
recovery. At each recovery point n = 5 for all treatment groups. Differences in notochord length and
eye diameter across treatment were assessed using a one-way ANOVA followed by a Tukey post hoc
test at each exposure age. Eye diameter measurements were normalized to notochord lengths prior
to statistical analysis. All values are reported as mean ± SE. Different letters denote significance.
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3.2.3. 7 dpf Exposures
When BPA exposure began at 7 dpf, eye diameter was increased in the high BPA

group at 1 week post-exposure compared to measurements from low BPA treated larvae
(p = 0.022; Figure 4a). However, at this time point, low BPA treated larvae were larger than
those in the high BPA group (p < 0.01; Figure 4b). Notochord length and eye diameters
were not different at the 2 week recovery timepoint (Figure 4c,d).
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Figure 4. Seven days postfertilization anatomical measurements. (a) Compared to controls, eye
diameter was not increased in either BPA group after 1 week of recovery, though the high BPA
exposure group had significantly larger eyes than the low BPA exposed larvae (p = 0.022). (b)
After 1 week of recovery, notochord length was significantly increased larvae exposed to low BPA
(p < 0.001). No significant differences were noted after 2 weeks of recovery for either (c) eye diameter
or (d) notochord length. At each recovery point n = 5 for all treatment groups except for DMSO,
in which n = 4. Differences in notochord length and eye diameter across treatment were assessed
using a one-way ANOVA followed by a Tukey post hoc test at each exposure age. Eye diameter
measurements were normalized to notochord lengths prior to statistical analysis. All values are
reported as mean ± SE. Different letters denote significance.

3.3. Behavioral Responses
3.3.1. 24 hpf Exposures

After 1 week of recovery, larvae that were exposed at 24 hpf displayed no differences
in startle responses or OMRs (Figure 5a,b). The percentage of larvae displaying a positive
OMR was also not different at 2 weeks postexposure (Figure 5d). However, startle responses
between BPA treatment groups were found to be significantly different at the 2 week
time point (p = 0.001; Figure 5c), though these values were not significantly different
from controls.
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Figure 5. Twenty-four hours postfertilization behavioral results. (a) After 1 week of washout, larvae
exposed at 24 hpf did not display statistically different startle responses. (b) No differences were
noted in OMRs displayed by after 1 week of recovery. (c) At 2 weeks post-exposure, larvae exposed
to high BPA displayed increased startle responses compared to larvae exposed to low BPA only
(p = 0.001). (d) No differences in OMRs were observed in larvae exposed at 24 hpf at the 2 week time
point. At each recovery point n = 30 for all treatment groups. Startle responses were analyzed using a
one-way ANOVA performed separately for each age and treatment group; if significance was noted,
a Tukey post hoc test was performed to identify differences. OMR was analyzed using a one-way
ANOVA, followed by a post hoc multiple comparison (with a Bonferroni correction). All values are
reported as mean ± SE. Different letters denote significance.

3.3.2. 72 hpf Exposures

At 1 week postexposure, larvae exposed at 72 hpf displayed statistically increased
startle responses in the high BPA treatment group compared to all other treatment groups
(p < 0.001; Figure 6a); differences were not noted between the controls and low BPA group.
At 2 weeks postexposure, startle responses were significantly reduced in water-treated vs.
vehicle-treated controls and between low BPA vs. high BPA treatment groups (p = 0.003;
Figure 6c). At 1 week postexposure, the percentage of positive OMRs was significantly
elevated in the high BPA group (p < 0.001; Figure 6b). At 2 weeks postexposure, there is
still a significantly greater number of high BPA exposed larvae displaying positive OMR
(p = 0.001; Figure 6d). However, there is now also a significant increase in positive OMR
displayed by low BPA exposed fish (p < 0.001; Figure 6d). The percentage of fish displaying
a positive OMR is also significantly different between low and high BPA groups at 2 weeks
postexposure (p = 0.001; Figure 6d).
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Figure 6. Seventy-two hours postfertilization behavioral results. (a) After 1 week of recovery,
larvae exposed to the high concentration of BPA at 72 hpf displayed statistically increased startle
responses relative to all other treatment groups (p < 0.001). (b) There was also a significant increase
in positive OMRs (p < 0.001) in the high BPA group. (c) At the 2 week recovery time, larvae exposed
to high BPA displayed significantly increased startle responses compared to low BPA exposed larvae
(p = 0.003), though neither response was different from the vehicle control. (d) The percentage of
larvae displaying a positive OMR was significantly increased in both the low BPA (p < 0.001) and
high BPA (p = 0.001) treatment groups, with the greatest response observed in larvae exposed to low
BPA. At each recovery point n = 30 for all treatment groups. Startle responses were analyzed using a
one-way ANOVA performed separately for each age and treatment group; if significance was noted,
a Tukey post hoc test was performed to identify differences. OMR was analyzed using a one-way
ANOVA, followed by a post hoc multiple comparison (with a Bonferroni correction). All values are
reported as mean ± SE. Different letters denote significance.

3.3.3. 7 dpf Exposures

Startle responses were not significantly different across all treatment groups in larvae
exposed at 7 dpf and tested either immediately after exposure or after 1 week and 2 weeks
of recovery (Figure 7a,c,e). Immediately after exposure, however, larvae exposed to high
BPA displayed a statistically significant increase in positive OMRs (p < 0.001; Figure 7b). A
similar result was observed after 1 week of recovery (p = 0.020; Figure 7d). After 2 weeks
of recovery, low and high BPA exposed larvae displayed statistically increased positive
OMRs compared to control groups (p < 0.036 and p < 0.001, respectively; Figure 7f), though
the difference between the low and high BPA groups was not significant (p = 0.882).
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Figure 7. Seven days postfertilization behavioral results. No differences in startle responses were
observed in larvae assessed a. immediately, c. after 1 week of recovery, or e. after 2 weeks of
recovery when exposure occurred at 7 dpf. In contrast, b. larvae exposed to high BPA displayed a
significant increase in the percentage of fish displaying a positive OMR when assessed immediately
after exposure (p < 0.001). Increased numbers of larvae displaying a positive OMR were also observed
d. after 1 week of recovery (p = 0.020) and f. after 2 weeks of recovery in larvae exposed to both
low (p < 0.036) and high (p < 0.001) BPA. At each recovery point n = 30 for all treatment groups.
Startle responses were analyzed using a one-way ANOVA performed separately for each age and
treatment group; if significance was noted, a Tukey post hoc test was performed to identify differences.
OMR was analyzed using a one-way ANOVA, followed by a post hoc multiple comparison (with a
Bonferroni correction). All values are reported as mean ± SE. Different letters denote significance.



J. Dev. Biol. 2021, 9, 14 12 of 18

4. Discussion

Overall, our data suggest age- and concentration-dependent effects of developmental
BPA exposure on the visual system. When exposure occurred at 72 hpf and 7 dpf, initial
increases in optomotor responses were observed 1 week postexposure in larvae exposed
to high (0.1 µM) BPA (Figures 6b and 7b); after 2 weeks, a difference in OMRs in larvae
treated with low (0.001 µM) BPA was also observed (Figures 6b and 7b), identifying a
slow-to-develop effect. These changes were correlated with changes in eye diameter
(Figures 3c and 4a). In contrast, embryonic (24 hpf) exposure affected overall growth of
larvae (Figure 2b,d) but did not alter optomotor responses (Figure 5b,d). Taken together,
these results suggest that transient, developmental exposure to sublethal, environmentally
relevant concentrations of BPA have significant effects on larval zebrafish morphology and
visually guided behavior.

BPA is a well-known environmental contaminant and one of the highest volume
chemicals produced [5,35]. Measurable levels are found in soil, water, and atmospheric
samples worldwide [67]. Exposure to humans and animals is significant [5] and early
exposure leads to developmental [5,35] and transgenerational [41] effects. Concentrations
reported in aquatic environments range from µg/L [6] to ng/L [67] and most studies
examining biological effects of BPA use µM concentrations.

Published experiments with zebrafish report BPA is rapidly taken up when expo-
sure occurs through tank water. Detectable levels are evident after 2 h and steady-state
levels occur after 24 h of exposure [68]. Acute developmental exposure alters zebrafish
lateral line [52] and otolith [50] development and exposure during the first 24 hpf affects
development of the midbrain, otic vesicles, and somites [49]. Transient developmental
exposure, within the hours/days postfertilization, also has long-term effects on locomotor
activity [46–48,58], hair cell development [52], and brain development [49,58]. Other long-
term consequences include altered inflammation [69] and reproductive effects [70,71]. We
found no differences in survival across treatment groups when exposure occurred at 24 hpf.
However, daily survival varied widely across treatment groups when exposure occurred
at 72 hpf or 7 dpf. In larvae exposed at 72 hpf, those exposed to 0.001 µM (low) BPA
group displayed the sharpest decrease in survival starting 1 week post-exposure, which re-
sulted in overall treatment differences. This suggests concentration-dependent differences,
which agrees with the experimental endpoints measured (see below). In larvae exposed at
7 dpf, those in the vehicle (0.0003% DMSO) group displayed the sharpest changes in daily
survival, though overall survival at 1 week and 2 weeks post-exposure was not significantly
different. DMSO (0.00075%) used as the vehicle in a study of estrogenic signaling in juve-
nile salmon was found to change expression of estrogenic markers [72], suggesting direct
effects. However, we found that larvae in the vehicle control group had responses that were
not significantly different from water controls for all measurements, with two exceptions.
While we cannot completely discount a potential direct effect of DMSO, examination of the
data overall suggests DMSO may not be having an individual effect in our experiments.

We have identified an effect of transient developmental exposure to BPA on the
visual system. These effects were localized to specific exposure ages: 72 hpf and 7 dpf.
Zebrafish larvae hatch at 72 hpf, an age where when all retinal cell types are present [24]
and retinal ganglion cell axons have innervated the optic tectum [25] suggesting functional
circuitry. Visually guided optomotor responses can be recorded at 7 dpf [55], an age
when zebrafish larvae have exhausted their yolk sac and are actively feeding. Estrogen
circuitry, the target of BPA, is also functional at these ages. Estrogen is synthesized by the
aromatization of testosterone by the enzyme aromatase (estrogen synthase). Zebrafish
brain expresses high levels of aromatase [73–75] and this expression occurs throughout
the life of the fish [76]. Aromatase expression begins at 24-48 hpf, when estrogen receptor
mRNA expression also begins [77–80]; expression of GPER (G-protein coupled estrogen
receptor) occurs at 72 hpf [81]. Aromatase protein can be detected in retina at 7 dpf
using immunocytochemistry [56]. BPA, as an estrogen agonist, is able to bind all estrogen
receptors [21,44,82,83], activating intracellular signaling and increasing expression of both
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aromatase and estrogen receptors [21,45,57,58,84,85]. In this way, BPA increases estrogen
signaling. The specific effects of BPA at 72 hpf and 7 dpf suggests estrogen receptors are
functional at these ages, that BPA binds to these receptors, and that the effect of BPA is
prolonged, lasting up to 2 weeks after removal from treatment.

Embryonic exposure (24 hpf) affected larval growth. Low dose (0.001 µM) BPA re-
sulted in significantly larger larvae when measured 1 week and 2 weeks postexposure
whereas, exposure to high (0.1 µM) BPA had the opposite effect, resulting in significantly
smaller larvae. These results agree with another study examining embryonic BPA expo-
sure, which identified shorter larvae and wider somites in larvae treated within the first
24 hpf [49]. However, we found no differences in eye diameter or optomotor responses.
While this could be due to an inability of BPA to cross the chorion, as reported for bu-
tachlor, another endocrine disruptor [86], differences in growth measurements suggest this
is not the case. Rather, the timing of estrogen receptor expression, which is beginning this
exposure age, suggests these receptors may not be functional. In agreement with this, we
previously showed that transient exposure to the aromatase inhibitor formestane (4-OH-A)
at 24 hpf did not alter optomotor responses in adult zebrafish [87], consistent with an
absence of functional estrogen synthesis and signaling at this exposure age.

Differences in growth were also observed when exposure occurred at 72 hpf and 7 dpf.
Larvae exposed to high (0.1 µM) BPA at 72 hpf were smaller after 1 week of recovery. Eye
diameter measurements, in contrast, revealed a slow-to-develop effect with increased eye
measurements observed 2 weeks after removal from treatment. Larvae exposed at 7 dpf
revealed transient morphological effects, though now differences in eye diameter noted
at 1 week postexposure were absent at 2 weeks postexposure (Figure 4a,c). Overall, we
observed a non-monotonic effect [46,47] on growth, where exposure to high BPA caused a
decrease in notochord length, while exposure to low BPA caused an increase in notochord
length, when measured 1 week post-exposure.

These results suggest concentration-dependent effects of BPA, consistent with pub-
lished reports [9,69]. We similarly observed concentration-dependent effects of BPA ex-
posure in our OMR data, in addition to a time-dependent component. We observed an
early, and consistent, increase in the number of larvae displaying a positive OMR with
high dose BPA but delayed effects of low dose BPA that were not observed until 2 weeks
after treatment. At this time, the number of larvae displaying a positive OMR was also
increased. Published work reports 0.1 µM BPA induces hyperactivity in zebrafish larvae
when exposure occurs before 36 hpf [58] or before 58 hpf [46], suggesting that the observed
increase in OMR responses may be due to an overall increase in activity. To assess this,
we examined startle responses in exposed larvae. We found BPA-induced increases in
startle responses in two groups: (1) larvae exposed at 72 hpf and tested 1 week later and
(2) larvae exposed at 24 hpf and tested 2 weeks later. Since larvae in the first group also
showed increased OMR, it is possible that BPA-induced hyperactivity in this treatment
group contributed to this response. However, larvae exposed to either high (0.1 µM) or
low (0.001 µM) BPA at 72 hpf and tested 2 weeks later displayed significant differences in
OMR only, as did all larval groups exposed at 7 dpf. We interpret these results as an effect
of BPA on OMR circuitry, suggesting a specific effect on vision-based behaviors.

Our data revealed a clear persistent effect of BPA exposure. However, the absence
of any immediate effects of the low concentration of BPA was unexpected. We do not
know the specific mechanism underlying the delayed effect, there are two possibilities.
First, there could be differential activation of estrogen receptors (ER) by BPA. Though BPA
binds to all ERs, including GPER [88], BPA binds ERα as an agonist, but binds ERβ as an
antagonist [89] and these two receptor types participate in estrogen dependent signaling
through distinct molecular circuits [90]. Zebrafish ERs (zfERα, zfERβ1, and zfERβ2) have
different affinities for estradiol [91], suggesting there may also be differences in affinity for
BPA. ER activation results in altered gene expression; whereas GPER activation is associated
with more immediate effects in cells, such as altered calcium signaling [88,92]. In addition,
BPA strongly binds to estrogen related receptors (ERRγ) [93] and activation of ERRβγ
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affects behavior in both larval [46] and adult [47] zebrafish. Differences in BPA binding have
been observed when exposure occurs within with nmol/L to mmol/L range [94], consistent
with concentrations used here. Thus, is it possible that BPA differentially bound to all
functional ER and ERR types in zebrafish larvae, activating different pathways, which may
have resulted in the time-dependent effects observed here. Second, BPA may have cross-
reacted with other receptor types, such as thyroid hormone and androgen receptors [95,96].
While we do not anticipate a role of thyroid receptors, as BPA binds these receptors at doses
much higher than those used here (10 µM [35,97,98]), androgen receptor activation is a
possibility. Low doses of BPA increases androgen receptor expression [34]. Kinch et al. [58],
working in zebrafish, found that 0.0068 µM BPA was able to agonize androgen receptors,
and increase aromatase (cyp19a1b) expression, when exposure during specific time periods
before 36 hpf. The overlaps in exposure age and BPA concentration with our study is
worth mentioning and suggests cross-reactivity may be occurring at the doses used in our
preparation. We are currently performing molecular analyses of exposed tissues to identify
the intracellular mechanisms underlying the observed behavioral responses.

5. Conclusions

Overall, our results indicate that transient, developmental exposure to sublethal and
environmentally relevant concentrations of BPA alters larval morphology and visually
guided behaviors. Embryonic exposure reduced growth, while exposure immediately
after hatching (72 hpf) and during the early larval stage (7 dpf) were found to target visu-
ally guided circuitry with concentration-dependent effects. At these ages, BPA exposure
increased the number of larvae displaying a positive OMR and increased eye diameter
measurements. Overall, these data suggest functional changes at one or more levels of
visual development, sensation, or processing. Though significantly deleterious effects
were not noted, the time- and concentration-dependent effects noted may support the dual
function of BPA as both an estrogenic agonist and antagonist.
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Abbreviations

4-OH-A 4-hydroxyandrostenedione
BPA bisphenol-A
dpf days post-fertilization
DMSO dimethyl sulfoxide
EDCs endocrine disrupting compounds
ER estrogen receptor
ERRγ estrogen related receptors
ED eye diameter
GPER G-protein coupled estrogen receptor
hpf hours post-fertilization
NL notochord length
OMR optomotor response
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