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Purpose: Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common pathogens of community- and 
hospital-acquired infections, and its prevalence is increasing globally. Guiyang is the capital city of Guizhou Province, 
Southwest China; as the transport and tourism centre of Southwest China, Guizhou Province is bordered by Yunnan, 
Sichuan, Chongqing, and Guangxi Provinces. Although MRSA prevalence is increasing, little is known about its aspects in 
the area. The purpose of this study was to analyse MRSA molecular characteristics, antimicrobial resistance, and virulence 
genes in Guiyang.
Methods: In total, 209 MRSA isolates from four hospitals (2019–2020) were collected and analysed by antimicrobial susceptibility 
testing and molecular classification by the MLST, spa, and SCCmec typing methods. Isolate antibiotic resistance rates were detected by 
a drug susceptibility assays. PCR amplification was used to detect the virulence gene-carrying status.
Results: Twenty-four STs, including 4 new STs (ST7346, ST7347, ST7348, and ST7247) and 3 new allelic mutations, were identified 
based on MLST. The major prevalent ST type and clone complex were ST59 (49.8%) and CC59 (62.7%), respectively. Spa type t437 
(42.1%) and SCCmec IV (55.5%) were identified by spa and SCCmec typing methods as the most important types. Drug sensitivity 
data showed that the multidrug resistance rate was 79.0%. There were significant differences in multidrug resistance rates and 
virulence gene-carrying rates for seb, hla, hlb, cna and bap between ST59 and non-ST59 types.
Conclusion: ST59-SCCmecIV-t437 is a major epidemic clone in Guiyang that should be monitored by local medical and health 
institutions. The situation differs from other adjacent or middle provinces of China, which may be due to the special geographical 
location of the region and the trend in antibiotic use or lifestyle. This study provides empirical evidence for local medical and health 
departments to prevent and control the spread of MRSA.
Keywords: methicillin-resistant Staphylococcus aureus, MRSA, multilocus sequence type, MLST, Staphylococcal protein A type, 
SPA, Staphylococcal chromosomal cassette mec type, SCCmec, multidrug-resistant organism, virulence gene

Introduction
Antimicrobial resistance (AMR) of clinical bacteria threatens human health. According to the latest data by the China 
Antimicrobial Surveillance Network (CHINET), antibiotic-resistant Staphylococcus aureus ranked third in the country’s 
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clinical detection rate in 2021, with methicillin-resistant Staphylococcus aureus (MRSA) comprising 30% of all 
antibiotic-resistant S. aureus.1 MRSA was once strictly associated with healthcare settings, termed hospital-acquired 
MRSA (HA-MRSA), including hospitals, healthcare centres and hospital staff. However, since community-acquired 
MRSA (CA-MRSA) infection was first reported in the 1980s, CA-MRSA infection has gradually become the major type 
of MRSA infection.2 In recent years, the AMR of HA-MRSA and CA-MRSA has changed.3 Overall, MRSA has a higher 
mortality rate than methicillin-sensitive S. aureus (MSSA), leading to longer hospitalizations and higher associated 
treatment costs. Therefore, analysis of the molecular characteristics, antimicrobial resistance, and virulence gene profiles 
of MRSA isolates are very important for controlling outbreaks of high-antimicrobial resistance and high-virulence 
strains.4 Moreover, such information will lay the foundation for developing new anti-MRSA agents.

Biofilm is an important factor of MRSA pathogenicity,5 involving 4 stages: initial attachment, irreversible attachment, 
bacterial growth and ECM generation, and biofilm maturation.6 eDNA (extracellular DNA), PIA (Polysaccharide Intercellular 
Adhesion), and CWA (Cell Wall Associated) proteins, nucleases and proteases participate in construction of the biofilm 
material matrix and are regulated by different signalling pathways.7 Biofilm formation is a dynamic process. Once it matures, 
the bacteria encased are released and spread to a new site to form another biofilm. Thus, these bacteria are the main targets of 
many new anti-MRSA agents.8–13 Additionally, biofilms are an obstacle for antibiotic resistance treatment of MRSA bacteria 
inside the biofilm, which is why MRSA strains are difficult clear from the infection site. Based on this, many novel anti-MRSA 
agents have been investigated. Most importantly, several detection methods14,15 and vaccines for biofilms via polysaccharide 
intercellular adhesion (PIA) antigen or PIA-rSesC have been developed.16–19

A variety of molecular classification methods are helpful for determining the type of MRSA isolate. Multilocus 
sequence typing (MLST) consists of seven housekeeping genes (arcC, aroE, glpF, gmk, pta, tpi, and yqil).20 Among 
them, types with one or two different alleles can be classified as the same clonal complexes (CCs).21–23 Staphylococcal 
protein A typing (spa) is based on amplification and sequencing of the surface protein A gene. Staphylococcal 
chromosomal cassette mec (SCCmec) is a mobile genetic element used for typing. To date, 14 different types of 
SCCmec elements have been found.24,25

During S. aureus infection, it produces a quantity of virulence factors, often leading to toxin-mediated diseases, including 
toxic shock syndrome, staphylococcal food-borne diseases, and scalded skin syndrome.26,27 Exotoxins are classified into three 
categories based on known functions: cytotoxins, superantigens, and cytotoxic enzymes.21,28 These include haemolysin (Hl), 
Panton-Valentine leukocidin (PVL), staphylococcal enterotoxin (Se), toxic shock syndrome toxin-1 (TSST-1), fibronectin- 
binding protein (Fnb), intracellular adhesin (Ica), collagen adhesin (Cna), and biofilm-associated protein (Bap).28,29 These 
exotoxins jointly regulate the host immune system and cell adhesion and play a vital role in S. aureus infection.28

In recent years, the global prevalence of MRSA has been changing, resulting in different epidemic clones and 
antimicrobial resistance profiles in different regions and at different times, with regional variability.30 Guizhou Province 
is bordered by Yunnan, Sichuan, Chongqing, and Guangxi Provinces in southwestern China. However, no multicentre 
study on MRSA isolates has been carried out in this area. In this study, MLST, spa-type, and SCCmec methods were used 
for the first time to analyse MRSA isolates from provincial, city, and county hospitals to detect the main epidemic MRSA 
strains in Guiyang. The antimicrobial resistance and virulence genes of these isolates were also investigated. The findings 
provide a guiding reference for the clinical treatment of MRSA-related infections.

Materials and Methods
Clinical Bacterial Isolate Collection, Culture, and Genomic DNA Extraction
All MRSA strains were isolated and banked in 4 hospitals (including 3 tertiary teaching hospitals) in Guiyang from 2019 
to 2020: The First Affiliated Hospital of Guizhou Medical University, The First People’s Hospital of Guiyang, Guihang 
Guiyang Hospital, and People’s Hospital of Kaiyang. All isolates were first identified using Gram staining and coagulase 
and catalase tests. Then, they were further identified using a Mérieux automated bacterial tester, VITEK 2 AST-GP67 
Test Kit, and mecA gene testing with PCR amplification. All isolates were stored at −80°C for further experiments. After 
phenotype and genotype identification, 209 MRSA isolates were ultimately identified and included in the research. The 
sample sources of these isolates included cutaneous abscesses and wound secretions (n=76, 36.4%), sputum and pharynx 
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swabs (n=113, 45.1%), blood (n=9, 4.3%), and others (catheter tip, pleural fluid, drainage liquid, ascites, joint fluid, and 
urine) (n=11, 5.3%) (according to laboratory department statistics data). It should be clarified that all clinical MRSA 
strains were obtained from the laboratory department in these hospitals. The clinical samples were not specifically 
isolated for this research. Thus, all these strains were obtained as part of the routine hospital laboratory procedure. We did 
not collect samples from patients directly at all. Before we took the stock strains from the laboratory department of 
hospital, all personal information was removed for patient protection.

All primers used in the present study were synthesized by Sangon Biotech (Shanghai) Co., Ltd., as listed in Table 1. 
Any strain with PENG and CFX (cefoxitin) resistance and mecA positivity was considered an MRSA strain. All strains 

Table 1 Primers Used in This Study

Primer Nucleotide Sequence (5′-3′) Amplicon Size 
(bp)

Reaction 
Condition

References

Arc-F TTGATTCACCAGCGCGTATTGTC 570 a [31]

Arc-R AGGTATCTGCTTCAATCAGCG

Aro-F ATCGGAAATCCTATTTCACATTC 536 a

Aro-R GGTGTTGTATTAATAACGATATC

Glp-F CTAGGAACTGCAATCTTAATCC 576 a

Glp-R TGGTAAAATCGCATGTCCAATTC

Gmk-F ATCGTTTTATCGGGACCATC 488 a

Gmk-R TCATTAACTACAACGTAATCGTA

Pta-F GTTAAAATCGTATTACCTGAAGG 575 a

Pta-R GACCCTTTTGTTGAAAAGCTTAA

Tpi-F TCGTTCATTCTGAACGTCGTGAA 475 a

Tpi-R TTTGCACCTTCTAACAATTGTAC

Yqi-F CAGCATACAGGACACCTATTGGC 598 a

Yqi-R CGTTGAGGAATCGATACTGGAAC

MecA-F GTGAAGATATACCAAGTGATT 147 b [57]

MecA-R ATGCGCTATAGATTGAAAGGAT

SCCmecI-F GCTTTAAAGAGTGTCGTTACAGG 613 c [34,58]

SCCmecI-R GTTCTCTCATAGTATGACGTCC

SCCmecII-F CGTTGAAGATGATGAAGCG 398 c

SCCmecII-R CGAAATCAATGGTTAATGGACC

SCCmecII-F2 TAGCTTATGGTGCTTATGCG 128 c

SCCmec CII-R2 GTGCATGATTTCATTTGTGGC

SCCmecIII-F CCATATTGTGTACGATGCG 280 c

SCCmecIII-R CCTTAGTTGTCGTAACAGATCG

SCCmec III-F5 GAAACTAGTTATTTCCAACGG 257 c

SCCmec III-R6 GTGTAATTTCTTTTGAAAGATATGG

(Continued)
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Table 1 (Continued). 

Primer Nucleotide Sequence (5′-3′) Amplicon Size 
(bp)

Reaction 
Condition

References

SCCmecIVa-F GCCTTATTCGAAGAAACCG 776 c

SCCmecIVa-R CTACTCTTCTGAAAAGCGTCG

SCCmecIVb-F TCTGGAATTACTTCAGCTGC 493 c

SCCmecIVb-R AAACAATATTGCTCTCCCTC

SCCmecIVc-F ACAATATTTGTATTATCGGAGAGC 200 c

SCCmecIVc-R TTGGTATGAGGTATTGCTGG

SCCmec IVc-F2 CCTGAATCTAAAGAGATACACCG 200 c

SCCmec IVc-R2 GGTTATTTTCATAGTGAATCGC

SCCmecIVd-F CTCAAAATACGGACCCCAATACA 881 c

SCCmecIVd-R TGCTCCAGTAATTGCTAAAG

SCCmec IVe-F3 CAGATTCATCATTTCAAAGGC 175 c

SCCmec IVe-R4 AACAACTATTAGATAATTTCCG

SCCmecV-F GAACATTGTTACTTAAATGAGCG 325 c

SCCmecV-R TGAAAGTTGTACCCTTGACACC

mecI-F CGTTATAAGTGTACGAATGGTTTTTG 126 d [24]

mecI-R TCATCTGCAGAATGGGAAGTT

ccrB4-F CGAAGTATAGACACTGGAGCGATA 134 d

ccrB4-R CGACTCTCTTGGCGTTTA

IS1272J-F GAAGCTTTGGGCGATAAAGA 98 d

IS1272J-R GCACTGTCTCGTTTAGACCAATC

SCCmec VII-F GTGACGTTGATATTGCAGTGGT 473 d

SCCmec VII-R TGAAGAAGTTTGTTCCGCGT

SCCmec VIII-F AGCGACGATGAACAACACCGCTACTTACTCAA 138 d

SCCmec VIII-R TTGGTTGAGAATGAGAACAGTGGTAAGATC

SCCmec IX-F TGGCATGGTTGATAGAACAGTG 642 e

SCCmec IX-R TCACTAATTTTGCCTCACGTCT

SCCmec X-F ATTTACGCCGATGCGTTGAC 708 e

SCCmec X-R TATGCGATTGCGCAGGTGAT

SCCmec XI-F GGCGATACAACGACACATCC 255 e

SCCmec XI-R TGTTAGTGCTTGACCGCTCTT

SCCmec XII-F AGAAGACGGAGGACATCGACA 371 e

SCCmec XII-R TCGCTTCTTCAACGCCATCTT

(Continued)
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Table 1 (Continued). 

Primer Nucleotide Sequence (5′-3′) Amplicon Size 
(bp)

Reaction 
Condition

References

spa-F GCCAAAGCGCTAACCTTTTA 600 f [32]

spa-R CTCCAGCTAATAACGCTGCAC

fnbA-F GCGGAGATCAAAGACAA 1279 f [59]

fnbA-R CCATCTATAGCTGTGTGG

fnbB-F GTAACAGCTAATGGTCGAATTGATACT 524 g [60]

fnbB-R CAAGTTCGATAGGAGTACTATGTTC

pvl(lukS-PV/lukF- 
PV)-F

TCATTAGGTAATAAAATGTCTGGACATGATCCA 433 g [61]

pvl(lukS-PV/lukF- 
PV)-R

GCATCAAATGTATTGGATAGCAAAAGC

sea-F GAAAAAAGTCTGAATTGCAGGGAACA 560 g [60]

sea-R CAAATAAATCGTAATTAACCGAAGGTTC

seb-F ATTCTATTAAGGACACTAAGTTAGGGA 404 g

seb-R ATCCCGTTTCATAAGGCGAGT

hla-F CTGATTACTATCCAAGAAATTCGATTG 209 g [62]

hla-R CTTTCCAGCCTACTTTTTTATCAGT

hlb-F GTGCACTTACTGACAATAGTGC 309 g

hlb-R GTTGATGAGTAGCTACCTTCAGT

tsst-F AGCATCTACAAACGATAATATAAAGG 481 g [60]

tsst-R CATTGTTATTTTCCAATAACCACCCG

icaA-F ACACTTGCTGGCGCAGTCAA 188 g [63]

icaA-R TCTGGAACCAACATCCAACA

icaD-F ATGGTCAAGCCCAGACAGAG 198 g

icaD-R AGTATTTTCAATGTTTAAAGCAA

cna-F AGTGATGTTTCGGGATTTG 285 g This study

cna-R TAACTGCTGTCCACCTTGA

bap-F CCCTATATCGAAGGTGTAGAATTGCAC 971 f

bap-R GCTGTTGAAGTTAATACTGTACCTGC

Notes: aAmplification comprised 4 min at 94°C, followed by 35 cycles of 30s at 94°C, 30s at 56°C and 30s at 72°C, with a final extension for 10 min at 
72°C. bAmplification comprised 4 min at 94°C, followed by 35 cycles of 30s at 94°C, 30s at 50°C and 45s at 72°C, with a final extension for 10 min at 
72°C. cThermocycling conditions were set at 94°C for 5 min, followed by 10 cycles of 94°C 45s, 65°C 45s, 72°C 1.5 min. A further 25 cycles of 94°C 
45s, 52°C 45s, 72°C 2 min were followed by a 10 min incubation at 72°C and a hold at 4°C. dAmplification comprised 2 min at 95°C, followed by 35 
cycles of 30s at 95°C, 60s at 54°C and 80s at 72°C, with a final extension for 7 min at 72°C. eAmplification comprised 2 min at 95°C, followed by 32 
cycles of 30s at 95°C, 60s at 47°C and 80s at 72°C, with a final extension for 7 min at 72°C. fAmplification comprised 5 min at 95°C, followed by 35 
cycles of 45s at 95°C, 45s at 60°C and 90s at 72°C, with a final extension for 10 min at 72°C. gAmplification comprised 5 min at 94°C, followed by 35 
cycles of 45s at 94°C, 55s at 58°C and 60s at 72°C, with a final extension for 10 min at 72°C.
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were cultured by streaking onto sheep blood agar culture plates and growing for 16–18 h overnight. Then, single colonies 
were selected and inoculated into liquid medium. After 12 h of growth, MRSA DNA was extracted using a bacterial 
genomic DNA rapid extraction kit. The DNA obtained was dissolved in 100 µL of TE buffer and stored at −20°C. S. 
aureus ATCC25923, ATCC25913, and ATCC43300 were used as quality control strains.

MLST, spa, and SCCmec Typing
MLST Typing
According to the standard protocol of primer design and PCR amplification conditions,31 7 housekeeping gene fragments 
(arcC, aroE, glpF, gmk, pta, tpi, and yqil) of each MRSA isolate were amplified and sequenced (Sangon Biotech 
(Shanghai) Co., Ltd.). These sequences were submitted to the MLST database (https://pubmlst.org/) and analysed for 
allele numbers or ST type. Unique sequences of MRSA strains that could not be compared to any known ST types were 
submitted to the MLST database and assigned as new alleles or ST types. In this study, 4 isolates could not be assigned to 
any known ST; these novel alleles were submitted to the MLST database, and 3 new alleles were assigned, namely, arcC 
(845), glpF (900), and pta (857). (https://pubmlst.org/bigsdb?db=pubmlst_saureus_seqdefandpage=alleleInfoandlocus= 
arcCandallele_id=845, arcC:845; https://pubmlst.org/bigsdb?db=pubmlst_saureus_seqdefandpage=alleleInfoandlocus= 
glpFandallele_id=900, glpF:900; https://pubmlst.org/bigsdb?db=pubmlst_saureus_seqdefandpage=alleleInfoandlocus= 
ptaandallele_id=857, pta:857.). At the same time, 4 new STs were identified: ST7346, ST7347, ST7348 and ST7247 
(Figure 1).

By clustering analysis, isolate strains with 6 identical allelic loci were defined as clonal complexes (CCs).

spa Typing
Similar as above, typing was obtained by amplifying32 and sequencing the variable region (X) of the MRSA spa gene in 
different strains. Then, the sequence was submitted to the spa type database (http://spatyper.fortinbras.us/) for spa typing.

SCCmec Typing
MRSA isolate strains were classified by multiplex PCR24,33,34 and agarose gel electrophoresis for SCCmec type. 
According to the literature, S. aureus can be identified as I–XIV types.25 Some of the MRSA isolates that could not 
be classified as any known SCCmec type were defined as non-type (NT).

Figure 1 Virulence genes and antimicrobial resistance rates of MRSA clinical isolates linked to STs. Antibiotic and virulent genes were detected in less than 3% of isolates 
with a particular ST; the number of MRSA isolates is given.
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Antibiotic Susceptibility Test
Antibiotic susceptibility testing was conducted for all S. aureus isolates using VITEK 2 AST-GP67 Test Kit (Compact 
system) and the Kirby-Bauer disc diffusion method (Oxoid) according to the guidelines of the Clinical and Laboratory 
Standard Institute (CLSI) M100-S29, 2020. The antibiotics tested were FT, SXT, CIP, CM, QDA, CMP, NOR, GEN, 
LEV, ERY, RIF, LZD, TET, TEC, VAN, PENG and CFX (all antibiotic abbreviations are shown in the abstract). Isolates 
resistant to three or more antimicrobial agents were considered multidrug-resistant strains.35

Detection of Virulence Genes
The 12 virulence factor gene fragments of MRSA isolates were screened using independent PCR assays, including sea, 
seb, pvl (lukS-PV/lukF-PV), tsst, hla, hlb, fnbA, fnbB, icaA, icaD, cna and bap. The PCR mixtures contained 1 μL DNA 
template, 2 μL primers (10 μM), 12.5 μL 2×Taq Master Mix (GenStar, China), and 9.5 μL double-distilled water. All 
PCR products were detected by 1.0% agarose gel electrophoresis. One of the PCR products was identified as a positive 
control by sequencing and sequence alignment analysis. All the primers used in this study are listed in Table 1.

Statistical Analysis
In this study, SPSS 26.0 software was used for statistical analysis of experimental data. A P value <0.05 was considered 
statistically significant. WHONET software was used to analyse antimicrobial sensitivity data. Minimum spanning tree 
diagram analysis was performed using goeBURST software.

Ethical Approval
This study was approved by the People’s Hospital of Kaiyang, Guizhou Medical University Teaching Hospital manage-
ment (20190203001).

Results
Molecular Typing of MRSA Strains in Guiyang
All 209 MRSA clinical isolates were successfully typed for MLST and assigned to 24 STs (sequence types). The specific 
results of the MLST typing are provided in Table 2. The most prevalent ST type was ST59 (49.76%, 104/209), followed 
by ST22 (12.9%, 27/209), ST338 (11.0%, 23/209), ST398 (5.7%, 12/209) and ST630 (4.3%, 9/209). All STs were 
identified as belonging to 9 clonal complexes (CCs) by goeBURST and the International MLST database. As shown in 
Figures 1–3 and Table 2, CC59 62.7% (131/209) was the most prevalent CC, followed by CC22 12.9% (27/209), CC8 
9.1% (19/209), CC398 5.7% (12/209) and CC5 4.3% (9/209). In addition, 4 isolates could not be assigned to any known 
ST. These novel alleles were submitted to the MLST database, and 3 new alleles were assigned: arc (845), glpF (900), 
and pta (857). Four new STs were also identified: ST7346, ST7347, ST7348 and ST7247 (Figure 1).

In total, 36 spa types were found by spa typing. The most prevalent was t437 42.1% (88/209), followed by t309 9.1% 
(19/209), t441 6.7% (14/209), t4549 6.7% (14/209) and t172 5.3% (11/207). The t032 and t034 types were detected in 7 
isolates, and t2460, t3485 and t3523 were identified in four isolates each (Table 2).

SCCmec typing was performed successfully for 181 of the 209 MRSA isolates (86.6%). Six SCCmec types, namely, 
types I, II, III, IV, V, and XII, were detected. The most common SCCmec type was IV, which was observed in 116 
isolates 55.5% (116/209), and the second most common SCCmec type was II 20.1% (42/209). Only 1 isolate was 
SCCmec XII 0.5% (1/209), 4 isolates were SCCmec III 1.9% (4/209), 6 isolates were SCCmec I 2.9% (6/209) and 12 
isolates were SCCmec V 5.7% (12/209). In addition, 28 isolates were classified as NT (non-type) by SCCmec typing 
(Table 2).

Antimicrobial Susceptibility of MRSA Strains in Guiyang
According to antimicrobial sensitivity testing, all 209 MRSA clinical isolates were susceptible to VAN, TEC, and LZD. 
However, no MRSA isolate was susceptible to PENG or CFX. The antimicrobial resistance profiles of the MRSA isolates 
are shown in Table 3. The multidrug resistance (MDR) rate among all MRSA isolates was 79.0%.
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Virulence Gene Profile of MRSA Strains in Guiyang
In total, 209 MRSA clinical isolates were amplified with primers for 12 virulence genes by PCR amplification. The 
detection frequency of each virulence gene is shown in Figure 1. Among them, the detection frequencies of the cytotoxic 
genes hla, hlb, and pvl (lukS-PV/lukF-PV) were 89.0%, 60.3%, and 47.8%, respectively. The detection rates of the 
staphylococcal superantigen genes sea, seb, and tsst were 9.6%, 49.8%, and 2.4%, respectively. Of the genes associated 
with biofilm formation, the intracellular adhesion molecule genes icaA and icaD were present in 100.0% and 88.0% of 
the isolates, respectively. Detection rates of the fnbA, fnbB, and cna microbial surface components recognizing adhesive 
matrix molecules (MSCRAMMs) genes were 61.7%, 9.6%, and 23.9%, respectively. The bap gene was detected in 9 
isolates (4.3%). Interestingly, 119 isolates (56.9%) carried 6 or more virulence genes (Figure 1 and Table 4).

Table 2 The MLST, spa and SCCmec Typing of MRSA Isolate Strains

CCs (n=209) CC (%) MLST (n=209) MLST (%) spa (n=209) spa (%) SCCmec (n=209) SCCmec (%)

CC59 (131) 62.7 ST59 (104) 49.8 t437(68),t172(11),t441(10), 

tt3523(4),tt3485(3),t3401(2), 

t163(1),tt347(1),t1212(1), 

t3385(1),t3590(1),t7501(1)

t437 42.1% (88), 

t309 9.1% (19), 

t441 6.7% (14), 

t4549 6.7% (14), 

t172 5.3% (11), 

t032 3.3% (7), 

t034 3.3% (7), 

t2460 1.9% (4), 

t3485 1.9% (4), 

t3523 1.9% (4), 

t030 1.4% (3), 

t116 1.4% (3), 

t899 1.4% (3), 

t011 1.0% (2), 

t347 1.0% (2), 

t664 1.0% (2), 

t3401 1.0% (2), 

t3590 1.0% (2), 

t015 0.5% (1), 

t062 0.5% (1), 

t111 0.5% (1), 

t114 0.5% (1), 

t148 0.5% (1), 

t163 0.5% (1), 

t311 0.5% (1), 

t324 0.5% (1), 

t349 0.5% (1), 

t588 0.5% (1), 

t688 0.5% (1), 

t1212 0.5% (1), 

t1255 0.5% (1), 

t1751 0.5% (1), 

t2310 0.5% (1), 

t3385 0.5% (1), 

t7501 0.5% (1), 

t8045 0.5% (1).

I(2),II(9),IV(89),NT(4) SCCmec IV 55.5% (116), 

SCCmec II 20.1% (42), 

SCCmec V 5.7% (12), 

SCCmec I 2.9% (6), 

SCCmec III 1.9% (4), 

SCCmec XII 0.5% (1), 

SCCmec NT 13.4% (28).

ST338 (23) 11.0 t437(18),t347(1),t441(2), 

t1751(1),t3590(1)

II(15),IV(2),V(3),NT(3)

ST3355 (1) 0.5 t437(1) IV(1)

ST4513 (1) 0.5 t437(1) IV(1)

ST7346 (1) 0.5 t441(1) IV(1)

ST7348 (1) 0.5 t441(1) IV(1)

CC22 (27) 12.9 ST22 (27) 12.9 t309(19),t032(7),t8045(1) II(7),IV(8),V(1),NT(11)

CC8 (19) 9.1 ST630 (9) 4.3 t4549(9) II(4),V(2),NT(3)

ST72 (4) 1.9 t664(2),t148(1),t324(1) I(1),IV(2),V(1)

ST1821 (3) 1.4 t4549(3) V(2),NT(1)

ST239 (2) 1.0 t030(2) III(2)

ST594 (1) 0.5 t030(1) III(1)

CC398 (12) 5.7 ST398 (12) 5.7 t034(7),t011(2),t588(1),t1255(1),t4549(1) I(2),II(3),III(1),V(1),NT(5)

CC5 (9) 4.3 ST5 (4) 1.9 t2460(4) II(4)

ST5638 (3) 1.4 t111(1),t311(1),t688(1) IV(1),V(2)

ST6 (1) 0.5 t3485(1) IV(1)

ST965 (1) 0.5 t062(1) IV(1)

CC1 (5) 2.4 ST1 (2) 1.0 t114(1),t4549(1) IV(2)

ST9 (1) 0.5 t899(1) XII(1)

ST1376 (1) 0.5 t899(1) IV(1)

ST7247 (1) 0.5 t899(1) IV(1)

CC45 (4) 1.9 ST45 (4) 1.9 t116(3),t015(1) IV(4)

CC25 (1) 0.5 ST7347 (1) 0.5 t349(1) NT(1)

CC88 (1) 0.5 ST4083 (1) 0.5 t2310(1) I(1)

Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus; MLST, Multilocus sequence typing; spa, Staphylococcal protein A; SCCmec, Staphylococcal chromo-
some cassette mec; NT, non-type; ST; sequence type; CC, Clonal Complex.
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Correlation and Difference Between MLST, spa Type, SCCmec Type, Antimicrobial 
Susceptibility, and Virulence Genes of MRSA in Guiyang
Intriguingly, there was a strong correlation between the main ST and spa types among the MRSA isolates (Figure 1 and 
Table 2). ST59-t437 65.4% (68/104), ST338-t437 78.3% (18/23), ST22-t309 70.4% (19/27), ST630-t4549 100.0% (9/9), 
ST398-t034 58.3% (7/12) and ST5-t2460 100.0% (4/4) were strongly associated types. The majority (76.2%, 89/116) of 
the SCCmec IV MRSA isolates were ST59, and SCCmec II was primarily associated with ST338 (31.0%, 13/42). 
Comprehensive analysis of MLST, spa type, and SCCmec typing the results identified ST59-SCCmec IV-t437 27.8% (58/ 
209) as the major clone among the MRSA isolates.

The multidrug resistance of the 209 MRSA isolates mainly concentrated around classes 3–5 antimicrobials (69.9%, 
146/209). CC8-t030 and CC1-t899 exhibited high-intensity multidrug resistance to 6–8 classes of antimicrobials. Among 
the 209 MRSA isolates, only 2 ST59 isolates were resistant to QDA. The ST59 isolates found among the 209 MRSA 
isolates were less resistant to LEV than CIP and NOR among fluoroquinolones. Moreover, ST45, ST72 and ST630 
isolates were completely resistant to fluoroquinolones, whereas ST22, ST45, and ST630 isolates were completely 
sensitive to TET (Table 5).

According to the virulence gene detection test, all ST22, ST398, ST45, and ST239 isolates carried the cna gene. 
However, the bap gene was only detected in the 4 CC8-t4549 isolates. CC59 isolates did not carry the fnbB gene. The pvl 
(lukS-PV/lukF-PV) gene encompassed multiple STs, among which the ST22 (22/27) and ST338 (21/23) isolates were the 
two types with the highest rate of carriage (Table 6). The detection rate of the seb gene was higher than that of the sea 
gene, which was mainly carried by CC59 isolates. Although the detection rate of the tsst gene was low, ST5-t2460 
isolates had a high rate of the tsst gene positivity.

Figure 2 Minimum spanning tree constructed by goeBURST based on the MLST data of this study. The number between lines indicates locus differences. The size of each 
node corresponds to the number of strains. The colour partition of each disc corresponds to the proportion of the SPA types. Figures on the nodes are ST numbers.
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Comparation of ST59 and Non-ST59 MRSA Strains in Guiyang
The antimicrobial resistance rate and virulence gene-carrying status of ST59 isolates and non-ST59 isolates were 
analysed. The MDR rate of the ST59 isolates was higher than that of non-ST59 isolates, and the ST59 isolates showed 
higher resistance rates to CM and CMP and lower resistance rates to CIP and LEV. Nonetheless, no significant difference 
in resistance rate to any other antibiotics was found between ST59 and non-ST59 isolates. Among the 12 tested virulence 
genes, seb, hla, and hlb were more frequent in ST59 isolates than in non-ST59 isolates. In contrast, the detection rates of 
pvl (lukS-PV/lukF-PV), fnbB, cna, and bap in ST59 isolates were lower. Detection rates of the other virulence genes 
were not significantly different between the two isolate types (Table 6).

Discussion
Increasing antibiotic resistance is a global public health problem. MRSA prevalence has increased in recent years.-
4,23,27,36–38 In addition, antibiotic resistance and MRSA prevalence trends change dynamically according to different 
medication use habits and time periods. Thus, monitoring the prevalence and antibiotic resistance as well as timely 
updates are valuable and essential. This study focused on the molecular characteristics, antimicrobial resistance, and 
virulence gene profiles of 209 MRSA isolates in Guiyang, a multi-ethnic city in Southwest China, from 2019 to 2020.

The results showed that the most common MLST type was CC59-ST59, and ST59-SCCmec IV-t437 was identified as 
the main common clone type in Guiyang (Figure 2). According to the literature, 5 CCs are most reported among HA- 
MRSA strains around the world, namely, CC5, CC8, CC22, CC30, and CC45.30 CC8-ST239, CC5-ST5, and CC22-ST22 
are also the most common in Asian countries.39 Regarding the CA-MRSA epidemic, CC5, CC8, CC22, CC30, CC59, and 

Figure 3 Dendrogram constructed based on the MLST data of this study.
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CC398 were the most common. CC8-ST8 (USA300) is common in the United States.40 CA-MRSA comprises CC22- 
ST22 and CC30-ST36 in Britain,41 CC30-ST30 in Australia,42 and CC59-ST59 in East Asia.39 CC59-ST59 is also 
common in Taiwan, Hong Kong, Vietnam, and Sri Lanka.43 However, the main types of inland China differ. For 
example, predominant types are CC398-ST398 and CC5-ST5 in Shanghai (eastern China), CC59-ST338 and CC8-ST239 
in Guangdong (southern China), CC8-ST239 in Wuhan (central China), CC5-ST5, CC8-ST239, and CC59-ST59 in 
Zhejiang (south-eastern China), and CC45-ST45 in Hainan (southern China). Thus, the prevalence of the dominant 
MRSA type varies across the world and are associated with specific geographical regions.

According to previous reports, most HA-MRSA isolates carry SCCmec I, II, or III elements, and CA-MRSA isolates 
carry SCCmec IV or V elements.44,45 In this study, HA-MRSA (I+II+III) accounted for 52 strains (24.88%) and CA- 

Table 3 The Distribution of Antimicrobial Resistance of 209 MRSA Isolate Strains

Antibiotica Quantityb N (n=209)c Antimicrobial Resistance Rate (%)

Penicillin G 209 100.0
Erythromycin 163 78.0

Clindamycin 109 52.2

Tetracycline 77 36.8
Chloramphenicol 72 34.5

Gentamicin 45 21.5

Norfloxacin 45 21.5
Ciprofloxacin 41 19.6

Levofloxacin 26 12.4
Rifampicin 14 6.7

Trimethoprim/sulfamethoxazole 10 4.8

Nitrofurantoin 3 1.4
Quinupristin-dalfopristin 2 1.0

Vancomycin 0 0.0

Teicoplanin 0 0.0
Linezolid 0cc 0.0

Notes: aNames of different antibiotics. bThe number of 209 MRSA isolate strains resistant to the same antimicrobial. 
cAnalysis of antimicrobial resistance of 209 MRSA isolate strains.

Table 4 The Frequencies of Virulence Genes of 209 MRSA Isolate Strains

Virulent Genesa Quantityb (n=209)c Virulence Gene Carrying Rate (%)

pvl(lukS-PV/lukF-PV) 100 47.9

sea 20 9.6

seb 104 49.8
hla 186 89.0

hlb 126 60.3

tsst 5 2.4
fnbA 129 61.7

fnbB 20 9.6

icaA 209 100.0
icaD 184 88.0

cna 50 23.9

bap 9 4.3

Notes: aNames of different virulent genes. bThe number of virulence genes carried by 209 MRSA isolate 
strains. cAnalysis of virulence genes of 209 MRSA isolate strains. 
Abbreviations: pvl(lukS-PV/lukF-PV), the panton-valentine leukocidin gene; sea, staphylococcal enterotox-
ins a gene; seb, staphylococcal enterotoxins b gene; hla, the hemolysin a gene; hlb, the hemolysin b gene; 
tsst, the toxic shock syndrome toxin gene; fnbA, the fibrinogen-binding protein A gene; fnbB, the 
fibrinogen-binding protein B gene; icaA, the intracellular adhesion molecule A gene; icaD, the intracellular 
adhesion molecule D gene; cna, the collagen adhesion gene; bap, the biofilm-associated protein gene.
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Table 5 The Frequency Analysis of Antimicrobial Resistance Between ST59 and Non-ST59

Isolates (N) MDRs N (%) Resistant Isolates N (%)

MDRs PENG ERY CM TET CMP GEN NOR CIP LEV RIF SXT FT QDA VAN TEC LZD

ST59(n=104) 88(84.6) 104 (100.0) 85 (81.7) 64 (61.5) 42 (40.4) 43 (41.3) 21 (20.2) 17 (16.3) 14 (13.5) 3 (2.9) 4 (3.8) 2 (1.9) 1 (1.0) 2 (1.9) 0 0 0

non-ST59(n=105)b 77(73.3) 105 (100.0) 78 (75.1) 45 (42.9) 35 (33.3) 29 (27.6) 24 (22.9) 28 (26.7) 27 (25.7) 23 (21.9) 10 (9.5) 8 (7.6) 2 (1.9) 0 (0) 0 0 0

Total(n=209)c 165(78.9) 209 (100.0) 163 (78.0) 109 (52.2) 77 (36.8) 72 (34.4) 45 (21.5) 45 (21.5) 41 (19.6) 26 (12.4) 14 (6.7) 10 (4.8) 3 (1.4) 2 (1.0) 0 0 0

χ2 4.001 - 1.687 7.307 1.116 4.36 0.22 3.294 4.974 15.65 1.863 2.576 0 0.495 - - -

P-valuea 0.045 - 0.194 <0.01 0.291 0.037 0.639 0.07 0.026 <0.01 0.172 0.109 1 0.498 - - -

Notes: aThe frequency of MDRs and antimicrobial resistance were compared between ST59 and non-ST59. bOther MLST types were detected, except ST59. cThe total quantities of MDRs and antimicrobial resistance, respectively. 
Abbreviations: PENG, penicillin G; ERY, erythromycin; CM, clindamycin; TET, tetracycline; CMP, chloramphenicol; GEN, gentamicin; NOR, norfloxacin; CIP, ciprofloxacin; LEV, levofloxacin; RIF, rifampicin; SXT, trimethoprim/ 
sulfamethoxazole; FT, nitrofurantoin; QDA, quinupristin-dalfopristin; VAN, vancomycin; TEC, teicoplanin; LZD, linezolid; MDR, multidrug resistance.
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Table 6 The Frequency Analysis of Virulence Gene Between ST59 and Non-ST59

Isolates (N) Virulence Genes N (%)

pvl (lukS-PV/lukF-PV) sea seb hla hlb tsst fnbA fnbB icaA icaD cna bap

ST59(n=104) 36 (34.6) 13 (12.5) 83 (79.8) 101 (97.1) 88 (84.6) 0 (0) 66 (63.5) 0 (0) 104 (100.0) 91 (87.5) 1 (1.0) 0 (0)
non-ST59(n=105)b 64 (61.0) 7 (6.7) 21 (20.0) 85 (81.0) 38 (36.2) 5 (4.8) 63 (60.0) 20 (19.0) 105 (100.0) 93 (88.6) 49 (46.7) 9 (8.6)

Total(n=209)c 100 (47.8) 20 (9.6) 104 (49.8) 186 (89.0) 126 (60.3) 5 (2.4) 129 (61.7) 20 (9.6) 209 (100.0) 184 (88.0) 50 (23.9) 9 (4.3)

χ2 14.52 2.055 74.76 12.34 51.18 3.239 0.265 19.76 - 0.057 57.49 7.351
P-valuea <0.01 0.152 <0.01 <0.01 <0.01 0.06 0.607 <0.01 - 0.811 <0.01 <0.01

Notes: aThe frequency of virulence genes were compared between ST59 and non-ST59. bOther MLST types were detected, except ST59. cThe total quantities of virulence genes. 
Abbreviations: pvl(lukS-PV/lukF-PV), the panton-valentine leukocidin gene; sea, staphylococcal enterotoxins a gene; seb, staphylococcal enterotoxins b gene; hla, the hemolysin a gene; hlb, the hemolysin b gene; tsst, the toxic shock 
syndrome toxin gene; fnbA, the fibrinogen-binding protein A gene; fnbB, the fibrinogen-binding protein B gene; icaA, the intracellular adhesion molecule A gene; icaD, the intracellular adhesion molecule D gene; cna, the collagen adhesion 
gene; bap, the biofilm-associated protein gene.
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MRSA (IV+V+XII) for 129 (61.72%). The remaining 28 non-type strains could not be discriminated by the method used 
(Table 2). Therefore, the main MRSA isolate in the study area was CA-MRSA. It is therefore reasonable that most people 
become infected with MRSA before they visit the hospital. Notably, 15 strains of CC59-ST338, which belongs to CA- 
MRSA, were detected,4 though it was found to be SCCmec II. Hence, it is controversial to identify HA-MRSA or CA- 
MRSA by the ST method with the SCCmec method. More accurate identification methods need to be explored in the 
future. In addition, 4 new uncommon MLST types were identified in the study region.

Antimicrobial sensitivity tests showed that all 209 MRSA isolates were susceptible to VAN, TEC, and LZD, but none 
of the MRSA isolates were susceptible to PENG and CFX. The findings suggest that VAN, TEC, and LZD remain the 
most effective antimicrobial agents for MRSA isolates in this area. The high resistance rates to ERY, CM, and GEN are 
consistent with the results of CHINET in 2020. However, the resistance rate to LEV, RIF and SXT in this study was 
lower than that to CIP and NOR and 20.2% lower than data according to CHINET in 2020. This might be due to different 
antibiotic usages and health care plans in different regional hospitals.46 In general, the ability of MRSA to adapt changes 
under the bacteriostatic pressure of antibiotics, which might lead to certain differences in LEV, RIF, and SXT resistance 
rates (Table 3).

Here, the study found the multidrug resistance rate to be 79.0% (165/209). Among them, CC8-t030 and CC1-t899 
exhibited high-intensity multidrug resistance against 6–8 classes of antibiotics. Such a situation has been reported to be 
related to the misuse of antibiotics.47,48 Additionally, ST59 shows a wide spectrum of antimicrobial resistance, though 
only 2 ST59 isolates were resistant to QDA. Interestingly, there are few reports about resistance of MRSA strains to 
QDA.35 It was also found that ST45, ST72, and ST630 isolates were completely resistant to fluoroquinolones; ST22, 
ST45, and ST630 isolates were completely sensitive to TET. These results suggest a certain correlation between MLST 
strain type and antimicrobial susceptibility.49 Furthermore, antibiotic resistance rates to CM and CMP were higher and to 
CIP and LEV lower in non-ST59 isolates than in ST59 isolates (Table 5). This indicates that ST59 has a high 
antimicrobial resistance rate, especially to CM and CMP, in Guiyang. According to the above results, it was concluded 
that the antimicrobial resistance rate of MRSA strains was higher; ST59 isolates are the main MRSA type and exhibit 
unique characteristics in Guiyang.

Virulence factors are the main factors involved in the colonization and pathogenicity of pathogenic bacteria and 
facilitate invasive infection,36,50,51 causing a strong inflammatory response and promoting infection syndrome.4,38,51 In 
addition, virulence factors help bacteria form biofilm for stable attachment, ensuring pathogen survival and infection. 
This study examined 12 virulence genes, with different detection rates. Among them, the detection rates of the icaA, hla, 
icaD, fnbA and hlb genes were 100.0%, 89.0%, 88.0%, 61.7% and 60.3%, respectively (Table 4). It has been suggested 
that MRSA strains might have strong haemolytic ability and cell adhesion ability in the study area.52

In our virulence gene assay, rates of cna, fnbB, and bap gene detection were lower than those of other virulence 
genes, but they were particularly associated with certain types. All ST22, ST398, ST45, and ST239 isolates carried the 
cna gene. The bap gene was detected only in four CC8-t4549 isolates. CC59 isolates did not carry the fnbB gene. This 
information provides an important basis to further study the mechanism of bacterial adhesion and biofilm formation. The 
cytotoxin pvl (lukS-PV/lukF-PV) gene was detected in multiple STs. PVL protein can cause tissue necrosis and leukocyte 
destruction.53 Among these isolates, ST22 81.5% (22/27) and ST338 91.3% (21/23) had higher carriage rates. This was 
the same as reported for pvl (lukS-PV/lukF-PV)-positive CC22-MRSA isolates in Kuwaiti hospitals54 but different from 
pvl (lukS-PV/lukF-PV)-negative ST22-MRSA isolates reported in Urumqi (Figure 1).55 This indicates some differences 
in the pvl (lukS-PV/lukF-PV) gene -carrying rate of ST22-MRSA isolates from different regions and possibly differences 
in their invasive abilities.

The seb gene was mainly detected in CC59 isolates. According to reports, SEB also promotes systemic S. aureus 
infection.56 Therefore, the systemic infection rate caused by ST59 might be higher. Although the detection rate of the tsst 
gene was lower, the ST5-t2460 isolates had a higher rate of the tsst gene positivity (Figure 1). Toxic shock syndrome 
(TSS) is an acute systemic disease affecting different organ systems of the body, resulting in severe disease.27,28 If a 
patient is infected with the ST5-t2460 isolate, clinicians should be highly vigilant about systemic infection and 
implement emergency measures in advance. Analysis of ST59 and non-ST59 isolates showed that the seb, hla, and 
hlb genes were more frequent in ST59 isolates than in non-ST59 isolates (Table 6). This suggested that ST59 might have 
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strong haemolytic toxicity and systemic infection capacity. According to the above detection of virulence genes carried 
by STs, we speculate the existence of a relationship between virulence gene profile and MLST type.

Conclusion
This study revealed the molecular characteristics, antimicrobial resistance, and virulence gene-carrying status of MRSA 
isolates in Guiyang. Due to the special geographical environment and the habit of antibiotic use, ST59-SCCmec IV-t437 
was found to be the main epidemic clone type, with a wide spectrum of antimicrobial resistance, many virulence genes, 
and strong adaptability and pathogenicity. Public health departments should be aware of and monitor this strain.
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CHINET, China Antimicrobial Surveillance Network; MRSA, methicillin-resistant Staphylococcus aureus; MSSA, 
methicillin-sensitive Staphylococcus aureus; HA-MRSA, hospital-acquired methicillin-resistant Staphylococcus aureus; 
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clonal complexes; spa, Staphylococcal protein A; SCCmec, Staphylococcal chromosomal cassette mec; NT, non-type; 
STs, sequence types; MDR, multidrug resistance; MSCRAMMs, microbial surface components recognizing adhesive 
matrix molecules; CLSI, Clinical and Laboratory Standard Institute; FT, nitrofurantoin; SXT, trimethoprim/sulfamethox-
azole; CIP, ciprofloxacin; CM, clindamycin; QDA, quinupristin-dalfopristin; CMP, chloramphenicol; NOR, norfloxacin; 
GEN, gentamicin; LEV, levofloxacin; ERY, erythromycin; RIF, rifampicin; LZD, linezolid; TET, tetracycline; TEC, 
teicoplanin; VAN, vancomycin; PENG, penicillin G; CFX, cefoxitin; sea, seb, Staphylococcal enterotoxin genes; pvl 
(lukS-PV/lukF-PV), Panton-Valentine leukocidin gene; tsst, toxic shock syndrome toxin gene; hla, hlb, haemolysin 
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