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Abstract: Globally, human exposure to environmental pollutants causes an estimated 9 million deaths
per year and it could also be implicated in the etiology of diseases that do not appear to have a
genetic origin. Accordingly, there is a need to gain information about the biomolecular mechanisms
that causally link exposure to inorganic environmental pollutants with distinct adverse health effects.
Although the analysis of blood plasma and red blood cell (RBC) cytosol can provide important
biochemical information about these mechanisms, the inherent complexity of these biological matrices
can make this a difficult task. In this perspective, we will examine the use of metalloentities that are
present in plasma and RBC cytosol as potential exposure biomarkers to assess human exposure to
inorganic pollutants. Our primary objective is to explore the principal bioinorganic processes that
contribute to increased or decreased metalloprotein concentrations in plasma and/or RBC cytosol.
Furthermore, we will also identify metabolites which can form in the bloodstream and contain
essential as well as toxic metals for use as exposure biomarkers. While the latter metal species
represent useful biomarkers for short-term exposure, endogenous plasma metalloproteins represent
indicators to assess the long-term exposure of an individual to inorganic pollutants. Based on these
considerations, the quantification of metalloentities in blood plasma and/or RBC cytosol is identified
as a feasible research avenue to better understand the adverse health effects that are associated
with chronic exposure of various human populations to inorganic pollutants. Exposure to these
pollutants will likely increase as a consequence of technological advances, including the fast-growing
applications of metal-based engineering nanomaterials.

Keywords: toxic metals/metalloids; chronic exposure; bloodstream; bioinorganic chemistry; metallo-
protein; biomarker; mechanism of toxicity

1. Introduction

Ever since Earth came into being 4.5 billion years ago, ‘Panta rhei’ (attributed to Hera-
clitus), which means ‘everything flows’, has described the dynamic mingling of chemical
elements and their species between the geosphere, the hydrosphere, the atmosphere and
the biosphere (i.e., all living organisms). Owing to three revolutions—the agricultural,
the cognitive and the industrial—Homo sapiens has since multiplied to an extent that all
anthropogenic activities cumulatively perturb the global biogeochemical cycles of at least
11 potentially toxic chemical elements [1]. This development has necessitated biogeo-
chemists to add the ‘anthrosphere’ as another environmental compartment to accurately
describe the dynamic cycling of chemical elements on the surface of our planet and
has—quite appropriately—prompted some scientists to claim that we live in ‘the An-
thropocene’, defined as a geological age in which human activity has been the dominant
influence on climate and the environment. Certain anthropogenic activities, such as the
metallurgy industry, are known to dramatically affect ecosystems [2]. In northern Siberia,
for example, 24,000 km2 of Taiga (roughly 1/3 of the size of Austria) represent the most
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polluted area in the world where there is essentially no tree growth due to the emission of
1.8 million t of pollutants (98% SO2 as well as Cu and Ni) in 2018 [3]. Anthropogenic
inorganic pollutants that are released into the global environment due to technological
advances and fossil fuel consumption can also enter the biological system by different
exposure routes to adversely affect human health. One of the main routes by which in-
organic pollutants are absorbed is the gastrointestinal (GI) tract. Stretched out, the GI
tract of a human adult is 8 m long and its gut mucosa covers a surface area of 260–300 m2,
which corresponds roughly to the area of a tennis court. The GI tract mediates the efficient
absorption of all nutrients, including proteins, vitamins, carbohydrates, fatty acids and es-
sential trace elements (e.g., Cu, Fe, Zn) [4], from our diet into the systemic blood circulation
for subsequent distribution to organs to maintain health and well-being [5]. Ultimately,
however, the GI tract is a double-edged sword as it will also absorb bioavailable pollutants
from our diet [6,7] and transfer them into the bloodstream to various degrees [8]. While
organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), certainly need to be
considered as well, the primary focus of this paper will be on inorganic pollutants, includ-
ing environmental metals and organometallic species, such as AsIII, AsV, Cd2+, CH3Hg+,
Hg2+ and Pb2+ to which essentially all humans are chronically exposed [8], including
children, pregnant women and the elderly, who are particularly vulnerable populations [9].
Toxic metals and metalloid compounds, once introduced into the environment, are fun-
damentally different from organic pollutants in that they cannot be degraded and they
can therefore linger for hundreds of years [10]. Internalized toxic metals can access target
organs by molecular mimicry, participate in redox cycles (e.g., transition metals), contribute
to oxidative stress and form DNA and/or protein adducts, which can have considerable
adverse implications for the organism [11,12].

In the biosphere, an important biological compartment where molecules literally
move continuously is the bloodstream, which from an inorganic perspective includes
nutrient metals (e.g., Cu, Fe, Zn) and environmental metal pollutants (AsIII, AsV, Cd2+,
CH3Hg+ Hg2+ and Pb2+). Crucially, the bloodstream needs to maintain a constant flux
of energy and essential trace element ‘building blocks’ for the continuous assembly
of biochemically vital metalloproteins within organs (e.g., the liver [13]) and it also
receives biomolecular products from tissue/organs [14], which can provide useful
information about the health status of an organism [15–17]. Despite this, the dynamic
exchange of essential and toxic metal species at the blood–organ interface is often ne-
glected even though the human bloodstream itself—owing to the presence of up to
10,000 plasma proteins [18], >400 small molecular weight metabolites [19], and oxida-
tive (plasma) and reducing components (red blood cells)—provides a rich ‘playground’
for bioinorganic chemistry processes to unfold at 37 ◦C. Accordingly, the bloodstream
should not only be regarded as a ‘pipe’ which merely mediates the translocation of es-
sential trace elements (beneficial) and inorganic pollutants (detrimental) to organs [20],
and vice versa since it also represents a biological compartment where bioinorganic
chemical reactions of toxicological relevance unfold. The bloodstream must there-
fore be considered in the development of physiologically based pharmacokinetic
models [4,21,22] (Figure 1). Likewise, the intravenous administration of highly cytotoxic
anticancer active metallodrugs is of toxicological relevance and the interested reader is
referred to a recent review [23]. Given the inherent complexity of the bloodstream, the
number of inorganic pollutants of interest and the large variety of biomolecules which
may be adversely affected [24], two toxicology-related research goals can be identified
at the blood–organ interface which both rely on the application of advanced analytical
methods [25] to determine metalloentities to tackle the biological complexity [21]: one
which has a clear analytical flavor and another one with a strong bioinorganic one.
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Figure 1. Conceptual depiction of the interaction between the environment and the genome of an organism that involves 
complex biological networks. The measurements of distinct metalloentities in the bloodstream may serve as biomarkers 
to assess the chronic exposure of an organism to individual or multiple toxic metal/metalloid species. 

The analytical problem refers to the quantification of ‘endogenous’ metalloproteins, 
which are proteins that contain one or more bound essential metal/metalloid and are pre-
sent in blood plasma (e.g., transport proteins) as well as RBC cytosol. Just like several 
other plasma proteins that are routinely quantified for diagnostic purposes [26], the quan-
tification of metalloproteins has inherent diagnostic value [25,27,28] and can be useful in 
diagnosing genetic as well as non-genetic disorders [18]. At the same time, metalloprotein 
concentrations in plasma and RBC cytosol may be potentially useful as indirect indicators 
of the cumulative environmental exposure to individual or multiple inorganic pollutants. 

The bioinorganic problem refers to the in vivo formation of metalloentities in plasma 
and/or RBC cytosol which contain an essential metal and a toxic metal/metalloid [29]. 
While the formation of these species is of inherent toxicological relevance, not all of these 
species necessarily have a half-life in the bloodstream that qualifies them as potential ex-
posure biomarkers [30]. Nevertheless, knowledge about their transient formation in the 
bloodstream is crucial as these bioinorganic processes can affect the secretion of metallo-
proteins from organs to the bloodstream, which therefore directly relates to the analytical 
problem of quantifying endogenous metalloproteins in plasma. In addition, information 
on the stability of bioinorganic complexes in different biological compartments is of im-
portance in testing for associations between pollutant exposure and adverse health effects 
in epidemiological studies in order to choose the proper biological compartment for the 
appropriate exposure period (e.g., acute or chronic exposure). 

Since considerable progress has been made in the quantification of metalloentities in 
the bloodstream, it appears timely to assess their utility as potentially useful ‘read-outs’ 
to gain insight into the inherently complex interaction between mammalian organisms 
and their environment (Figure 1). After a brief overview of the endogenous metallopro-
teins which are present in human blood plasma and RBC cytosol (i.e., lysate), we will 
identify the biochemical processes by which chronic exposure to inorganic pollutants may 
result in increased/decreased metalloprotein concentrations in plasma and/or RBC lysate. 
We will not elaborate on the available instrumental analytical approaches that can be em-
ployed for their determination as this information is available in several comprehensive 

Figure 1. Conceptual depiction of the interaction between the environment and the genome of an organism that involves
complex biological networks. The measurements of distinct metalloentities in the bloodstream may serve as biomarkers to
assess the chronic exposure of an organism to individual or multiple toxic metal/metalloid species.

The analytical problem refers to the quantification of ‘endogenous’ metalloproteins,
which are proteins that contain one or more bound essential metal/metalloid and are
present in blood plasma (e.g., transport proteins) as well as RBC cytosol. Just like several
other plasma proteins that are routinely quantified for diagnostic purposes [26], the quan-
tification of metalloproteins has inherent diagnostic value [25,27,28] and can be useful in
diagnosing genetic as well as non-genetic disorders [18]. At the same time, metalloprotein
concentrations in plasma and RBC cytosol may be potentially useful as indirect indicators
of the cumulative environmental exposure to individual or multiple inorganic pollutants.

The bioinorganic problem refers to the in vivo formation of metalloentities in plasma
and/or RBC cytosol which contain an essential metal and a toxic metal/metalloid [29].
While the formation of these species is of inherent toxicological relevance, not all of these
species necessarily have a half-life in the bloodstream that qualifies them as potential
exposure biomarkers [30]. Nevertheless, knowledge about their transient formation in the
bloodstream is crucial as these bioinorganic processes can affect the secretion of metallo-
proteins from organs to the bloodstream, which therefore directly relates to the analytical
problem of quantifying endogenous metalloproteins in plasma. In addition, information
on the stability of bioinorganic complexes in different biological compartments is of im-
portance in testing for associations between pollutant exposure and adverse health effects
in epidemiological studies in order to choose the proper biological compartment for the
appropriate exposure period (e.g., acute or chronic exposure).

Since considerable progress has been made in the quantification of metalloentities
in the bloodstream, it appears timely to assess their utility as potentially useful ‘read-
outs’ to gain insight into the inherently complex interaction between mammalian
organisms and their environment (Figure 1). After a brief overview of the endogenous
metalloproteins which are present in human blood plasma and RBC cytosol (i.e., lysate),
we will identify the biochemical processes by which chronic exposure to inorganic
pollutants may result in increased/decreased metalloprotein concentrations in plasma
and/or RBC lysate. We will not elaborate on the available instrumental analytical
approaches that can be employed for their determination as this information is available
in several comprehensive reviews [25,27,28,31–34]. Thereafter, we will identify bi-
and trimetallic complexes which contain essential and toxic metals and are formed in
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blood plasma and/or RBC cytosol. We will also briefly elaborate on their bioinorganic
mechanisms of formation. Last but not least, we will discuss the important role that
dynamic interactions between plasma proteins and small molecular weight (SMW)
metabolites play in the disposition of toxic metal species to target organs. Systems
toxicology will be identified as a useful approach to obtain deeper insight into how the
chronic exposure of human populations to toxic metals is potentially linked to disease
processes [35].

2. Metalloproteins Containing a Single Metal as Biomarker
2.1. Blood Plasma/Serum

Although plasma and serum are readily available biological matrices for biomarker
discovery, the dynamic range of the plasma protein concentrations makes the detection
of low-abundance proteins, which have great diagnostic potential, often quite difficult.
Conversely, approximately 10 metalloproteins that contain transition metals are present in
plasma/serum (Table 1), which can be readily determined [36].

Table 1. Molecular properties of major metalloproteins and metallopeptides in human plasma/serum.

Metal

Metalloprotein or
Entity Which

Contains Bound
Metal

Molecular Mass
(kDa)

Number of Metal
Atoms Bound per

Protein
Reference

Fe Ferritin 450 <4500 [36]
Transferrin 79.9 2 [36]

Haptoglobin–
hemoglobin

complex
86–900 2 [37]

Cu Blood coagulation
factor V 330 1 [36]

Transcuprein 270 0.5 [36]
Ceruloplasmin 132 6 [36]

Albumin 66 1 [36]
Extracellular

superoxide dismutase 165 4 [36]

Peptides and amino
acids <5 - [36]

Zn α2 Macroglobulin 725 5 [36]
Albumin 66 1 [36]

Extracellular
superoxide dismutase 165 4 [36]

The Cu-containing ceruloplasmin (Cp, 132 kDa) and the highly abundant Fe-
containing transferrin (Tf, 79.7 kDa) have long been known to be integral constituents
of these biological fluids for >60 years [38,39]. Both metalloproteins are secreted from
the liver and represent key players in the tissue homeostasis of the corresponding transi-
tion metals [40–42]. It is therefore not surprising that Cp and Tf are routinely quantified
in plasma/serum in clinical biochemistry laboratories using a variety of immunoassays,
immunoturbidometric or other inexpensive methods. The concentration range of Cp
in plasma in healthy adults, for example, is 0.20–0.60 g/L, and while higher values
may be attributed to nine possible causes, including rheumatoid arthritis and leukemia,
lower values are associated with nine other possible causes [26], including Wilson’s
disease [43] and Menke’s disease [44]. This example illustrates that the plasma con-
centrations of individual metalloproteins are useful in revealing ‘systemic biochemical
perturbations’ in an organism, but it has also been pointed out that the quantification
of only a single metalloprotein (i.e., Cp or Tf) is often inconclusive in terms of gaining
insight into the essential trace element status of an organism [45].
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In contrast, the simultaneous quantification of several endogenous plasma/serum met-
alloproteins which contain Cu, Fe and Zn of an organism would effectively correspond to a
‘snapshot’ of the dynamic equilibrium of each of these transition metals in the environment
(i.e., the diet)–bloodstream–organ system [46] and thus effectively provide insight into the
homeostatic regulation of each of these transition metals [47]. The ‘snapshot’ approach
would therefore provide a more comprehensive measure of the trace element status of an
organism as the analysis of blood plasma would allow one to observe increased and/or
decreased plasma concentrations of individual metalloproteins pertaining to one transition
metal (i.e., Cu, Fe and Zn), provided that reference concentration ranges for each detectable
metalloprotein in healthy adults are available. Importantly, the capability to determine
multiple metalloproteins of one particular transition metal would allow one to clearly
distinguish between a diet-related nutritional deficiency (e.g., all metalloproteins are below
their healthy ranges) and toxicologically relevant events, such as a particular toxic metal
species-mediated specific inhibition of the assembly of a specific metalloprotein at the
blood–organ interface (e.g., the concentration of one metalloprotein is below, but all others
are within the healthy range). Although there is experimental evidence that individual
plasma metalloproteins have potential as disease biomarkers in humans [48–53], their full
potential for the diagnosis of neurodegenerative diseases has not been realized [54]. This
fact is somewhat surprising given that the concentration of Cu, Fe and Zn in brain tissue is
in the mM range [55], which makes the possibility to detect potential neurodegenerative
disease-related metalloprotein signatures in blood plasma imminently feasible [56,57].

With regard to relevant metalloproteins in blood plasma ~10 major Cu-, Fe- and
Zn-containing metalloentities including Cp, Tf, the Zn-protein α2 macroglobulin and
the extracellular Cu, Zn superoxide dismutase (ex-Cu/Zn SOD) have been observed
(Table 1) [18,36]. Moreover, matrix metalloproteinases (MMPs), which contain Zn in the
catalytic site, have been reported in plasma [58,59]. MMPs are a class of multidomain Zn-
dependent endopeptidases with different isoforms and are extracellular matrix modifiers.
The activity of the various MMP isoforms has been used to distinguish health vs. disease
status (e.g., cardiovascular, lung, infection, inflammatory, cancer) and also in pregnancy,
and this set of markers has clinical value. Mn SOD, which is found mainly in mitochondria,
has also been quantified in human plasma [60]. In addition, four selenoproteins have been
detected in mouse plasma [61]. While some researchers have reported that the analysis
of excised organs (e.g., the liver) from sentinel organisms that inhabit a particular area is
useful in detecting toxic metal-containing exposure biomarkers [62], comparatively less is
known about metal-containing biomarkers in the bloodstream, which is in constant contact
with all organs. Based on these facts, it seems prudent to critically assess the inherent
potential that metalloentities that are contained in plasma and/or RBC cytosol can offer in
the context of assessing the chronic exposure of mammalian organisms, including humans,
to inorganic environmental pollutants. To this end, hemoglobin adduct formation for the
toxic metalloid species AsH3 has been previously reported [63]. Metabolomics approaches
represent an alternative means to gain insight into the organ damage that is associated
with the chronic exposure of mammals to toxic metalloid species [16], and proteomics
approaches have similarly been used to identify maternal blood biomarkers to better
understand the relationship between the chronic exposure of expecting mothers to toxic
metal species and adverse pregnancy outcomes [64,65] (Figure 2A). The determination of
endogenous metalloproteins (Figure 2B,C) and metabolites that contain essential and toxic
metals in the bloodstream (Figure 2D), however, offers another useful approach to observe
inorganic pollution-related perturbations at the systems level and to possibly identify
metalloentities that could be used as indirect inorganic pollutant biomarkers because the
metalloproteome is inherently less complex than the plasma proteome [66].
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Figure 2. Illustration of the principal mechanisms by which human exposure to toxic metal/metalloid
species may result in increased or decreased concentrations of biomarkers in the bloodstream.
Mechanism (A) refers to increased concentrations of biomarkers that are related to the stress of organs,
which includes interleukins (IL) and/or matrix metalloproteinases (MMPs). Mechanisms (B–D) refer
to changes in the concentrations of metalloentities, which includes ‘endogenous’ metalloproteins
(B), species which contain essential and toxic metals/metalloids (C) and a haptoglobin–hemoglobin
complex that is formed in plasma following the rupture of RBCs (D).

2.1.1. Decreased Plasma Concentrations of Individual Metalloproteins

The absence of individual metalloproteins from blood plasma can be indicative of
genetic diseases. Wilson’s disease (WD), for example, can be diagnosed by observing
negligible Cp concentrations in plasma [40] owing to the decreased assembly of this met-
alloprotein in the liver and its concomitantly reduced secretion into the systemic blood
circulation. In an analogous manner, the chronic exposure of mammals to inorganic pollu-
tants could similarly result in a gradual decrease of the plasma concentration of a particular
metalloprotein over time since essentially all plasma metalloproteins are assembled in
and secreted from the liver. A decreased plasma concentration of a particular metallo-
protein could therefore be caused by a reduced translocation/flux of the corresponding
essential element building block into the liver either by it forming a complex with a toxic
metal in the bloodstream [67] or by it adversely affecting a molecular transporter that
mediates the influx of a particular transition metal ion to the liver [68] (Figure 2B). In
addition, the chronic exposure of mammals to one or more inorganic pollutants could
selectively inhibit the biosynthesis of a particular metalloprotein within the liver similar to
what has been observed in microbes [69,70]. Although cytosolic metallothioneins play an
important role in sequestering certain toxic metals (e.g., Hg2+) within organs [71,72], some
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toxic metal species may target biomolecular chaperones that are critical for metalloprotein
assembly [73] or otherwise interfere with a metalloprotein’s biosynthesis [74]. All of these
aforementioned scenarios would decrease the expression of the corresponding metallopro-
tein over time with a concomitant decrease of its plasma concentration [18] until it is below
the healthy control range [26]. Although this principal approach represents an indirect
means to assess exposure, it offers two important advantages. Firstly, the quantification of
plasma metalloproteins is inherently more practical than the more invasive approach to
detect inorganic pollution-related metalloprotein biomarkers, such as Cd-metallothionein
in liver biopsy samples [62] as blood plasma is readily accessible. Secondly, if multiple
toxic metal species target the assembly of one particular metalloprotein, the decrease of its
metalloprotein concentration in plasma would effectively represent an integral/cumulative
measure of the exposure to all toxic metal species. Plasma selenoproteins appear to be
interesting candidates to test this hypothesis since Hg2+ and AsIII have been shown to
specifically target selenoprotein synthesis [29] and plasma selenoproteins can be routinely
quantified [75]. Despite this, only a few studies have reported which demonstrate that the
chronic exposure of mammals to a specific toxic metal species is associated with a temporal
decrease of the concentration of a specific selenoprotein in plasma [76].

2.1.2. Increased Plasma Concentrations of Individual Metalloproteins

Two Fe-containing metalloproteins are released from tissues into the systemic blood
circulation, namely ferritin (Ft), which is constantly released from endothelial and organ
cells [77], and myoglobin, the plasma concentration of which is elevated after a heart attack
as it is released from heart cells [78]. In an analogous manner, one may envision that the
chronic exposure of a mammal to inorganic pollutants could result in organ damage which
is associated with the release of metal-based tissue leakage products into the bloodstream.
An important prerequisite for the use of Fe metalloproteins as indicators of exposure to
inorganic pollutants is that only those metal-containing tissue leakage product(s) are of
practical use that have an appropriate half-life and can be detected in the presence of the
classical plasma metalloproteins (i.e., Cp, Tf).

The suicidal death of RBCs is referred to as eryptosis, which can be triggered by
toxic metal/metalloid species including AsIII, Cd2+ and Hg2+ [79]. Thus, the rupture
of RBCs also represents a potential source of metal-based ‘tissue’ leakage products in
the blood plasma. To this end, a major plasma Fe-metalloprotein in human plasma was
identified as a haptoglobin (Hp)–hemoglobin (Hb) complex [37]. This Hp–Hb complex
is formed in plasma after RBCs rupture and the released cytosolic Hb readily reacts with
the plasma protein Hp [37,80]. A disease that directly relates to this observation is a rare
human disorder called paroxysmal nocturnal hemoglobinuria (NPH), which is associated
with the increased rupture of erythrocytes during the night and afflicts about 0.5–1.5 per
million people [81]. Since many inorganic pollutants are able to enter RBCs [82] over their
lifetime of approximately 120 days, it is conceivable that chronic human exposure to these
pollutants could destabilize RBC membranes and eventually result in their rupture [83].
This, in turn, would result in an increased plasma concentration of Hp–Hb complexes
(Figure 2C) provided that their subsequent sequestration from the bloodstream by the
spleen and by macrophages is sluggish. Based on these considerations, it is evident
that more basic research needs to be conducted before the full potential of endogenous
plasma metalloproteins as pollution biomarkers in humans as well as sentinel mammalian
organisms can be realized [18]. In support of this notion, an association between maternal
lead levels and increased MMPs in plasma has been observed [59].

2.2. Red Blood Cells

RBC cytosol contains the Fe-containing hemoglobin (Hb, 64 kDa) and catalase [84],
the Zn-containing carbonic anhydrase (CA, 30 kDa), a Cu- and Zn-containing superoxide
dismutase (SOD) [85] and an unidentified Mn-containing protein, possibly a Mn-containing
SOD [85]. RBCs are assembled in the bone marrow and then released into the bloodstream
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where they can circulate for about 120 days. Therefore, the determination of Cu, Fe and
Zn metalloproteins in RBC cytosol [86] could provide an excellent means to assess the
chronic exposure of humans to inorganic pollutants, which accumulate therein [87]. For
example, it is known that chronic lead (Pb2+) poisoning in mammals targets the heme
biosynthetic pathway by inhibiting ferrochelatase, which inserts Fe into heme [88]. Accord-
ingly, chronic exposure to Pb2+ eventually results in the formation of a Zn-protoporphyrin
within RBCs [89]. The diagnostic relevance of determining the Cu, Fe and Zn metallo-
proteome ‘snapshot’ is, therefore, immediately apparent as a decreased Hb concentration
and an increased cytosolic concentration of Zn-protoporphyrin (it has a different MW
than CA) would allow one to diagnose chronic human exposure to Pb2+. Since many
toxic metal/metalloid species are absorbed by RBCs through a variety of uptake mecha-
nisms [68], the quantification of the Cu-, Fe- and Zn-containing metalloproteins in RBC
cytosol has inherent potential to be of use in harboring information about the chronic expo-
sure of a mammal to inorganic pollutants. Another lead-binding protein in the erythrocyte
is delta-aminolevulinic acid dehydratase (ALAD), which is known to be inhibited by Pb
exposure [90].

3. Bi-/Trimetallic Complexes Which Contain Essential and Toxic Metals as Biomarkers
3.1. Blood Plasma/Serum

Blood represents the first biochemically complex biological fluid that the inorganic
nutrients (i.e., essential trace elements, e.g., Se) and pollutants (e.g., As, Cd and Hg) that
are absorbed from the GI tract encounter. Direct experimental evidence for the formation
of complexes in plasma which contain an essential and a toxic metal dates back to the mid-
1970s when a Hg- and Se-containing complex with a molar ratio of 1:1 was observed [91].
The detection of a related Cd and Se complex (Figure 2D) with a similar stoichiometry sug-
gested that the formation of both complexes is mechanistically related [61,92]. Subsequent
studies employed X-ray absorption spectroscopy to structurally characterize the Hg-Se
species which was formed in blood plasma 25 min after New Zealand white rabbits were
intravenously injected with Hg2+ and sodium selenite (SeIV) as a (Hg-Se)100 species [93].
Interestingly, up to 30 of these Hg-Se nanoparticles bound to the plasma protein seleno-
protein P [94]. The formed (Hg-Se)100–selenoprotein P adduct is stable in solution at pH
7.4 [95] and is likely the species that binds to the surface of RBCs [96] and is eventually
deposited in the kidneys and the liver [97]. Thus, the (Hg-Se)100–selenoprotein P adduct
fulfills all basic requirements for a useful biomarker [75], but its usefulness as an exposure
biomarker for Hg2+ exposure requires studies to determine its half-life in the bloodstream.
Seemingly unrelated to this it has been reported that forests are sinks for Hg and forest fires
therefore release significant quantities of Hg that result in an enhanced Hg accumulation
in fish [98]. Since fire fighters are exposed to Hg species when fighting forest fires and
considering that they are known to suffer from distinct occupational diseases [99], it would
be useful to establish a biomarker for their cumulative Hg exposure which can serve as a
basis to estimate their exposure to other, more concerning pollutants. While the detection
of (Hg-Se)100-selenoprotein P adducts in plasma could therefore be a useful biomarker to
assess the exposure of firefighters to Hg0 and Hg2+, its formation in the bloodstream also
implies a decreased influx of the essential trace element selenium into organs, which is
likely to gradually decrease the assembly of selenoproteins therein. Thus, human exposure
to Hg2+ and/or Hg0 will eventually result in a decreased secretion of selenoproteins into
the systemic blood circulation.

3.2. Red Blood Cells

The trace element antagonism between AsIII and SeIV that was discovered >80 years
ago in mammals was eventually demonstrated to be based on the formation of the seleno-
bis (S-glutathionyl) arsinium ion [(GS)2AsSe−] within RBCs after arsenite (AsIII) and
selenite (SeIV) were added to RBC lysate [100]. Interestingly, the addition of CH3Hg+ to
RBC cytosol which had been spiked with (GS)2AsSe− resulted in the formation of the
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trimetallic species (GS)2AsSeHg-CH3 [101]. The analysis of this RBC cytosol by liquid
chromatography, however, revealed (GS)2AsSeHg-CH3 to be rather unstable which makes
its formation not a feasible biomarker. More recently, the addition of Hg2+, methylmercury
(CH3Hg+) or thimerosal (it contains CH3CH2Hg+) to RBC cytosol revealed the formation
of hemoglobin (Hb) species with distinct Hb–Hg bonds [86]. While the formation of these
species in RBC cytosol has direct toxicological relevance as it was recently demonstrated
that the binding of CH3CH2Hg+ to Hb will adversely affect the binding of O2 [102], their
detection represents a convenient means to detect human exposure to the aforementioned
Hg species.

4. Dynamic Interactions between Toxic Metal Species, Plasma Proteins and SMW Thiols

When toxic metal species enter the human bloodstream, they encounter not only
thousands of proteins [14] but also over 400 small molecular weight (SMW) molecules
and metabolites, including amino acids, peptides, fatty acids and nucleotides that are
present at µM concentrations [19]. The variation in concentration of these biomolecules
in the bloodstream has been demonstrated to be, in part, genetically determined [19] and
is therefore possibly involved in the distribution of toxic metal species to target organ
tissues [103]. Thus, the biological fate of toxic metal species at the blood–organ interface
appears to be critically determined by their interactions with plasma proteins and SMW
molecules/metabolites (Figure 3).
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Figure 3. Conceptual illustration of bioinorganic chemistry processes which unfold between CH3Hg+, plasma proteins
and SMW thiols/metabolites in the bloodstream and play a fundamental role in its translocation to the brain and/or its
urinary excretion. The mobilization of CH3Hg+ from human serum albumin (HSA) by hCys may result in the formation of
CH3Hg-hCys-adducts which may then be translocated across the blood–brain barrier (A) by L-type large neutral amino
acid transporter (LAT) 1 and LAT 2 [104]. Alternatively, CH3Hg-hCys -adducts may donate CH3Hg+ to a thiol group on
transmembrane proteins which ultimately mediate its uptake into the cytosol (B).

One SMW metabolite that could be an important player in the toxicology of met-
als is homocysteine (hCys), which is an intermediate metabolite that is formed by the
de-methylation of methionine [105], and is present in blood plasma of healthy adults at
concentrations of 8–12 µM [106]. Hyperhomocysteinemia is a disease that is characterized
by elevated levels of hCys in blood plasma (e.g., >15 µM) and has been linked to the devel-
opment of cardiovascular disease, stroke, and Alzheimer’s disease (AD) [105], potentially
due to the accidental incorporation of hCys into protein structures instead of methionine
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during translation that subsequently causes protein damage/aggregation, a hallmark of
many diseases. Evidence in support of hCys playing an important role in the toxicology
of metals comes from in vivo studies [104] and in vitro studies, which have demonstrated
that 500 µM of hCys in the phosphate buffered saline (PBS) mobile phase was able to
abstract Cd2+ from HSA when a HSA–Cd complex was injected onto a SEC column [107].
Although this hCys concentration was higher than what is observed in hyperhomocysteine-
mia patients, the fact that the results were obtained under near physiological conditions
provide a rationale to more systematically investigate the role that this metabolite may play
in the translocation of this and other toxic metal species to target organs. Accordingly, an
important research avenue is to connect the bioinorganic chemistry of toxic metal species
in the bloodstream with uptake mechanisms on the surface of target organ cells and the
biomolecular mechanisms of organ damage [35,108]. This strategy will require not only to
determine the structure of the actual metal species that is uptaken into an organ [109], but
also to obtain knowledge about their uptake into various organ cell types. Taken together,
the integration of the bioinorganic chemistry that unfolds at the blood–organ interface has
the potential to establish the mechanisms which may causally link the chronic exposure of
humans to toxic metal species with adverse health effects and possibly also to the etiology
of diseases.

One toxic metal species that is of considerable public health relevance is the neurotoxin
methylmercury (CH3Hg+), which has a strong affinity for thiol groups (-SH) on proteins
and SMW thiols, including homocysteine (hCys) [110]. The competitive interaction of this
toxic metal species with thiol groups located on proteins and SMW metabolites, however, is
highly dynamic [111] and less well understood [112], but could play an important role in its
translocation from plasma proteins across the blood–brain barrier (Figure 3A). To this end,
it has been demonstrated that nearly 90% of the CH3Hg+ located in organ tissues of mice
can be mobilized to urine by the oral administration of N-acetyl-L-cysteine (NAC) [113,114].
Studies that are designed to probe the interplay between CH3Hg+, plasma proteins, and
SMW thiols under near-physiological conditions could shed important new light not only
on the biomolecular mechanisms that are involved in the translocation of this metal species
across the blood–brain and the placental barrier (Figures 3A and 4), but also with regard
to how the urinary excretion of CH3Hg+ may be deliberately enhanced in susceptible
populations [115], such as the Inuit which consume comparatively large daily doses of
this toxic metal species (Figure 3B) [116]. Probing the interactions between other toxic
metal species, plasma proteins and SMW metabolites (e.g., hCys) in the bloodstream is also
crucial to gain insight into the biomolecular mechanisms which deliver neurotoxic metal
species to the brain [117] (Figure 4), where they may undergo toxicologically important
biotransformations [118] and may initiate the apoptosis of astrocytes [119]. Establishing
all sequential bioinorganic processes that unfold in the blood–organ system to facilitate
the uptake of a toxic metal species into the brain with the biomolecular mechanisms
which cause cell damage therein [120] thus offers the prospect of causally linking human
environmental exposure to toxic metal species with the etiology of neurodegenerative
diseases [121], including Alzheimer’s disease [122].
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Figure 4. A model of CH3Hg+ bound to HSA was established by using CH3HgCys from the structure of human carbonic
anhydrase (PDB identifier 2FOU [123,124]) which was superimposed on Cys-34 of HSA (PDB identifier 3SQJ [125]) using
SWISS-MODEL/Swiss-pdbViewer [126]. The ribbon diagram of HSA shows where the binding site of CH3Hg+ is located
and the amino- and carboxy-termini are indicated by residue numbers 3 and 584, respectively. The inset (left) shows a
closeup of CH3Hg bound to Cys-34 (magenta) with a surface representation of the protein. PyMOL Molecular Graphics
System (Version 1.4.1. Schroedinger L.L.C.) was used to establish the structural model. The location of CH3Hg+ within a
cleft suggests that its direct translocation from HSA to LAT1 and/or LAT2 is unlikely and that SMW thiols may critically
mediate this transfer.

5. Conclusions

It is estimated that the emission of pollutants globally caused 9 million deaths in
2015 [127] and poses a significant burden on the global economy [128]. Even though a vari-
ety of efforts are underway to reduce human exposure to toxic metal species [129–131], their
inadvertent introduction into the food chain is being increasingly recognized [132]. In ad-
dition, there is direct experimental evidence that human exposure to toxic metals adversely
affects organs [133], pregnancy outcomes [64] and neurodevelopment in children [9]. Given
the dynamic flow of inorganic and toxic elements through mammalian organisms and ow-
ing to the paucity of information on the mechanistic basis of environmental metal exposure
and pregnancy outcomes [59] gaining insight into the environment–bloodstream–organ sys-
tem [112] is critical. To this end, events that unfold in the bloodstream are of focal interest
as they play an important role in determining the onset of organ damage [68,134] and may
also be implicated in human diseases of unknown etiology [35,135]. Besides, blood plasma
is also a valuable matrix to analyze tissue-specific markers and probably can be useful in
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screening for both exposure and effect markers in the same compartment simultaneously
with the use of appropriate instrumental analysis methods. The analysis of blood plasma
and RBC cytosol for endogenous metalloproteins and species which contain essential metal
and toxic metals represents a feasible approach to gain insight into the dyshomeostasis of
several essential metals and to observe toxic metal-containing biomarkers to better assess
the health status of an organism. The integration of the bioinorganic chemistry that occurs
in the bloodstream with biomolecular processes that unfold in organs emerges as an impor-
tant research goal to detail our understanding of the environment–blood–organ system
to possibly disentangle the environment vs. bad genes dichotomy to causally link human
exposure to adverse health effects and possibly diseases [136]. Knowledge regarding the
dynamics of the metalloproteome and their potential to serve as plasma/serum biomarkers
can be useful in guiding future biomonitoring and epidemiological studies in choosing
suitable bioinorganic species in the optimal biological compartment. Understanding the
concerted biomolecular events which link exposure to disease is a critical prerequisite
before environmental regulations can be further tightened to reduce the emission of toxic
metals and metalloids into the environment to ascertain that future generations have the
same opportunity to live a healthy life as we do.
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