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Simple Summary: Imprecision and biases inherited in current cancer detection innovations hamper
their applications at population level. Here, we employ deep learning neural networks and noncoding
RNA biomarkers to develop an accurate cancer detection system to detect multiple cancer types.
Our system binarily classifies 26 common cancers vs. normal with >96% AUC, and it can become a
practical cancer screening system at population level.

Abstract: Detecting cancers at early stages can dramatically reduce mortality rates. Therefore,
practical cancer screening at the population level is needed. To develop a comprehensive detection
system to classify multiple cancer types, we integrated an artificial intelligence deep learning neural
network and noncoding RNA biomarkers selected from massive data. Our system can accurately
detect cancer vs. healthy objects with 96.3% of AUC of ROC (Area Under Curve of a Receiver
Operating Characteristic curve), and it surprisingly reaches 78.77% of AUC when validated by
real-world raw data from a completely independent data set. Even validating with raw exosome
data from blood, our system can reach 72% of AUC. Moreover, our system significantly outperforms
conventional machine learning models, such as random forest. Intriguingly, with no more than six
biomarkers, our approach can easily discriminate any individual cancer type vs. normal with 99% to
100% AUC. Furthermore, a comprehensive marker panel can simultaneously multi-classify common
cancers with a stable 82.15% accuracy rate for heterogeneous cancerous tissues and conditions.
This detection system provides a promising practical framework for automatic cancer screening at
population level. Key points: (1) We developed a practical cancer screening system, which is simple,
accurate, affordable, and easy to operate. (2) Our system binarily classify cancers vs. normal with
>96% AUC. (3) In total, 26 individual cancer types can be easily detected by our system with 99 to
100% AUC. (4) The system can detect multiple cancer types simultaneously with >82% accuracy.

Keywords: cancer; noncoding RNA; artificial intelligence; deep learning; neural network; discrimina-
tion; classification

1. Introduction

The application of modern scientific advances to cancer therapy have dramatically
expanded cancer patients’ life expectancy [1–4]. One of the most successful practices is to
detect cancers early and to remove them [5–10], which requires a practical, simple, accurate,
affordable, and easy-to-operate screening system.

Advancements in high-throughput technologies, such as microarray and sequencing,
offer rich resources to understand gene alterations associated with cancer markers [11,12].
Thousands of DNA mutations (e.g., KRAS [13]) have been found in cancers and dozens of
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RNAs (e.g., PANDAR [14]) alter their gene expression during cancer development [13,15–17],
but none of these provides consensus, even in a given cancer type [13]. For example, KRAS
mutation only presents in less than 40% of lung cancer patients and in less than 2% of 26 cancer
types [13]. Obviously, these DNAs and RNAs altered by cancers cannot be directly applied in
cancer screening.

Recently, numerous approaches have been proposed for cancer screening. Three
remarkable innovations are promising. The first of these is circulating tumor DNA (ctDNA)
detection, which measures bloodstream DNA released from dead tumor cells [18], but the
amount of ctDNA is too low to be measured in early-stage tumors [7,9,18]. The second
system consists of two panels, a protein-based marker panel plus another mutation panel [8].
Mutations are highly variable in humans and proteins are not good markers for cancers,
as we recently reported [19,20]. This results in a wide range of variable accuracy in this
system. The third is based on methylation [21]. Methylation is too expensive to measure
and the methylation specificity for all types of cancers remains to be determined. Therefore,
all these proposals face challenges when applied to the real field. A practical screening
system remains to be developed.

The core challenge when developing a practical system is to find a set of biomarkers
that are endogenous for all cancers. Because countless factors (e.g., heterogeneous genetic
and environmental variables) contribute to cancer phenotypes [22–25], great efforts have
been made in this field [16,26–28] but these types of molecules had never been successfully
identified until our recent discovery [19], in which we developed algorithms to remove all
the factor effects from big data and revealed a set of noncoding RNAs as universal markers
endogenous in 26 cancers. These markers, uncovered by us, are therefore independent
from any factors, such as experimental conditions, genetic background, epidemiological,
and environmental variables.

Artificial intelligence methods have recently been applied to improve prediction
accuracy [29–33]. Among them, artificial deep learning neural networks (NNs) have been
applied to cancer research and diagnosis [29–33]. NNs mimic brain neurons to learn
patterns of objects defined by features (e.g., biomarkers) and then predicts known objects.
Except for input and output layers, NNs usually contain at least one hidden neuron layer
to learn the relationships between object features; this is known as deep learning. NN can
catch up the primary relationships of features between layers and filter out the trivial ones,
thereby improving its performance.

In this study, we employed NN and universal noncoding RNA biomarkers for all
26 cancer types [19,20] to develop a simple and accurate framework to detect 26 common
cancer types measured by TCGA (The Cancer Genome Atlas) [16]. Our system was vali-
dated by two independent data sets with high accuracy and it can be easily measured by
simple PCR. Therefore, it offers a practical cancer detection system.

2. Materials and Methods
2.1. General Computational Environment and Key Schematic Workflow

All data downloads, processing, computations and graphing were performed in Linux
by using Python 3.8 and R 3.6. TensorFlow 2.4.0 and Scikit-learn 0.24.0 were used for deep
learning neural networks.

The primary schematic of this study included TCGA data downloads, biomarker
selection, NN model building, and prediction and validation (Figure 1A).
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Figure 1. Overall project schematic and samples. (A) Key schematic workflow. (B) TCGA data in-
cluded 26 cancer types and 8425 samples. (C) Validation data set 1 included 28 cancer types and 
1359 samples deposited in ArrayExpress (#E-MTAB-5423). (D) Validation data set 2 contained 12 
cancer types and 714 exosome samples downloaded from exoRBaseV2 [34]. 

  

Figure 1. Overall project schematic and samples. (A) Key schematic workflow. (B) TCGA data
included 26 cancer types and 8425 samples. (C) Validation data set 1 included 28 cancer types
and 1359 samples deposited in ArrayExpress (#E-MTAB-5423). (D) Validation data set 2 contained
12 cancer types and 714 exosome samples downloaded from exoRBaseV2 [34].
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2.2. Data Resources

All data were downloaded from TCGA, as previously described [19]. Briefly, a total
of 11,574 cancer samples for 36 cancer types were directly downloaded from TCGA pub-
licly available data portal website. After filtering out cancer types with low sample size
(samples < 100), we kept a total of 26 cancer types with 9057 samples, including 8425 cancer
samples (Figure 1B) and 632 normal samples, for this study. All cancer and samples were
collected and defined by TCGA, including solid tissue and blood samples.

For validation, two independent data sets were downloaded. Validation 1 data in TPM
(Transcripts Per Million) format were downloaded from The International Cancer Genome
project deposited in ArrayExpress (#E-MTAB-5423) (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-5423/, accessed on 28 August 2021). This data set contains 27 cancer
types (1209 samples) and normal control (150 samples) (Figure 1C). Validation 2 data were
directly downloaded in TPM format from exoRBase2.0 [34], which contained 714 samples
including 118 healthy and 596 cancer samples (Figure 1D).

2.3. Data Preparation

To generate a practical system, we used the data directly from the real world in
TPM (Transcripts Per Million) data format for all computational processes in this entire
study without any model-based normalization and filtering. TCGA gene expression data
were normalized to TPM (Transcripts Per Million) and the raw downloaded TPM data for
independent validations were also directly applied to validate our models without any
filtering and normalization.

Three independent machine-learning sets were prepared in this study, including test,
validation, and training. These three groups were randomly split from a total 9057 samples.
The test set takes 20% (1812) of the 9057 samples for independently measuring final accuracy
and AUC. Another 20% (1449) of the remaining samples (7245) was set for validation, and
the remaining 5796 for training.

This sample splitting scheme to generate training, validation and test data sets was
also applied to independent validation and math model comparison.

2.4. Feature Selection

All noncoding RNAs defined by gencode (https://www.gencodegenes.org/, accessed
on 19 January 2021) were analyzed and used in this study, as in our previous study [19],
which uncovered 56 biomarkers endogenous in 26 cancer types. These biomarkers were
used to binarily classify cancer vs. normal as a general cancer screening scheme. The
selection method was described previously [19] and the computational code, called ISUR-
VIVAL model 2, is available online (https://combai.org/software/survival/, accessed
on 29 November 2021). Briefly, normal samples were not involved in these biomarker
selections. We only used cancer samples to generate biomarkers associated with death, so
these biomarkers were actually the deadliest markers. The stability selection was applied
to all feature selections, in which samples were randomly split into m subgroups (m ≥ 2)
and preliminary biomarkers were selected in each subgroups [19,35]. This process iterated
n times (n ≥ 100) and only markers that were consistently selected in m*n runs (m sub-
groups and n iterations) were treated as the final biomarkers [19,35]. All biomarkers were
deposited in our project website (https://combai.org/ai/cancerdetection/, accessed on
29 November 2021).

Similarly, biomarkers for individual cancer types in Figure 2 were also collected by
our previous study [19].

Biomarkers for simultaneously classifying the 26 types of cancer were selected by
using the training data set, which was randomly split from total cancer samples. The
validation and test data sets were not involved in biomarker selections. The splitting
processes were iterated eight times separately to generate eight independent training
sets. For each training set, feature selection was performed by inserting stability selection
into a support vector machine implemented in Scikit-learn. These generated biomarkers

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5423/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5423/
https://www.gencodegenes.org/
https://combai.org/software/survival/
https://combai.org/ai/cancerdetection/
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were ranked independently by frequency score as described in our software FINET [35],
following a machine learning model.

All biomarkers were posted in our project website https://combai.org/ai/cancerdetection/,
accessed on 29 November 2021.

2.5. Machine Learning

Deep learning neural network implemented in Keras Sequential library with Tensor-
flow was used throughout the whole study to estimate model accuracy, loss, and final AUC
or accuracy. Batch size and epochs were set to 20 and 30 for all machine learning.

To avoid over-fitting, we set dropout (0.1) for each model layer for all models in
this study. For binary classifications, a NN model with three layers was built, including
one input layer with 30 units, one hidden layer with 60 units and an output layer (code
available https://combai.org/ai/cancerdetection/, accessed on 29 November 2021). For
multi-cancer classifiers, six hidden layers with 240 units for each layer were set (https:
//combai.org/ai/cancerdetection/, accessed on 29 November 2021). Activation was set to
relu for the hidden layer. Adam was used as a model optimizer.

Programming codes for all NN models and running examples are available on our
project website (https://combai.org/ai/cancerdetection/, accessed on 29 November 2021).

2.6. Final Graphing

Final summary AUCs were drawn by using ggplot2 in R. Complete result plots
and data are available on this project website (https://combai.org/ai/cancerdetection/,
accessed on 29 November 2021).

3. Results
3.1. Cancer and Healthy Object Discrimination

One primary requirement of cancer screening is to discriminate cancers from healthy
objects, regardless of cancer type. This requires a set of universal biomarkers for all types
of cancer at all stages and conditions, which ensures that cancer discrimination is not
confounded by inappropriate specific variables. Our previous study developed algorithms
to identify 56 noncoding RNAs universal for 26 cancer types after removing all specific
effects, such as cancer stage, age, sex, alcohol, smoking, and site location [19].

Here, we used these 56 noncoding RNAs as biomarkers and employed NNs from
Keras Sequential library using TensorFlow v2.4.1 with one hidden layer (materials and
methods, programming code shown in https://combai.org/ai/cancerdetection/, accessed
on 29 November 2021) to binarily classify cancer vs. normal. In total, 8425 cancer and
632 normal samples measured by TCGA were used (Figure 1B). To avoid over-fitting, we
designed test and validation sets independent from the training samples and randomly
split all 9057 samples into three sub-groups: test, validation, and training (Section 2). The
whole model stabilized at epoch 30 based on loss of training and validation (all result
plots are shown in our project website https://combai.org/ai/cancerdetection/, accessed
on 29 November 2021), and thus the whole system was run for 30 epochs to estimate the
prediction accuracy.

We examined the model accuracy, loss, and AUC for a series of biomarker numbers
accumulated from 1 to 56. When the biomarker number accumulated to 13, the loss
declined to 0.14 and 0.15, respectively (https://combai.org/ai/plotresult/, accessed on
29 November 2021), the accuracy of training and validation both reached 0.95, and the AUC
reached 0.934 (Figure 2A). When 51 biomarkers were combined, the loss for training and
validation went down to 0.10 and 0.15, respectively (https://combai.org/ai/plotresult/,
accessed on 29 November 2021), the accuracy of both training and validation reached 0.96,
and the AUC stabilized at 0.963 (Figure 2B).

https://combai.org/ai/cancerdetection/
https://combai.org/ai/cancerdetection/
https://combai.org/ai/cancerdetection/
https://combai.org/ai/cancerdetection/
https://combai.org/ai/cancerdetection/
https://combai.org/ai/cancerdetection/
https://combai.org/ai/cancerdetection/
https://combai.org/ai/cancerdetection/
https://combai.org/ai/plotresult/
https://combai.org/ai/plotresult/
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Figure 2. Binary discrimination of cancer and normal. Noncoding RNA biomarkers and deep learn-
ing neural network accurately discriminate 26 cancers from healthy objects. (A) Neural network 
model ROC curve of 13 accumulated biomarkers. In total, 13 biomarkers can discriminate cancers 
from normal with 0.934 of AUC. (B) In total, 51 accumulated biomarkers detected cancers with 0.963 
AUC. (C) AUC vs. the number of accumulated biomarkers from 1 to 56. 

Biomarkers for simultaneously classifying the 26 types of cancer were selected by 
using the training data set, which was randomly split from total cancer samples. The val-
idation and test data sets were not involved in biomarker selections. The splitting 

Figure 2. Binary discrimination of cancer and normal. Noncoding RNA biomarkers and deep learning
neural network accurately discriminate 26 cancers from healthy objects. (A) Neural network model
ROC curve of 13 accumulated biomarkers. In total, 13 biomarkers can discriminate cancers from
normal with 0.934 of AUC. (B) In total, 51 accumulated biomarkers detected cancers with 0.963 AUC.
(C) AUC vs. the number of accumulated biomarkers from 1 to 56.

Plotting the AUC against the number of biomarkers provided a clear picture of the
discrimination accuracy of our system (Figure 2C). While AUC was 0.75 for one biomarker,
it first stabilized at 0.934 for thirteen biomarkers and rose to over 0.96 for >51 biomarkers
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(Figure 2C). This indicated that our system can discriminate normal vs. cancer with >0.96
AUC with 51 noncoding RNA markers.

3.2. Validation

To validate the performance of our classification system, we downloaded two inde-
pendent data sets: validation 1, from the International Cancer Genome project, containing
27 cancer types (1209 samples) and normal controls (150 samples, Figure 1C, ArrayExpress
#E-MTAB-5423, Section 2); and validation 2, from the exoRBase 2.0 database [34] (Figure 1D,
Section 2).

Validation 1 features much more variation and outliers than the TCGA data (Figure S1).
Moreover, many biomarkers were not measurable, only 39 noncoding RNAs were compatible
with the TCGA dataset, and the cancer types did not match those from the TCGA. However,
to test the robustness of our system, we did not filter out any outlier samples and did not
normalize any value. We directly input the raw TPM data for all 1359 samples as the testing
dataset into our NN model and obtained AUC > 78.77% (Figure 3A, all the raw data plots
are shown in https://combai.org/ai/validationplot/, accessed on 29 November 2021). This
indicates that our system is robust in the real world.
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Figure 3. Independent validation. (A) Summary of AUC vs. biomarker number validated by
validation data set 1 (ArrayExpress, #E-MTAB-5423, Figure 1). 39 biomarkers reached 78.77% of
AUC. (B) ROC of validation data set 2 (exosome data). Seven biomarkers reached 0.721 of AUC.
(C) Summary of AUC vs. biomarkers number validated by validation data set2. Gray area denotes
confidence interval.

Similarly, we used validation 2 from an exosome database containing 12 cancer types
(Figure 1D) to test our system’s performance in blood samples. Only seven noncoding RNAs
matched our biomarkers, and the sample size was small (596 cancer and 118 healthy samples,
Figure 1D). However, to examine the robustness of our system, we still used the raw TPM
data to test our NN model. We found that our system with seven biomarkers reached an AUC
of 0.72 (Figure 3B,C) although the deviation was large (gray area, Figure 3C). This indicated
that our system was not stable with a small number of biomarkers, but it was promising as a
measurement of blood samples.

3.3. Performance Comparison of Our Model with Other Mathematical Models

To compare the performance of our model with other mathematical models, we ran an
independent test and measured the AUCs for three models, neural network (NN), random
forest (RF), and decision trees (TD). RF is a supervised machine learning approach that
randomly selects sub-samples to create trees and uses an average of tree prediction votes to
predict unknown samples (https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html, accessed on 29 November 2021), while TD is a
non-parametric supervised machine learning algorithm that learns simple decision rules
from training data features to make predictions (https://scikit-learn.org/stable/modules/
tree.html, accessed on 29 November 2021).

We used libraries from Scikit-learn to build a pipeline (programming code https:
//combai.org/ai/cancerdetection/, accessed on 29 November 2021) and systematically
run these three models with the same training and test data to make the results comparable.
The AUC plot showed that the AUC of our NN model was significantly higher than the
other two models (p-value < 2.2e-16, Kruskal–Wallis rank sum test, Figure 4, raw data plot
https://combai.org/ai/modelcomparisonplot/, accessed on 29 November 2021). With
10 biomarkers, our NN model reached an AUC of 0.9, while RF and TD only achieved 0.84
and 0.74, respectively. In addition, our NN model could reach up to 0.96 of AUC, but RF
and TD never went beyond 0.87 and 0.75, respectively (Figure 4). These results indicated
that our NN model outperformed the other two models.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://combai.org/ai/cancerdetection/
https://combai.org/ai/cancerdetection/
https://combai.org/ai/modelcomparisonplot/
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3.4. Individual Cancer Type Discrimination

Once a cancer sample is classified as normal, as screened above, the next step is to
determine its specific type. By using the 26 most common cancer types measured by TCGA,
we previously employed elastic-net with stability selection to select a set of noncoding RNA
biomarkers to discriminate individual cancer types [19] but lacked a discrimination system
for optimizing the AUC. With as many as 20 biomarkers, our previous elastic-net produced
only 0.96 AUC. Here, we used a deep learning neural network with this set of noncoding
RNA biomarkers and built an accurate discrimination system (materials and methods).
With only one biomarker, the NN produced an accuracy level for training and validation
at 1.0 and 0.95, respectively, for OV vs. normal (https://combai.org/ai/individualplot/,
accessed on 29 November 2021), in which the losses for training and validation were close
to 0 and 0.1, respectively, and the AUC reached 100% for the test data set for OV (Figure 5A).
The worst cases occurred for BRCA, which required six biomarkers to stabilize the accuracy
and the losses of both training and validation were >0.95 and <0.2, respectively, and 99.1%
AUC (Figure 5B) for the test data. SARC also required six markers to achieve 99% AUC
and it featured only <80% AUC for one biomarker (Figure 5C). With six biomarkers, all
individual cancer types can be discriminated against with 99% AUC (Figure 5C). One or two
biomarkers were sufficient (AUC from 99% to 100%) for most cancer types (Figure 5C). This
suggested that noncoding RNAs plus NN can precisely classify any individual cancer type.

https://combai.org/ai/individualplot/
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Figure 5. Binary classification of individual cancer types and normal. (A) Only 1 biomarker can
discriminate OV from normal with 100% AUC. (B) In total, 6 biomarkers were need for discriminating
BRCA from normal with 99.1% AUC. (C) AUC summary of discrimination of all 26 individual
cancer types.

3.5. A Comprehensive Biomarker Panel for Multiple Cancer Classifiers

The subsequent challenge in cancer screening is to simultaneously detect all 26 specific
cancer types. This requires a comprehensive biomarker panel and a practical mathematical
model for multiple classifiers. We split the samples into training, validation, and test
sets, but only the training sets were used to select biomarkers. To avoid sampling biases
and to examine our system’s robustness, we randomly generated eight training data sets
independently (Materials and Methods). For each training set, we inserted the stability
selection into a support vector machine implemented in feature selection using Scikit-
learn (0.24) and selected a panel of noncoding RNA biomarkers ranked according to their
highest frequency score (Materials and Methods). Based on multiple cancer types and
the biomarker panel, we built a complex NN model with six hidden layers (Section 2,
https://combai.org/ai/cancerdetection/, accessed on 29 November 2021).

We examined the performance of each biomarker panel independently. During the
first run, when 25 accumulated biomarkers were applied, the accuracy for both training
and validation reached >0.6 and the loss reduced to <2, respectively (https://combai.
org/ai/multipleplot/, accessed on 29 November 2021). When the biomarker number
accumulated to 50, the accuracy and loss for both training and validation achieved >0.75
and the loss declined to ~1. The accuracy and loss for training and validation reached >0.8
and <1.0 for 100 accumulated biomarkers (https://combai.org/ai/multipleplot/, accessed
on 29 November 2021).

These eight training sets resulted in different test set accuracies when the biomarker
number accumulated to 300 (p value = 9.388170e-06, Kruskal–Wallis rank sum test, Figure 6A).
This indicated that the accuracy depended on training set sampling. One of the obvious
questions was how to obtain stable accuracy independent of training set sampling. That is,
how to search an accuracy turning point from non-difference to difference, against biomarker
numbers from 1 to 300. We employed the Kruskal–Wallis rank sum test to examine the

https://combai.org/ai/cancerdetection/
https://combai.org/ai/multipleplot/
https://combai.org/ai/multipleplot/
https://combai.org/ai/multipleplot/
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accuracy difference of eight runs at each biomarker number from 1 to 300 (red line, Figure 6B).
When the p value reached 0.1, in which no difference could be observed among these eight
runs and the accuracy at this point was assumed to be independent of training sampling, the
biomarker number and the average accuracy reached 178 and 82.15% (blue dashed line, green
line, Figure 6B), respectively. After the biomarkers reached 178, the accuracy of these eight
runs was significantly different (p value < 0.1) and the accuracy data were dependent on the
sampling, instead of the stable accuracy of our system. Therefore, our system can stabilize at
82.15% with 178 biomarkers while simultaneously detecting all 26 cancer types.
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4. Discussion

This study developed a promising system to detect 26 types of cancer by using non-
coding RNAs and deep learning neural networks. All current cancer detection systems
have suffered two major limitations, biased biomarkers and low accuracy, resulting in the
failure of all current innovations. Cancer biomarkers have conventionally been selected by
comparing cancer against normal samples [36], but cancer phenotypes result from combi-
nations of countless factors, such as heterogenetic backgrounds, various personal variables
and fluctuating environmental factors [22–25]. It is unlikely for any comparisons to include
all these factors; thus, biases seem unavoidable. However, our recent study revealed a set of
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unbiased noncoding RNA biomarkers [19] by developing a new algorithm that embeds all
the epidemiological variables measured by TCGA and 200 principal components derived
from principal component analysis of all TCGA RNAseq data. No normal samples were
involved in our algorithm and discovery. More importantly, our algorithm minimizes all
confounding conditional effects. Thus this set of biomarkers is conditionally independent
and universal [19,20]. For example, these markers were independent from any tissues and
can be applied to blood tests, as shown in the exosome data validation.

The low accuracy of current systems partially results from the poor performances
of conventional mathematical models [29,37]. This study built neural network models
that performed much better than any other conventional models, such as random forest.
Furthermore, we also ran the popular model, logistic regression, for this same data set, but
obtained an AUC around 0.5, which was similar to random guess and is not shown in this
article. By contrast, our system achieved a 96% AUC with only 51 biomarkers for detecting
all cancers.

System robustness is one of the biggest challenges during cancer biomarker devel-
opment [37]. Most systems work very well for a given data set but fail to produce an
acceptable result when challenged with independent data [37,38]. This is another crucial
reason that we have not found a real practical screening system available on the market so
far [38]. Our system survives independent tests. Even with raw data, without any filtering
or normalization, our system still produces a 78.77% AUC from mixed tissues and cancer
types, and it even produces an AUC of 72% from blood exosome data. The success of the
exosome data validation provides a bridge over which to cross from computational biology
to the study of clinical cancer. Once our model is configured to accept the unified inputs
generated by a defined system (e.g., a same sequencing or PCR machine), it will become a
robust system.

Noncoding RNAs are easily measured by cheap, rapid, and sensitive PCR, and artifi-
cial intelligence neural networks can be pre-programmed and trained, which enables an
operator with no computer science background to operate our system. Therefore, our inno-
vation solved several practical problems existing in current cancer detection developments,
including imprecision, inconstancy, cost, and immeasurability, and our framework offers
great potential for population-based cancer screening.

Before applying our system, we know that limitations still exist in our system. For
example, the data set employed in this study was still very small (only 26 cancer types).
Our NN model should be trained with many large and diverse data sets. In addition, the
parameters of our NN model should be optimized when diverse data are available, although
optimizing NN parameters is challenging because of its large number of parameters.
Furthermore, the question of how to unify the protocol of cancer sample collections and
non-coding RNA measurements remains to be investigated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14020352/s1. Figure S1: Median and Standard Deviation
(sd) of biomarker TPMs between two data sets, TCGA and E-MTAB-5423 (MTAB). Upper panel
shows median and SD. Because the SD is too high to hide the median in the upper panel, the median
is only shown in bottom panel.
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