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MuRF1 is a member of the TRIM/RBCC superfamily, a gene family that encompasses a large variety of proteins, all sharing the
conserved TRIM (Tripartite Motive) sequential array of RING, B-box, and coiled-coil domains. Within this family, MuRF1(also
named TRIM63) is a specialized member that contributes to the development of muscle atrophy and sarcopenia. Here we studied
MuRF1’s role in muscle atrophy during muscle unloading induced by hindlimb suspension. Consistent with previous studies,
we found that MuRF1 inactivation leads to an attenuated muscle atrophy response. The amount of protection was higher as
compared to the denervation model, and within the 10 day-suspension period the soleus muscle was spared from atrophy in
MuRF1-KO mice. Contractility studies on hindlimb suspended muscle tissues suggested that MuRF1’s functions extend beyond
muscle trophicity and implicate MuRF1 in muscle fatigue and MLC phosphorylation control: soleus muscle from MuRF1-KO
mice fatigued significantly faster and in addition showed a reduced posttetanic twitch potentiation. Thus the present work further
established the role of MuRF1 in muscle atrophy and for the first time shows that MuRF1 plays a role in muscle fatigue and twitch
potentiation.

1. Introduction

Skeletal muscle tissues can be extensively remodeled, both
structurally and functionally (for reviews see [1, 2]). Such
remodeling takes places, for example, in response to exercise
or passive muscle stretch and results in large changes in
metabolic activity, fiber-type, and force generation (for
reviews see [3, 4]). Increased force production is due to
an increase in fiber diameter, an adaptation referred to
as hypertrophy. In contrast, when muscle is unloaded,
as occurs, for example, in space flight or in bedridden
patients, fiber diameter is rapidly reduced, a state referred
to as atrophy. Muscle atrophy also accompanies the natural
process of aging, and is then referred to as sarcopenia,

and leads to a progressive and large reduction in muscle
strength as ageing progresses [5]. Skeletal muscle atrophy
is also a debilitating response to starvation and many
systemic diseases including diabetes, cancer, and renal failure
[6]. Thus understanding the mechanisms that underlie
atrophy is clinically highly significant for space flight,
patients that have a wide range of diseases or that are
bedridden, and to understand and perhaps ameliorate
sarcopenia.

Because of the clinical and health-economic impor-
tance of sarcopenia, the molecular pathways involved have
attracted wide interest. Comparative studies on healthy and
wasting muscle tissues identified numerous mechanisms
involved in the regulation of muscle trophicity, including
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the calcineurin-NFAT pathway (stimulated by the calcium
influx into the sarcoplasm), the mTOR/p70S6K pathway
(modulated by myofibrillar stretch), and stress signaling
(modulated by p38/ERK/MEK kinase pathways, see for
example [7, 8]). More recently, molecular insights into the
mechanisms counteracting these trophic pathways could be
obtained. Importantly, atrogin-1 and MuRF1 genes were
found to be transcriptionally upregulated during diverse
states of muscle wasting [9, 10]. Furthermore, studies
using atrogin-1 and MuRF1-deficient mouse models further
supported a potential causal role of these two genes in the
development of muscle atrophy: Knock-out mouse models
of atrogin-1 and MuRF1 develop about 50% less muscle
atrophy in quadriceps muscle after lesion of its innervation
[11]. Mechanistically, it was proposed that these two genes
act as atrogins via the control of proteasome-dependent
degradation of muscle proteins, a concept, that is supported
in vitro by the enzymatic E3 ligase activity of expressed
MuRF1 protein. Therefore, an upregulation of these E3
ubiquitin ligase activities during muscle wasting would
enhance the UPS-dependent degradation of muscle proteins
(for review see [12]).

Current studies on MuRF1 and atrogin-1 are therefore
focused on the identification of their in vivo targets. In
vitro studies demonstrated that MuRF1 efficiently catalyzes
the addition of multiubiquitin groups to troponin-I (TnI),
myosin, and actin [9, 10]. However, target recognition in
vivo is likely to be more selective and to be regulated by
yet unknown factors. For example, a recent study using a
CreLox-recombinase induced conditional KO model where
MuRF1 activity can be downregulated in adult mice sug-
gested that myosin, actin, and TnI are not preferred in vivo
targets of MuRF1 [13]. Rather, a partial protection of MLC-
2 and myosin binding protein C turnover after denervation
was observed in an MuRF1-deficient conditional background
[13]. Consistent with the idea that MuRF1 target recogni-
tion in vivo is still poorly understood is the finding that
overexpression of MuRF1 in skeletal muscles alone is not
sufficient to cause muscle atrophy [14]. Instead of muscle
wasting, overexpression of MuRF1 resulted in a pertubation
of muscle metabolism and insulin signaling [14]. This raises
the possibility that MuRF1 could also play a role in muscle
trophicity via more complex pathways that include metabolic
pathways, rather than the direct degradation of myofibrillar
proteins.

Here were we used hindlimb suspension as an alterna-
tive model to study MuRF1’s role in muscle atrophy (in
this model muscle maintains its innervation), and studied
fiber type distribution, muscle force, and fatigue resistance
during repetitive stimulation. Results indicate that muscles
from suspended wildtype (wt) and MuRF1-KO (KO) mice
have comparable contractile characteristics, suggesting that
degradation of myofibrillar proteins by MuRF1 is unlikely.
However, inactivation of MuRF1 resulted after hindlimb
suspension in a reduced fatigue tolerance and reduced post-
tetanic potentiation, linking MuRF1 to MLC phosphoryla-
tion. These findings implicate that MuRF1’s functional roles
in muscle extend beyond a pathophysiological role in causing
muscle atrophy.

2. Methods

2.1. Animals and Hindlimb Suspension. All mice were bred
in-house and genotyped by standard methods. MuRF1 null
mice were on a C57/BL6 background and MuRF1 gene
disruption by homologous recombination was as previously
described [15]. Animals were housed in standard cages in
an animal room with controlled environmental conditions
and maintained on standard food and water ad libitum. To
suspend the hindlimbs, the tail of each mouse was placed
in a harness, which was used to elevate the pelvis so that
the feet of the hindlimbs did not contact the cage floor.
The harness consisted of SkinTrac (a commercially available
adhesive tape) in which the entire length of the tail was
trapped. The distal end of the SkinTrac was attached to a
paperclip which was then attached to a swivel on a plexiglass
cross-bar. The cross-bar was positioned ∼15 cm above the
cage floor. In this way, the hindlimb-suspended mice were
able to freely move around the cage on their front limbs
and had unlimited access to food and water. The hindlimb
suspension lasted 10 days, afterwards one group of mice was
sacrificed whereas another group was allowed to recover for
5 days (reload phase).

2.2. Characterization of Dissected Soleus Muscle. After 10
days of hindlimb suspension mice were anaesthetized with
isoflurane and sacrificed via cervical dislocation. The soleus
muscle was then rapidly dissected in an oxygenated bath on
ice. After dissection, a suture was attached to the tendon at
the proximal and distal ends of the muscle. The muscle was
then attached, via sutures, to an Aurora 1200A Intact Muscle
Test System and was placed in an oxygenated physiological
solution at 30◦C. Next, the optimal twitch length (L0) was
determined at 30◦C by incrementally lengthening the muscle
until gains in twitch force reached a plateau. After three
minutes, the muscles were then passively stretched to four
different lengths (5%, 10%, 15%, 20% of L0) at a rate of
10%/sec, held at the respective length for 60 seconds and
released then to L0. Muscle strips were allowed to recover by
waiting for 7 minutes between each stretch protocol. Seven
minutes after the last stretch, a single twitch and tetanus was
imposed on the muscle from L0. A force-frequency protocol
followed using the following frequencies in the following
order 1, 5, 10, 20, 40, 60, 80, 100, and 150 Hz, and waiting
30, 30, 60, 90, 120, 120, 120, 120 seconds, respectively, in
between each activation. The muscle was then fatigued by
stimulation at 60 Hz every three seconds for a total of 100
stimuli. The data from each experiment were analyzed with
Aurora’s DMA software, Microsoft Excel, and Kaleidagraph
3.6. Twitch and tetanus force and kinetics were determined
using Aurora’s DMA software. When the experiment was
completed muscles were dried with blotting paper and were
then weighed. The average cross-sectional area was obtained
by dividing the weight by the specific gravity of muscle (1.06)
and by the muscle length.

2.3. Immunohistochemistry. The primary antibodies used for
immunostaining are commercially available: (1) monoclonal
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mouse anti-myosin heavy chain (MHC) II, clone MY-32
(1 : 1,000; cat# M4276, Sigma) and (2) monoclonal mouse
anti-skeletal myosin MHC I, clone NOQ7.5.4D (1 : 4,000;
cat# M8421, Sigma), and (3) MuRF1 was detected with
specific antibodies as recently described [16]. The secondary
antibodies used for immunostaining were (1) goat anti-
mouse IgG-Cyanine Cy2 (1 : 100; cat# 115-225-174, Jackson
Lab), (2) donkey anti-chicken IgY-Cyanine Cy3 (1 : 1000;
cat# 703-165-155, Jackson Lab), (3) donkey anti-mouse
Cyanine Cy3 (1 : 1000; cat# 715-165-150, Jackson Lab),
and (4) donkey anti-rabbit Cyanine Cy3 (1 : 100; cat# 711-
165-152, Jackson Lab). Frozen cross-sections of muscles
for immunostaining were fixed with 4% paraformaldehyde
in 0.2 M phosphate buffer (PB) for 10 minutes at room
temperature, washed with PBS 3 times for 3 minutes each
and then blocked/permeabilized with 0.1 M glycine/0.2%
triton X-100 in phosphate-buffered saline (PBS) for 1 hour.
Subsequently the slides were incubated with a solution
containing the primary antibody, 3% normal goat serum
and 0.3% triton X-100/0.1 M PB overnight in a moisture
chamber (4◦C). After washing with 0.1M PBS (3 times
for 10 minutes each), a solution containing the secondary
antibody and 0.3% triton X-100/0.1 M PBS was added for
2 hours in a dark chamber. The slides were then washed
in 0.1M PB (3 times for 10 minutes each) and mounted
with Vectashield mounting medium for fluorescence with 4′,
6-diamidino-2-phenylindole (DAPI) (cat# H-1200, Vector
Labs) and coverslipped.

2.4. Quantitative and Morphometric Analysis. The quan-
titative and morphometric analysis were evaluated on a
microscope (Nikon Eclipse E600, Fukuoka, Japan) equipped
with a digital video camera and image software (Metamorph,
Universal Imaging Corporation, Downingtown, USA) digi-
tizing unit connected to a computer (Image Pro-plus, Media
Cybernetic). For the determination of muscle fiber type I and
II and cross-sectional area (CSA), a total of approximately
500 fibers per muscle per each group were studied. Three to
four cross-sections of the soleus and muscles from different
animals were analyzed in all groups. For classification of type
I and type II fibers, positive immunolabeling for MHCI and
MHCII antibodies were used, respectively. Fibers which were
lightly labeled were considered intermediary.

2.5. Gel Electrophoresis and Western Blots. Protein extracts
were prepared from frozen samples of soleus and tibialis
cranialis muscles of 6 unsuspended, suspended and reloaded
wild type mice. A total of 50 μg of solubilized extracts
were loaded on gel, and separated on 4–10% gradient
SDS-acrylamide gels (Invitrogen) followed by transfer onto
PVDF membranes. The protein levels of MuRF1 were
determined with specific antibodies previously described
[17, 18]. After incubation with primary antibodies, spe-
cific bands were visualized by enzymatic chemilumines-
cence using horseradish-peroxidase-conjugated secondary
antibodies, (Super Signal West Pico; Pierce, Bonn, Ger-
many), that were quantified by densitometry using a one-
dimensional scan software package (Scanalytics, Rockville,

USA). Loading and blotting variability was monitored on
duplicate Westernblots, reacted with antibodies specific
for alpha-Tubulin (monoclonal rabbit anti-alpha-Tubulin
antibody from CellSignalling (#2125); used at 1 : 1,000).

2.6. Statistics. Multiple comparisons of mean values were
performed with analysis of variance (ANOVA), for compar-
isons of only two groups, the unpaired t-test was used. For
all comparisons, a P < .05 was considered significant.

3. Results

3.1. MuRF1 Induction during Hindlimb Suspension and
Its Effect on Muscle Atrophy. First, we used the hindlimb
suspension model to monitor MuRF1 protein expression
by Western blots. For this, we compared unsuspended,
suspended and reloaded muscles and included in our study
soleus muscle (SO; because it has mixed-fiber types), as well
the M. tibialis cranialis (TC, because it is an almost pure fast-
fiber type muscle). Our blots detected basal levels of MuRF1
expression also in all nonsuspended WT control samples
(about 25% of suspended protein levels; see Figure 1).
Hindlimb suspension resulted in a severalfold upregulation
of MuRF1 protein expression (3.9 fold in tibialis cranialis,
3.6-fold in soleus). This process was fully reversible: 5 days
of reloading resulted in a return of MuRF1 expression to
basal levels (Figure 1). Finally, our blot results were similar
for tibialis and soleus muscle types (Figure 1).

Functionally, ten days of hindlimb suspension resulted
in a 25% weight reduction of the soleus muscle. This
effect was absent in the MuRF1-KO mouse (Table 1). We
also determined the cross-sectional area of the muscles
and found that the area was significantly reduced during
hindlimb suspension of the wt mice (P < .01) but that
there was no change in the during hindlimb suspension
of the KO mice (P > .05) (Figure 2). We next measured
the cross-sectional area of muscle fibers in the soleus
muscle (measurements at L0, see below), using immuno-
histochemistry to classify fibers as type I and II, because a
recent study suggested that MuRF1 regulates type-II fiber
trophicity in the denervation model [19]. We found that
during hindlimb suspension of WT mice the cross-sectional
area was significantly reduced in both type I and type II
fibers (Figure 3, P < .05). A minor reduction of cross-
sectional area in MuRF1-KO animals was detectable but not
significant. Fiber type distribution was not altered in the wt
or in the MuRF1-KO soleus after hindlimb suspension. This
conclusion is consistent with an SDS-PAGE based analysis of
MHC isotypes in the respective samples (see Table 2). In sum,
during hindlimb suspension the soleus muscle atrophies in
WT mice, due to a reduction in the cross-sectional area of
both type I and type II fibers. Soleus from MuRF1-KO mice
seems to be affected only marginally.

3.2. Soleus Muscles from MuRF1-KO Mice Have Normal
Contractility. Next, we studied contractile parameters of
soleus muscle. Muscles were twitch activated and gradually
stretched to L0, the length at which twitch force is maximal.
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Figure 1: MuRF1 protein expression and hindlimb suspension. MuRF1 protein expression was monitored in tibialis cranialis (TC) and
soleus (Sol.) muscles before (co; control), after unloading by hindlimb suspension (ul), and after reloading (rl). MuRF1 expression was
compared relative to alpha-tubulin (a) or actin (b) as a control for loading and blotting. Low levels of MuRF1 protein were detected in
control TC and Sol.; MuRF1 was severalfold elevated after unloading by hindlimb suspension in both muscle types and returned to nearly
normal expression levels after 5 days of reloading (rl).
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Figure 2: Cross-sectional analysis of soleus muscle. The cross-
section of wt soleus muscle is significantly reduced during hindlimb
suspension (wt sus), but not in the MuRF1-KO mice. “∗” indicates
statistical significance and “NS” its absence.

Table 1: Soleus weights (mg).

WT KO

Control 6.9± 0.5 (8) 6.2± 0.6(6)

Susp. 5.2± 0.5 (8) 6.5± 0.5 (8)

P-value 0.03 NS

We then determined the force-frequency relation by impos-
ing a 1 second pulse train at progressively higher frequency
(see Section 2). No differences were found in the force
frequency relation of the four studied groups (WT and KO,

Table 2: Soleus fiber types based on MHC/SDS-PAGE typing.

WT KO

Control
Type I 32.2± 1.9 (8) 35.7± 2.1 (6)

Type IIA+IIB 67.8± 3.9 (8) 64.3± 4.1 (8)

Susp.
Type I 34.1± 2.7 (8) 34.7± 2.0 (6)

Type IIA+IIB 65.9± 4.9 (8) 65.3± 3.9 (8)

P-value NS NS

suspended and unsuspended). In all groups, muscle force
reached a maximum at a stimulation frequency of ∼100 Hz
and the half-maximal force was reached at a stimulation
frequency of ∼35 Hz. The identical force-frequency relations
suggest that hindlimb suspension and the absence of MuRF1
does not affect calcium cycling.

We next studied the effect of hindlimb suspension on
the maximal tetanic force (stimulation frequency 150 Hz)
in both wt and KO mice and found that this force was
significantly reduced during hindlimb suspension of wt mice
(P < .01), with no effect in MuRF1-KO mice (see Figures
4(a) and 4(b)). However, when the maximal force was
normalized to the cross-sectional area of the muscle, the
obtained specific forces were not different amongst the 4
groups (see Figure 4(c)). Thus, the atrophy that occurs in
wt mice fully explains the reduction in tetanic force during
hindlimb suspension of wt mice. The absence of an effect of
hindlimb suspension on both total force and specific force in
MuRF1-KO mice (Figures 4(b) and 4(c)) is consistent with
the absence of atrophy. Additionally, the finding that the
force of MuRF1-KO mice is the same as that of unsuspended
wt mice suggests that under our experimental conditions the
absence of MuRF1 does not affect the functionality of the
contractile proteins. This is also suggested by the absence of
differences between wt and KO groups in the time required
to reach maximal tetanic force and the force relaxation time
when stimulation was terminated (results not shown).
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Figure 3: Fiber cross-sectional and fiber type analysis. (a) and (b): examples of cross-sections of soleus muscle stained for type I and type
II fibers of wt (top row) and MuRF1-KO (bottom row) of control (left two columns) and suspended (right two columns) mice. (c): cross-
sectional area analysis; (d): fiber type analysis.

3.3. Altered Twitch Potentiation and Fatigability in MuRF1-
Deficient Soleus Muscle. We also measured the well-known
phenomenon of twitch potentiation, by measuring twitch
force prior to a tetanic stimulation and immediately after
tetanic stimulation. Figure 5(a) shows an example of the
used protocol. The increase in twitch force after the tetanus
(i.e., twitch potentiation) has been shown to be due to
increased myosin light chain 2 (MLC2) phosphorylation
during the tetanus [20] which in turn increases calcium
sensitivity. Interestingly hindlimb suspension results in a
significant reduction in the twitch potentation of MuRF1-
KO mice (Figure 5(b)). This finding suggests that MuRF1
is likely to play a role in MLC2 phosphorylation, by
either having an effect on the activity of the myosin light
kinase or on the ability of the MLC2 to become phos-
phorylated. Additional experiments with phospho-specific

antibodies will be required to further investigate this hypoth-
esis.

Next, we studied the development of fatigue of soleus
muscle by stimulation at a submaximal frequency (60 Hz
for 1 second) every three seconds for a total of 5 minutes.
The mean data of all muscles are shown in Figure 6(a). The
percent of maximum peak force for the first five stimuli
and subsequent every fifth were plotted and fitted to a
double sigmoidal curve. We found that the muscles from
the hindlimb suspended mice had a significant difference
between wt and MuRF1-KO mice in that the wt mice had
significantly less fatigue than the KO mice. Figure 6(b) shows
the force after 2 minutes of the fatigue protocol; the results
clearly reveal that muscles from the KO suspended mice had
fatigued significantly more than those from the wt suspended
mice.
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Figure 4: Tetanus Contraction. We stimulated the soleus muscle
to a maximum tetanic contraction at a stimulus frequency of
150 Hz. (a) Example of a tetanus of a wt mouse. (b) Mean
results of wt and MuRF1-KO mice who had been suspended or
unsuspended. There is a significant difference when comparing
the absolute peak tetanic force. The data from wt unsuspended
mice are significantly different from those of wt suspended
mice. However, there is no significant force reduction between
the KO unsuspended and the KO suspended mice. (c) Specific
tetanic force comparisons did not reveal a significant differ-
ence.
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Figure 5: Twitch potentiation. (a) example of protocol. A twitch
was elicited before and following a tetanus contraction and peak
twitch force after contraction was compared to that before. (b)
There is a significant difference between the wt suspended and KO
suspended in twitch potentiation, indicating a difference in MLC
phosophorylation between the wt and KO mice.

4. Discussion

4.1. MuRF1’s Role in Atrophy. Previous studies on MuRF1’s
role in the development of muscle atrophy were carried out
in a denervation (DEN) model in which the sciatic nerve was
cut and the lower limb muscles were denervated in wt and
MuRF1-KO mice [11]. Results showed that MuRF1-KO mice
had a 36% reduction in atrophy after 14 days of denervation.
Because denervation might activate catabolic pathways via
inflammatory and stress-related pathways that in turn might
overlap with MuRF1 signaling pathways (e.g., for shared
TNF-alpha and MuRF1 signaling, see [21]) we used a
hindlimb suspension model which induces atrophy but keeps
innervation intact. Furthermore we limited our analysis to
10 days after suspension when atrophy is significant but not
yet severe, and reaches ∼25% atrophy in wt mice in the
here analyzed two muscle types, tibialis cranialis and soleus.
We intentionally focused our analysis on this shortened
time period in an attempt to potentially gain insights into
physiological rather than purely pathophysiological roles of
MuRF1. Furthermore, we focused in our analysis on soleus
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Figure 6: Muscle Fatigue. We fatigued the soleus muscle by stimulating the soleus muscle at a submaximal frequency (60 Hz, inset of
Figure 5(a)) every three seconds for a total of 100 stimuli. (a) The mean force of all muscles. (b) Force at the 105 second time point. There is
a significant difference between the wt suspended and the MuRF1-KO suspended mice.

muscle because it is one of the few muscles in the mouse with
a high number of slow twitch fibers, making it possible to test
for fiber-type differences in MuRF1-based muscle protection.

Future studies are required to address the effect of longer
hindlimb suspension periods, extending for 2 weeks or
longer. However, here, using this study design, we found a
remarkable protection of the soleus muscle in the MuRF1-
KO mice during the tested 10-day-suspension period, dis-
playing virtually complete protection (Table 1 and Fig-
ure 2). This high degree of protection is remarkable because
MuRF1-KO muscle tissues will express other atrogenes such
as atrogin-1, thought to be capable of catalyzing multi-
ubiquitination and UPS-dependent degradation of muscle
proteins [6, 12]. Also interestingly, we could not detect a
fiber-type dependence of MuRF1-based muscle protection
here: both nonsuspended and suspended MuRF1-KO soleus
tissues had comparable fiber type distributions, and both
fiber type subpopulations were protected from atrophy in
the absence of MuRF1 as shown by immunohistochemical
typing as well as SDS-PAGE based MHC I/ MHC II
quantification. This contrasts recent data that were obtained
with the MuRF1-KO mice when using the denervation
model: here, MuRF1 protein was preferentially induced in
type-II fibers from the fast TA muscle. Consistent with an
MuRF1 induction in type-II fibers by DEN, we found a
preferential protection of type II fast fibers in the MuRF1-KO
mice during DEN-induced atrophy [19]. Taken together, our
data confirm an important role for MuRF1 during muscle
atrophy development, but also stress the importance of using
different atrophy induction models, and to analyze the effects
that occur in fast and slow fiber type populations separately.

4.2. MuRF1 and Fatigue Control. Because we recently noted
that MuRF1 overexpression causes metabolism effects we
also compared wt and MuRF1-KO M soleus muscle with

regards to their fatigue resistance when stressed by repetitive
stimulations. Consistent with the idea that the role of MuRF1
extends to energy metabolism control [22], we found that
inactivation of MuRF1 increases sensitivity to fatigue. A
degradation or modification of contractile or regulatory
proteins within the myofibril by MuRF1 is an unlikely expla-
nation, because specific tetanic force and the force-frequency
relation of suspended soleus muscle from wt and from
MuRF1-KO mice were comparable (we also obtained similar
findings from MuRF1-overexpressing MuRF1-TG mice, data
not shown). Therefore, possibly MuRF1 signalling affects
the control of oxidative phosphorylation, either indirectly by
affecting mitochondrial functions (for an effect of MuRF1
overexpression on the mitochondrial matrix protein PDC,
see [14]), or indirectly by affecting the ATP regenerating
MCK enzyme activity [23]. Such a model where MuRF1
exerts its effects on muscle indirectly via its control of
energy metabolism would also explain why overexpression
of MuRF1 alone is not sufficient to cause a muscle atrophy
but instead affectes energy metabolism [14], for a review see
[24].

In our study we found significant differences in twitch
potentiation between wt and MuRF1-KO muscle (Figure 5).
Twitch potentiation can be explained as follows. The calcium
that is released into the sarcoplasm when a muscle is
tetanized not only activates the thin filament, allowing
contraction to take place, but also activates the skeletal mus-
cle Ca2+ /calmodulin-dependent myosin light chain kinase
(skMLCK) to initiate phosphorylation of MLC2 (also known
as regulatory light chain, RLC). MLC2 phosphorylation does
not increase maximal tetanic force but increases force at
submaximal calcium levels, such as occur during a twitch
contraction. Thus after the tetanus has been terminated, the
phosphorylation status of MLC2 is elevated for some time
(ultimately phosphatases reduce the phosphorylation state
back to baseline) and twitch force is potentiated [20]. We
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previously noted that MuRF1 interacts in the Y2H system
with MLC2 [16]. Possibly MuRF1 functions as an adapter
protein to facilitate MLCK and MLC2 interactions. Because
MuRF1 has been suggested to regulate the turnover of
MLC-2 [13] it is also possible that the absence of MuRF1
negatively impacts the degree to which MLC2 is phosphory-
lated during tetanic stimulation. Alternatively MuRF1 might
have an effect on skMLCK or on the phosphatase that
dephosphorylates MLC2P. Future work is needed to establish
the mechanisms by which MuRF1 deficiency reduced twitch
potentiation in muscle from hindlimb suspended mice.

Taken together, our data indicate that the functions
of MuRF1 extend beyond regulating myofibrillar protein
breakdown, and include intricate fine-tunings of the phos-
phorylation status of MLC2 and metabolic properties of the
skeletal muscle apparatus.
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