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The invariant NKT (iNKT) cells recognize glycolipid antigens presented by the

non-classical MHC like molecule CD1d. They represent an innate T-cell lineage with the

ability to rapidly produce a variety of cytokines in response to agonist stimulation to bridge

innate and adaptive immunity. In thymus, most iNKT cells complete their maturation and

differentiate to multiple effector lineages such as iNKT-1, iNKT-2, and iNKT-17 cells that

possess the capability to produce IFNγ, IL-4, and IL-17A, respectively, and play distinct

roles in immune responses and diseases. Mechanisms that control iNKT lineage fate

decisions are still not well understood. Evidence has revealed critical roles of Foxo1 of

the forkhead box O1 subfamily of transcription factors in the immune system. However,

its role in iNKT cells has been unknown. In this report, we demonstrate that deletion of

Foxo1 causes severe decreases of iNKT cell total numbers due to impairment of late but

not early iNKT cell development. Deficiency of Foxo1 results in decreases of iNKT-1 but

increases of iNKT-17 cells. Our data reveal that Foxo1 controls iNKT effector lineage fate

decision by promoting iNKT-1 but suppressing iNKT-17 lineages.
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INTRODUCTION

iNKT cells express TCRs that contain an invariant TCRVα14-Jα13 (iVα14) chain paired with
limited numbers of TCRβ chain that recognize glycolipid antigens presented by the non-classic
MHC-I like molecule CD1d. They play important roles in immune responses and tissue
repair but also contribute to the pathogenesis of diseases (1–4). The iVα14 TCR signaling via
multiple pathways such as RasGRP1-Ras-Erk1/2 pathway, the PKCθ-NFκB pathway, and mTOR
is crucial for iNKT cell development in the thymus (2, 5–12). iNKT cells are traditionally
defined into four developmental stages in the thymus: stage 0 (CD24+CD44−NK1.1−), stage 1
(CD24−CD44−NK1.1−), stage 2 (CD24−CD44+NK1.1−), and stage 3 (CD24−CD44+NK1.1+)
(13, 14). Recently, iNKT cells have also been defined into multiple effector lineages based
on expression of specific transcription factors and cytokines. These effector lineages identified
thus far include IFN-γ-producing iNKT1, IL-4-producing iNKT2, IL-17A-producing iNKT17,
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iNKT10, Tfh-like iNKTfh, and Treg-like iNKT cells. iNKT1,
iNKT2, iNKT17, and iNKTfh cells express T-bet, Gata3, RORγt,
and Bcl6 that correspond to master transcription factors in
individual T helper lineages, respectively (15–23). Stage 3 iNKT
cells are virtually all iNKT1 cells (15, 24, 25), while iNKT17
cells reside in stage 2 CD44+NK1.1− neuropilin-1+ ICOS+ cells
(8, 18, 26–28). iNKT2 cells can be found in both stage 1 and
stage 2 iNKT cells (28). Individual iNKT cell lineages exert
distinct functions in immune responses and diseases. iNKT cell
derived IL-4 participates in regulation of early germinal center
B cell responses (29), liver regeneration and repair after injury
(30), and adipocyte homeostasis (31). iNKT cell derived IL17
exacerbates airway hypersensitivity by recruiting neutrophils
and inducing smooth muscle contraction (8, 20). iNKTfh cells
secrets IL-21 and provides direct cognate help to antigen-
specific B cells (16). Different from conventional αβT cells,
most iNKT cells complete their effector lineage differentiation
in the thymus and their relative abundance is influenced by
genetic backgrounds, environmental factors, and intrinsic signal,
metabolic, and transcriptional pathways. The mechanisms that
control iNKT cell effector lineage fate decision are still not
fully understood.

Foxo1 belongs to the Forkhead box “O” subfamily of
transcription factors binding to a consensus DNA sequence
5′-(A/C)AA(C/T)A to regulate transcription of many genes
involved in cell survival, cell cycle, differentiation, and cancer
(32). Many mechanisms have evolved to regulate Foxo1 at both
transcriptional and post transcriptional levels. A key mechanism
is its phosphorylation by Akt and serum/glucocorticoid regulated
kinase 1 (SGK1) on different sites that leads to its export from
the nucleus and sequestration in the cytosol due to increased
association to 14-3-3 proteins (33). Many studies have revealed
important roles of the Foxo subfamily in the immune system
(32, 34). Foxo1 promotes production of inflammatory cytokines
in and regulates migration of dendritic cells (35, 36), is essential
for B cell development and Ig class-switch (37–39), and regulates
T cell differentiation and function (34). It controls T cell survival
and homing via increasing IL7 receptor expression, CCR7, and
L-selectin expression (40), plays important roles for regulatory
T cell development and function (41–43), negatively controls
Th17 cell differentiation (44–47) and Tfh differentiation (48–
50), promotes Th9 responses (51–53), and regulates CD8T cell
effetor/memory differentiation (54–56). We report here that
deficiency of Foxo1 does not grossly affect early iNKT cell
development but severely impacts late iNKT cell development,
manifested by severe reduction of iNKT1 cells but increases of
iNKT17 cells. Our data suggest that Foxo1 is a critical regulator
that controls iNKT1 and iNKT17 effector fate decision.

MATERIALS AND METHODS

Mice
Foxo1f /f and Cd2iCre mice were purchased from the Jackson
Laboratory (57, 58). Foxo1f /f had further backcrossed to
C57BL6/J background. Two to ten-week-old Foxo1f /f -Cd2iCre
and Foxo1f /f or Cd2iCre littermate control mice were used for
the experiments. For each experiment, one pair of test and

control mice of the same sex littermates examined. All mouse
experiments were performed according to protocols approved by
the Duke University Institute Animal Care and Use Committee.

Assessment of Foxo1 Recombination
Ten millions of viable CD4+CD8+ thymocytes from age-
and sex-matched Foxo1f /f and Foxo1f /f -Cd2iCre mice were
sorted on MoFlo Cell Sorter (Beckman Coulter) with post-
sort purity of 98%. Genomic DNAs were extracted with
phenol/chloroform, precipitated with 70% ethanol, dissolved in
TE buffer (10mM Tris-0.5mM EDTA [pH 8]), and utilized
as templates for PCR reaction. The forward and reverse
primers for Foxo1 were 5′-ACCACTCTGGACGGCATACT-
3′ and 5′-TAACATAAAGGGAGATGAAGCA-3′, respectively.
These two primers flank one of the two Loxp sites in the
Foxo1 locus so that they did not amply a PCR product after
Cre mediated recombination. Primers for Dgkz as control
were 5′-AGAAAGCTGATCCCCCACAT-3′ (forward) and 5′-
AGAGAGCGTCCTTCAAGAGG-3′ (reverse). PCR products
were visualized after electrophoresis in 1% agarose gel.

Flow Cytometry and Antibodies
Thymocytes, splenocytes, and liver mononuclear cells were
prepared according to published protocols (9, 10). Cells were
stained for surface markers with appropriate fluorochrome-
conjugated antibodies in PBS containing 2% FBS on ice for
30min followed by intracellular staining of transcription
factors using the BD Bioscience Transcription Factor Buffer
Set or Ki67 using the BD Bioscience Cytofix/CytopermTM

solution according to the manufacturer’s protocols. Data
were collected using a BD LSRFortessaTM cytometer (BD
Biosciences). PE- or allophycocyanin-labeled PBS57-loaded
CD1d tetramers (CD1dTet) were provided by the NIH Tetramer
Core Facility. Fluorochrome-conjugated anti-CD45.2 (clone
104), CD45.1 (A20), TCR-β (clone H57-597), NK1.1 (clone
PK136), CD44 (clone IM7), CD24 (clone M1/69), CD11b (clone
M170), CD11c (clone N418), F4/80 (clone BM8), B220 (clone
RA3-6B2), TER119/Erythroid Cells (clone TER-119), CD4
(clone GK1.5), CD8a (clone 53-6.7), ICOS (clone C398.4A),
T-bet (clone 4B10), IL7Rα (clone SB/199) were purchased
from Biolegend; anti-GATA3 (clone L50-823), CD122 (clone
TM-b1), RORγt (clone Q31-378), Streptavidin (BV711), and
Ki67 were purchased from BD Biosciences; anti-PLZF (clone
Mags.21F7) was purchased from eBioscience. Cell death was
identified using the Live/DeadTM Fixable Violet Dead Cell
Stain (Thermo Fisher Scientific). Reactive oxygen species
(ROS) were detected with 2′,7′-dichlorodihydrofluorescein
diacetate (H2DCFDA) (ThermoFisher). Goat anti-mouse
IgG (H+L) antibody (Alexa Fluor 568) for detection of
the anti-Ki67 antibody was purchased from Thermo Fisher
Scientific. Data were analyzed using the FlowJo Version 9.2
software (Tree Star).

Generation of Chimeric Mice
CD45.1+CD45.2+ WT mice in C57BL/6 background were
irradiated with a single dose of 800 rad X-Ray and intravenously
injected with 10–15 million of a mixture of BM cells from
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CD45.1+ WT mice and CD45.2+ Foxo1f /f -Cd2iCre mice at 1:1
ratio. Recipient mice were euthanized and analyzed 8 weeks later.

Statistical Analysis
Data were presented as mean ± SEM and analyzed for statistical
differences using the Prism 5/GraphPad software. Comparisons
were made using the two-tailed paired or unpaired Student t-test.
Each pair represents age- and sex-matched littermates that were
examined in a single experiment and is indicated by a connecting

line between test and control mice. P-values less than 0.05 were
considered significant (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).

RESULTS

Impairment of iNKT Cell Development in
Foxo1f/f-Cd2iCre Mice
To investigate the role of Foxo1 in iNKT cell development, we
bred Foxo1f /f mice (57) with hCD2-iCre (Cd2iCre) mice (58) to

FIGURE 1 | Severe decreases of iNKT cells in Foxo1f/f -Cd2iCre mice. Six to ten weeks old Foxo1f/f -Cd2iCre (Foxo1KO) and Foxo1f/f or Cd2iCre controls (Ctrl) mice

were analyzed for iNKT cells by flow cytometry. (A) Assessment of Cre mediated deletion in Foxo1 gene in DP thymocytes. Cre mediated recombination causes

deletion of the PCR template. Cre–: Foxo1f/f ; Cre+: Foxo1f/f -Cd2iCre; Ctrl: tail DNA from Foxo1f/f -Cd2iCre mice. (B) TCRβ and CD1dTet staining of thymocytes,

splenocytes, and liver mononuclear cells (MNCs). Live gated Lin-singlets are shown. (C) Percentages of iNKT cells in the indicated organ. (D) Numbers of iNKT cells in

the indicated organs. (E) TCRβ+ SP thymocyte numbers. FACS plots are representative of five experiments. Scatter plots are pooled from five experiments (C,D) or

seven experiments (E). Each circle and square represents one WT and one Foxo1KO mice, respectively. Connecting lines indicate individual pairs of sex- and

age-matched test and control mice in each experiment. One pair of mice was examined in each experiment. *p < 0.05; ***p < 0.001 determined by two-tail

pair-wised Student t-test.
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generate Foxo1f /f -Cd2iCre (Foxo1KO) mice. CD2iCre induces
gene ablation of floxed genes in both T cells and B cells (58) and
in CD4+CD8+ double positive (DP) thymocytes (Figure 1A).
We used TCRβ and PBS-57 loaded CD1d tetramer (CD1dTet) to
detect iNKT cells. In Foxo1f /f -Cd2iCre mice, TCRβ+CD1dTet+

iNKT cell percentages and numbers were decreased 64.41% and
68.56%, respectively in the thymus compared with Foxo1f /f

controls (Figures 1B–D). Moreover, iNKT cell percentages and
numbers were also reduced in the spleen and liver in Foxo1f /f -
Cd2iCre mice with the exception of splenic iNKT cells in
one Foxo1f /f -Cd2iCre mice due severe splenomegaly likely
caused by defective function of regulatory T cells. In contrast,
CD4+CD8− single positive (SP) TCRβ+ and CD4−CD8+ SP
TCRβ+ thymocyte numbers were similar between control and
Foxo1KO mice (Figure 1E). Thus, Foxo1 deficiency resulted
in severe impairment of iNKT cell but not conventional αβT
cell development.

Intrinsic Control of iNKT Development by
Foxo1
Because Foxo1 was ablated in both T and B cell lineages
and Foxo1 deficiency causes severe B cell developmental
defects, impairment of regulatory T cell function, and Th
lineage and CD8 effector/memory differentiation (32, 59), the
severe decreases of iNKT cells could result from change of
environment in these mice. To determine if abnormal iNKT
cell development in Foxo1f /f -Cd2iCre mice was autonomous,
we generated mixed bone marrow (BM) irradiation chimeric
mice by injecting a mixture of CD45.1+ WT and CD45.2+

Foxo1f /f -Cd2iCre BM cells at a 1:1 ratio into sublethally
irradiated CD45.1+CD45.2+ recipient mice. Two months after
reconstitution, recipient mice contained about 1:1 ratio of
CD45.2+ and CD45.1+ CD11b+Ly6G+Ly6C− neutrophils in the
spleen (Figures 2A,B) suggesting equal reconstitution of these
two types of hematopoietic stem cells (HSCs). Additionally,
the ratios of CD45.2+ to CD45.1+ CD4+CD8+ double positive
(DP) thymocytes, the immediate precursors of iNKT cells,
and non-iNKT TCRβ+ conventional T cells were also 1:1
(Figures 2C,D,F). However, the CD45.2+ Foxo1KO to CD45.1
WT ratios for iNKT cells were drastically decreased to 0.2:1
(Figures 2D,F). In contrast, the ratio for CD1dTet−TCRβ+

conventional αβT cells in the thymus were not decreased
(Figures 2D,F). Consistent with severe defects in iNKT cell
generation, very few iNKT cells in the spleen and liver in the
recipients were derived from Foxo1KO HSCs (Figures 2E,F).
Thus, Foxo1 deficiency intrinsically inhibited iNKT but not
conventional αβT cell development.

Foxo1 Deficiency Caused Impairment of
Late Stage iNKT Cell Development
iNKT cell development in the thymus is traditionally
defined sequentially into CD24+CD44−NK1.1− stage 0,
CD24−CD44−NK1.1− stage 1, CD24−CD44+NK1.1− stage
2, and CD24−CD44+NK1.1+ stage 3 (13, 14). In Foxo1f /f -
Cd2iCre mice, stage 0 iNKT cell percentages were increased
but numbers were not altered compared with control mice

(Figures 3A,B). Stages 1 and 2 iNKT cell percentages displayed
increased trend, although not statistically significant. However,
their numbers were not obviously altered (Figures 3A,C).
Importantly, stage 3 iNKT cell percentages and numbers were
both decreased in Foxo1f /f -Cd2iCre thymus (Figures 3A,C).
In Foxo1KO spleen, stage 2 iNKT cell numbers were similar to
WT control but stage 3 showed decreased except one mouse
(Figure 3D), which contained increased stage 3 iNKT cells due
to considerable enlargement of the spleen that was likely caused
defects in regulatory T cells and lymphoproliferative disorders.
In Foxo1KO liver, stage 2 iNKT cell numbers were also similar
to WT control but stage 3 iNKT cells were obviously decreased
(Figure 3E). Thus, Foxo1 deficiency appears to selectively affect
late stage iNKT cell development.

Intrinsic Promotion of Late Stage iNKT
Maturation by Foxo1
We further examined whether Foxo1 intrinsically promotes late
stage iNKT cell maturation using the mixed BM chimeric mice
described in Figure 2. Within CD45.2+ Foxo1KO iNKT cells, the
percentages of stages 0, 1, and 2 were increased 11.08, 2.54, and
1.87 folds compared with CD45.1+ WT iNKT cells, respectively;
but stage 3 were drastically decreased (Figures 4A,B), indicating
an intrinsic role of Foxo1 for iNKT cell terminal maturation
to stage 3. Because iNKT cells were predominantly stage 3 and
its dramatic decreases could affect the percentages of stage 0–2
iNKT cells, we further calculated CD45.2 Foxo1KO/CD45.1 WT
ratios of each stage of iNKT cells in individual recipient mice. As
shown in Figures 4C,D, the ratios of CD45.2/CD45.1 of stage 0
iNKT cell were increased to 3.4:1 compared with the ratios of DP
thymocytes. But the ratios of stages 1, 2, and 3 were progressively
decreased from 0.60:1, to 0.35:1, and finally to 0.073:1. These
results suggested that Foxo1 deficiency exerted weak inhibition
on stage 1 and stage 2 iNKT cell maturation but much strong
impact on stage 3 iNKT cell maturation. The increases of stage
0 ratios could be caused by enhanced early iNKT cell generation
and/or blockade of stage 0 to stage 1 iNKT cell transition in the
absence of Foxo1. Thus, Foxo1 intrinsically promoted iNKT cell
maturation, particularly late stage maturation.

Differential Effects of Foxo1 Deficiency on
iNKT Effector Lineage Differentiation
iNKT cells differentiate to multiple effector lineages in the
thymus that can be defined based expression transcriptional
factors/repressors PLZF, GATA3, T-bet, and RORγt (15). Within
iNKT cells from Foxo1f /f -Cd2iCre thymus, the percentages
of PLZF+GATA3+ iNKT2 and RORγt+T-bet− iNKT17 cells
were increased but RORγt−T-bet+ iNKT1 cells were decreased
(Figures 5A,B). Thus, Foxo1 deficiency greatly inhibited iNKT1
development, which was consistent with severe decreases of stage
3 iNKT cells that are mostly iNKT1 cells.

Intrinsic Control of iNKT Effector Lineage
Differentiation by Foxo1
Because iNKT effector lineages may compete with each other
during development and are influenced by thymic environment,
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FIGURE 2 | Intrinsic control of iNKT cell development by Foxo1. CD45.1+CD45.2+ WT mice were irradiated with 800 rad X-ray and intravenously injected with a

mixture of CD45.1+ WT and CD45.2+ Foxo1f/f -Cd2iCre BM cells at a 1:1 ratio. Recipient mice were euthanized and analyzed 2 months after reconstitution.

(Continued)

Frontiers in Immunology | www.frontiersin.org 5 November 2019 | Volume 10 | Article 2710

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tao et al. Foxo1 in iNKT1/17 Differentiation

FIGURE 2 | (A) Representative FACS plots showing CD45.1 and CD45.2 staining in splenic Ly6C−Ly6G+CD11b+ neutrophils. (B) Scatter plots showing ratios of

CD45.2+ to CD45.1+ neutrophils. (C) Representative FACS plots showing CD4 and CD8 staining of live gated thymocytes (left panel) and CD45.1 and 45.2 staining

of CD4+CD8+ DP thymocytes (right panel). (D) Representative FACS plot showing CD1dTet and TCRβ staining (left panel) of live gated Lin-thymocytes and CD45.1

and 45.2 staining of gated CD1dTet+TCRβ+ iNKT cells (top right panel) and CD1dTet−TCRβ+ non-iNKT cells (bottom right panel). (E) Representative FACS plot

showing CD45.1 and 45.2 staining of live gated CD1dTet+TCRβ+ iNKT cells from the spleen and liver. (F) CD45.2/CD45.1 ratios of indicated populations of cells.

Data shown are representative or pooled from five experiments. One chimeric mouse was examined in each experiment.

FIGURE 3 | Impaired late stage iNKT cell development in Foxo1f/f -Cd2iCre mice. Six to ten weeks old Foxo1f/f -Cd2iCre and control mice were analyzed similar to

Figure 1 with additional antibodies for CD24, CD44, NK1.1, and CD11b, CD11, F4/80, Ter119 for lineage gating. (A) Top panels: CD24 vs. CD44 staining of live

gated Lin− iNKT cells in the thymus. Bottom panels, CD44 vs. NK1.1 staining on CD24− iNKT cells. (B) Stage 0 iNKT percentages and numbers in the thymus.

(C) Stages 1, 2, and 3 iNKT cell percentages and numbers in the thymus. (D) Stages 2 and 3 iNKT cell numbers in the spleen. (E) Stages 2 and 3 iNKT cell numbers

in the liver. Data shown are representative or pooled from five experiments. Connecting lines indicate individual pairs of sex- and age-matched test and control mice in

each experiment. *p < 0.05; ***p < 0.001 determined by two-tail pair-wised Student t-test.

we further examined whether Foxo1 intrinsically controls iNKT
cell effector lineage differentiation using the mixed BM chimeric
mice described in Figure 2. Similar to data shown in Figure 5, the
percentages of iNKT1 were decreased but iNKT17 and, to certain
extent, iNKT2 were increased within CD45.2+ Foxo1KO iNKT
cells (Figures 6A,B). Additionally, the Foxo1KO to WT ratios of
iNKT1, iNKT2, and iNKT17 cells were 0.077:1, 0.36:1, and 1.1:1,
respectively (Figure 6C). Because the Foxo1KO/WT iNKT17
ratios (1.1:1) were greater than stage 2 iNKT ratios (0.35:1,
Figure 4D), it suggested that Foxo1KO iNKT17 differentiation
was enhanced and that Foxo1 deficiency intrinsically inhibited
iNKT1 but promoted iNKT17 differentiation.

In Foxo1KO mice, iNKT1 cells but not iNKT2 or iNKT17
cells were prone to death compared with WT iNKT cells

(Figure 6D). ROS levels were weakly increased in stage 3 iNKT
cells (Figure 6E), which might contribute increased death and
decreases of iNKT1 cells as most stage 3 iNKT cells are iNKT1
cells. Foxo1 inhibits T-bet expression in NK cells (60). Within
Foxo1KO iNKT1 cells, T-bet expression was increased compared
with WT controls, suggesting that Foxo1 also inhibited T-
bet expression in iNKT cells (Figure 6F). Additionally, CD122,
the IL2/15Rβ chain that mediates IL15 signal to positively
regulate T-bet expression and to promote iNKT1 differentiation
and survival (61, 62), was expressed at similar levels between
WT and Foxo1KO iNKT1 cells (Figure 6F), suggesting that
the reduction of Foxo1KO iNKT1 cells was unlikely due to
altered T-bet or CD122 expression. RORγt is crucial iNKT17
differentiation (18). RORγt levels were not obviously changed
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FIGURE 4 | Intrinsic control of late stage iNKT cell development by Foxo1. Thymocytes and splenocytes and liver MNCs from mixed BM chimeric mice as described

in Figure 2 were similarly analyzed. (A) Representative FACS plots showing CD24 and CD44 staining in live gated Lin-CD45.1+ WT and CD45.2+ Foxo1KO thymic

iNKT cells (left panels) and CD44 and NK1.1 staining in the CD24− population of iNKT cells. (B) Scatter plots showing percentages of iNKT cell developmental stages.

(C) Representative FACS plots showing CD45.1 and CD45.2 staining on stage 0–3 iNKT cells. (D) Scatter plots showing CD45.2/CD45.1 ratios of individual iNKT cell

developmental stages. Connecting lines indicate CD45.1 WT and CD45.2 Foxo1KO iNKT cells in individual mice. One chimeric mouse was examined in each

experiment. *p < 0.05; ***p < 0.001 determined by two-tail pair-wised Student t-test.

in Foxo1KO iNKT17 cells or in DP thymocytes (Figure 6F).
IL7 receptor (IL7R) signal and ICOS costimulatory signal
promote iNKT17 lineage differentiation/homeostasis (8, 61,
63). However, both IL7Rα and ICOS levels were reduced

in iNKT cells at different stages (Figure 6G), suggesting that
Foxo1 deficiency alleviated the requirement of these signals
for iNKT17 cells and might promote iNKT17 lineage via
other mechanisms.
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FIGURE 5 | Selective impairment of iNKT1 differentiation in Foxo1 deficient mice. (A) Top panels: T-bet and RORγt staining of thymic iNKT cells. Bottom panels:

PLZF and GATA3 staining of RORγt−T-bet− iNKT cells. (B) Percentages of iNKT effector lineages. Data shown are representative or pooled from five experiments.

Connecting lines indicate individual pairs of sex- and age-matched test and control mice in each experiment. One pair of mice was examined in each experiment.

*p < 0.05; **p < 0.01 determined by two-tail pair-wised Student t-test.

DISCUSSION

iNKT cells differentiate to multiple effector lineages that play
distinct roles in immune responses and diseases. Evidence
suggests that iNKT1 and iNKT17 are competing lineages
during iNKT effector differentiation. Both intrinsic program and
environmental factors are both involved in control the balance
between iNKT1 and iNKT17 cells (8, 15, 63–67). In this report,
we demonstrated that deficiency of Foxo1 intrinsically inhibited
iNKT1 but enhanced iNKT17 differentiation without obviously

affecting early iNKT cell development, suggesting that Foxo1
controls iNKT effector lineage fate decision.

In Foxo1f /f -Cd2iCremice, stage 0, 1, and 2 iNKT cell numbers
are not obviously different from WT control mice and only
stage 3 iNKT cell numbers and percentages were decreased. In
mixed BM chimeric mice reconstituted with Foxo1f /f -Cd2iCre
and congenic WT BM cells, Foxo1KO to WT ratios of stage
0 iNKT cells are slightly increased compared with the ratios
of CD4+CD8+ thymocytes. Thus, Foxo1 is dispensable for

early iNKT cell development. However, other members of the
Foxo subfamily are also expressed in developing thymocytes,
our data do not rule out the possibility that those factors
may function redundantly with Foxo1 and compensate for its

deficiency during early iNKT cell development. Further studies
with compound deficiency of Foxo1 and other family members
are needed to fully rule out a role of Foxo1 in early iNKT
cell development.

Foxo1 deficiency leads to considerable decreases
of CD44+NK1.1+T-bet+ iNKT1 cells but increases of
CD44+NK1.1−RORγt+ iNKT17 cells. iNKT1 cell percentages
and numbers are both decreased, revealed a positive role of

Foxo1 in promoting iNKT1 differentiation/ maintenance. The

increases of iNKT17 cells in the absence of Foxo1 are not solely
resulted from decreases of iNKT1 cells and consequent increases
of iNKT17 ratios. The Foxo1KO to WT ratios of iNKT17 cells
are significantly overrepresented compared with those of stage
1 and 2 iNKT cells in mixed BM chimeric mice, indicating that
Foxo1 negatively controls iNKT17 differentiation. Thus, Foxo1
plays an intrinsic role in controlling iNKT1/17 effector fate
decision and may rheostat the balance between these two iNKT
effector lineages.

Numerous mechanisms have been found to control iNKT1/17
lineage differentiation. Many transcription factors and regulators
such as cMAF, Runx1, MED2/3, and NKAP are important for
iNKT17 differentiation (68–74), while the epigenetic modifiers
of the TET-family dioxygenases inhibit iNKT17 but promote
iNKT1 differentiation (67). Foxo1 deficient iNKT1 but not
iNKT2/17 cells were prone to death and contained increased
ROS, suggesting that Foxo1 might regulate ROS production
to promote iNKT1 cell survival. IL15R signal is critical for
iNKT1 cell differentiation and homeostasis in part by increasing
T-bet expression (61, 62). We have found IL15Rβ chain
expression is not reduced in Foxo1KO iNKT1 cells. Thus,
Foxo1 deficiency may cause iNKT1 defect via mechanisms other
than altered expression of T-bet or CD122. IL7R signal and
ICOS costimulatory signal promote iNKT17 cell homeostasis
(8, 61, 63). Both IL7Rα and ICOS levels were decreased in
Foxo1KO iNKT cells. In conventional T cells, Foxo1 binds
to Il7ra and Icos loci to promote their transcription (48, 75).
Foxo1 may function similarly to promote expression of these
molecules in iNKT cells. However, it is unlikely that the
decreased expression of IL7R and ICOS causes enhanced iNKT17
differentiation in Foxo1KO mice. Although ICOS and IL7R are
not crucial for iNKT1 differentiation, our data do not rule out
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FIGURE 6 | Intrinsic control of iNKT cell effector lineage differentiation by Foxo1. (A–C) Thymocytes from mixed BM chimeric mice as described in Figure 2 were

similarly analyzed. (A) Representative FACS plots showing RORγt and T-bet staining in gated CD45.1+ WT and CD45.2+ Foxo1KO iNKT cells (left panels) and PLZF

and GATA3 staining in gated RORγt−T-bet− iNKT cells. (B) Scatter plots showing percentages of iNKT effector lineages. (C) Scatter plots showing CD45.2

Foxo1KO/CD45.1WT ratios of individual iNKT effector lineages. Data shown are representative or pooled from five experiments. Connecting lines indicate CD45.1 WT

and CD45.2 Foxo1KO iNKT cells in individual mice. One chimeric mouse was examined in each experiment.*p < 0.05; **p < 0.01 determined by two-tail pair-wised

Student t-test. (D–G) Two to three weeks old Foxo1f/f -Cd2iCre and Foxo1f/f mice were analyzed for thymic iNKT cells by flow cytometry. (D) Death rates of iNKT

effector lineages detected by Live/DeadTM Fixable Violet Dead Cell Stain. N = 5. *p < 0.05 determined by two-tail pair-wised Student t-test. (E) Overlaid histograms

show ROS levels in stages 1–3 iNKT cells. (F) Overlaid histograms show T-bet and CD122 levels in iNKT1 cells and RORγt levels in iNKT17 cells and in DP

thymocytes. (G) Overlaid histograms show IL7Rα and ICOS levels in stages 1–3 iNKT cells. Data in (E–G) are representative of three experiments.
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the possibility that decreased expression of these molecules may
impair iNKT1 lineage differentiation/homeostasis in the context
of Foxo1 deficiency.

Foxo1 inhibits Th17 differentiation and IL-17A expression
by directly suppressing transcription of RORγt and IL-23R
expression and by interacting with RORγt (44, 47, 76). Although
such mechanisms could operate similarly iNKT cells, we do not
observe increased RORγt protein levels in Foxo1KO iNKT17
cells. It is interesting to note that Foxo1 inhibits T-bet mediated
effector differentiation of CD8T cells and Th1 differentiation
(55, 77) and binds to the Tbx21 promoter to inhibit T-bet
expression in NK cells (60). In Foxo1 deficient iNKT1 cells, T-
bet levels were increased, suggesting that Foxo1 may also directly
suppress T-bet expression in iNKT cells. However, increased T-
bet expression should not be the reason for deficiency of iNKT1
cells in Foxo1KO mice.

Foxo1 is regulated by multiple mechanisms. Akt, SGK1,
and the serine/threonine kinase CK2 phosphorylate Foxo1 to
inhibit its nuclear localization and activity. mTOR regulates
iNKT1 and iNKT17 differentiation via mTOR complex 1
(mTORC1) and mTORC2 and their tight regulation by the
tumor suppressor TSC1 ensures proper iNKT1/17 balance (8,
66, 78, 79). mTORC2 phosphorylates Akt and SGK1 to enhance
their enzyme activities (80–82). Deficiency of either Akt2 or
mTORC2 causes decreases of iNKT17 cells, which correlates with
decreased Foxo1 phosphorylation or increased Foxo1 nuclear
localization (66, 83). The data we report here provide direct
evidence that Foxo1 plays critical roles in iNKT cell development
and effector lineage differentiation. Although the importance
of SGK1 and CK2 in iNKT cells has been unclear, both SGK1
and CK2 promote Th17 differentiation at least partially through
inhibition of Foxo1 (45, 84, 85). Our data together with these

observations indicate that Foxo1 may integrate signals from
mTORC2/Akt/SGK1 and other enzymes to control iNKT cell
effector lineage fate decision.
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