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Both neural activities and psychological processes vary over time. Individuals with
interdependent self-construal tend to define themselves and adjust their behaviors
to social contexts and others. The current research tested the hypothesis that
the coordination between interdependent self-construal and neural variability could
predict life satisfaction changes in university freshmen. We integrated resting-state
functional magnetic resonance imaging scanning and self-construal assessment to
estimate self-dependent neural variability (SDNV). In the whole-brain prediction, SDNV
successfully predicted individuals’ life satisfaction changes over 2 years. Interdependent
individuals with higher neural variability and independent individuals with lower neural
variability became more satisfied with their lives. In the network-based prediction, the
predictive effects were significant in the default mode, frontoparietal control, visual and
salience networks. The important nodes that contributed to the predictive models were
more related to psychological constructs associated with the social and self-oriented
functions. The current research sheds light on the neural and psychological mechanisms
of the subjective well-being of individuals from a dynamic perspective.

Keywords: life satisfaction, neural variability, interdependence, default mode network, self-construal

INTRODUCTION

Life satisfaction, the cognitive component of subjective well-being (Andrews and Withey, 1976;
Diener et al., 1985) and an important dimension of mental health (Headey et al., 1993), is based
on a general evaluation of the life situations of individuals according to their own standards (Shin
and Johnson, 1978; Diener et al., 1985). Life satisfaction has been strongly associated with positive
and advantageous outcomes, including more social support, more positive social relationships,
and better academic and work performance (Diener and Seligman, 2002; Guney, 2009; Erdogan
et al., 2012). The neural substrates of life satisfaction have been studied from a static perspective
(Kong et al., 2015a,c; Kim et al., 2016). In a resting-state functional magnetic resonance imaging
(rs-fMRI) study, life satisfaction was positively correlated with the regional fractional amplitude
of low frequency fluctuations (fALFF) in the left postcentral gyrus, bilateral posterior superior
temporal gyrus, and left planum temporale but negatively correlated with the fALFF in the
bilateral superior frontal gyrus (Kong et al., 2015c). In a structural magnetic resonance imaging
study, the regional gray matter volume (rGMV) in the right parahippocampal gyrus positively
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predicted life satisfaction, whereas the rGMV in the left
ventromedial prefrontal cortex and left precuneus negatively
predicted life satisfaction (Kong et al., 2015a). However, life
satisfaction changes over time and is based on different trends
among individuals (Mroczek and Spiro, 2005; Hope et al., 2014).
Thus, it is necessary to investigate the neural mechanism of life
satisfaction from a dynamic perspective.

Apart from psychological processes, neural activities also
vary over time. Neural dynamics are shown on different
temporal and spatial scales. Over time, neuroplasticity, which
involves changes in the structures and functions of the brain
to adapt to the environment, describes neural dynamics in
the long term. Neuroplasticity is associated with sensory and
cognitive functions, including learning and memory (Münte
et al., 2002; Dayan and Cohen, 2011), as well as mental disorders
(Kalivas and O’Brien, 2008; Lewis and González-Burgos, 2008;
Pittenger and Duman, 2008). Recently, there has been increasing
interest in spontaneous neural fluctuations over short periods
of time, especially dynamic functional connectivity (Hutchison
et al., 2013; Zalesky et al., 2014; Liao et al., 2015; Preti
et al., 2017). Functional connectivity characterizes the functional
interdependence of brain regions (Biswal et al., 1995). In space,
most studies on dynamic functional connectivity have been based
on connectivity patterns across the whole brain at the macroscale
(Allen et al., 2014; Liao et al., 2015; Choe et al., 2017) or between a
pair of regions at the microscale (Chang and Glover, 2010; Zhang
et al., 2018). Zhang et al. (2016) proposed a novel analysis at the
mesoscale, gathering global and local information, which is called
neural variability in the current research. Neural variability is the
temporal variability of functional connectivity between a given
region and all regions across the brain (Zhang et al., 2016).

Neural variability is altered in mental disorders, including
schizophrenia (Guo et al., 2018; Deng et al., 2019; Dong et al.,
2019; Long et al., 2020; Zhang et al., 2016), major depressive
disorder (Hou et al., 2018; Sheng et al., 2018; Chen et al., 2019),
bipolar disorder (Long et al., 2020), attention deficit hyperactivity
disorder (Zhang et al., 2016; Zou and Yang, 2019) and autism
spectrum disorders (Zhang et al., 2016). For instance, in one
study, neural variability in the left inferior occipital gyrus was
stronger in major depressive disorder patients than in healthy
controls (Hou et al., 2018). Recent studies on neural variability
have mainly focused on its predictive effects on the negative side
of mental health (i.e., mental disorders). However, researchers
have also suggested that neural variability might be an indicator
of brain flexibility and adaptability (Zhang et al., 2016), which
might in turn predict positive changes in mental health. We
address this issue in the current research by examining its
predictive effects on life satisfaction changes.

Moreover, social relationships and cultural circumstances play
a role in shaping life satisfaction (Mroczek and Spiro, 2005;
Cheng et al., 2011; Kong et al., 2015b; Zou et al., 2015). For
example, social networks (Lim and Putnam, 2010) and social
support (Heintzelman and Bacon, 2015) were found to be
associated with life satisfaction. These findings imply that life
satisfaction can be modulated by the response to the sociocultural
environment of individuals (Lim and Putnam, 2010). A possible
indicator of the social response is self-construal, which describes

the self-concept from a sociocultural perspective. Self-construal is
the self-definition and interpretation of individuals (Markus and
Kitayama, 1991; Singelis, 1994). Interdependent self-construal,
which is dominant in Eastern collectivistic cultures, defines
the self-according to social contexts and others. Independent
self-construal, which is dominant in Western individualistic
cultures, defines the self as an autonomous and bounded entity
(Markus and Kitayama, 1991). Self-construal modulates various
cognitive/affective processes and their neural substrates (Han and
Humphreys, 2016), including self-reflection (Ma et al., 2014),
autobiographical memory (Wang, 2001), theory of mind (Ray
et al., 2010), empathy (Jiang et al., 2014), and the occurrence
and consequences of social comparison (Kemmelmeier and
Oyserman, 2001; Stapel and Koomen, 2001; White et al., 2006),
which enable individuals to compare their own present life
situations with those of the past and of others, in turn affecting
life satisfaction. Therefore, we hypothesize that self-construal
moderates the relationship between neural variability and life
satisfaction changes.

In addition, given that brain function has been implemented
through systems and networks (Power et al., 2011; Bassett and
Sporns, 2017), the question of which networks contribute to
the prediction is raised. The default mode network is a set of
brain regions whose activity increases during the resting state,
including the medial prefrontal cortex and posterior cingulate
cortex (Raichle et al., 2001). The default mode network is
involved in self-related processes (Qin and Northoff, 2011; Wang
et al., 2013), autobiographical memory (Spreng et al., 2009;
Spreng and Grady, 2010), theory of mind (Spreng et al., 2009;
Spreng and Grady, 2010; Li et al., 2014) and empathy (Li et al.,
2014). Given the important role of the DMN in self-related
processes and social processes, we expected that the DMN would
contribute to the prediction of life satisfaction changes.

In the current research, we hypothesize that self-construal
moderates the relationship between neural variability and life
satisfaction changes. We perform rs-fMRI on university freshmen
to estimate their neural variability. Self-construal is assessed using
the Self-Construal Scale (Singelis, 1994), and life satisfaction
is assessed two times using the Satisfaction with Life Scale
(Diener et al., 1985) to obtain life satisfaction change scores.
Finally, we use the leave-one-out cross-validation method to
model the predictive effects. Specifically, university freshmen
are chosen as the sample since they are experiencing the
transition from adolescence to adulthood, adapting to a new
environment, and developing new academic skills and social
relationships (Boujut and Bruchon-Schweitzer, 2009), which
might give rise to life satisfaction changes (Hope et al., 2014;
Zhou and Lin, 2016).

MATERIALS AND METHODS

Participants
Sixty-one healthy university freshmen (42 males, 19 females,
age = 20.11 ± 2.33 years) participated in the study. Written
informed consent was obtained from all participants before
commencing the studies. All studies were approved by the ethics
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committee of the Department of Psychology at Sun Yat-sen
University. To detect a robust predictive effect [95% confidence
interval (CI) larger than zero] on individualized behavioral
prediction with functional connectivity features, a sample of 60
participants was required (Cui and Gong, 2018).

Behavioral Assessments
Self-Construal
The participants completed the Self-Construal Scale (Singelis,
1994). This scale is divided into two dimensions: an
interdependent subscale and an independent subscale. Each
subscale includes 12 items that are rated on a 7-point Likert
scale (1 = strongly disagree, 7 = strongly agree). Interdependent
self-construal was assessed by subtracting the mean score
on the independent subscale from the mean score on the
interdependent subscale (Figure 1; Luo et al., 2015). Higher levels
of interdependent self-construal indicated more interdependence
in social contexts and others.

Life Satisfaction
The participants completed the Satisfaction with Life Scale
(Diener et al., 1985). This scale includes 5 items that are rated on
a 7-point Likert scale (1 = strongly disagree, 7 = strongly agree).
The participants completed the Satisfaction with Life Scale twice
over an approximately 2-year period: the first assessment was
within the first month after they enrolled in the university, and
the second assessment was approximately 2 years later (mean
interval = 25.8 ± 0.24 months). Life satisfaction change scores
were assessed by subtracting the life satisfaction scale score at
the first assessment from the score at the second assessment. The
life satisfaction change scores of three participants were missing;
thus, they were excluded from the prediction analyses of life
satisfaction change scores. Fifty-eight participants (41 males, 17
females, age = 20.10 ± 2.31 years) remained in the prediction
analyses on life satisfaction changes.

The participants completed a demographic information
survey that included their place of origin (urban-rural: 1 = large
city, 2 = medium-sized city, 3 = small city, 4 = county, 5 = town,
and 6 = village) and the Multigroup Ethnic Identity Measure
(Phinney, 1992).

Data Acquisition
We used a GE Signa MR750 3.0T scanner with a standard
head coil to acquire rs-fMRI data. The resting-state data were
acquired using T2-weighted, gradient-echo, echo-planar imaging
(EPI) sequences with the following parameters: repetition time
(TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle = 90◦, field
of view (FOV) = 240 × 240 mm, matrix = 64 × 64 × 32, spatial
resolution = 3.75 × 3.75 × 5 mm3, slice number = 32, and time
duration = 300 s. The participants were instructed to keep their
eyes open during scanning.

Data Preprocessing
A standard preprocessing procedure was performed on the
resting-state data using the Data Processing Assistant for
Resting-State fMRI (DPARSF) toolbox (Yan and Zang, 2010).
The data of the first five volumes were removed. The

remaining data underwent slice timing and realignment to
correct the time delay of scans and head motion. In the
realignment procedure, no participant was excluded from
the following analyses because all data were within the
criterion of 3.0 mm and 3.0◦ maximum head motion. The
corrected data were registered to Montreal Neurological Institute
(MNI) space with an EPI template. The normalized data
were smoothed with a 4-mm full width at half maximum
(FWHM) Gaussian kernel, detrended, and bandpass filtered
(0.01–0.08 Hz). Finally, nuisance covariates were removed
by multiple regression, including six rigid-body head motion
parameters and the mean time courses of white matter and
cerebrospinal fluid.

Parcellation Scheme and Network
Definition
We used a 264-node atlas (Power et al., 2011) to define nodes
and divided the nodes into 14 networks. The atlas included
the cerebral cortex, subcortical structures and cerebellum. It
contained 264 10-mm-diameter spheres that were defined as
nodes. The center of the nodes was identified through two
methods: meta-analyses based on task data and the mapping
of cortical areas based on resting-state data. The nodes were
divided into 14 networks: the auditory network, cerebellar
network, cingulo-opercular task control network, default
mode network, dorsal attention network, frontoparietal task
control network, hand sensory-somatomotor network, memory
retrieval network, mouth sensory-somatomotor network,
salience network, subcortical network, uncertain network,
ventral attention network, and visual network.

Estimation of Neural Variability
We used the method proposed by Zhang et al. (2016) to estimate
neural variability. The neural variability of a node was defined
as the temporal variability of functional connectivity between the
node and all nodes across the whole brain (Figure 1). Time series
were extracted and split into seven nonoverlapping windows with
a length of 40 s. A previous study suggested that the results with
window lengths of approximately 30–60 s in duration were robust
(Hutchison et al., 2013). Within window i, the 264 × 264 whole-
brain functional connectivity matrix Fi was calculated using
Pearson correlation analysis. The 264× 1 vector Fi,k (i.e., row k or
column k of Fi) represents functional connectivity between node
k and all nodes across the whole brain. For node k, the functional
connectivity vectors in each pair of windows were compared
using Pearson correlation analysis. The correlation coefficients
of all pairs of windows were averaged. The neural variability of
node k was calculated by subtracting the averaged correlation
coefficient from 1. The formula is as follows:

NVk = 1− corrcoef
(
Fi.k, Fj.k

)
, i, j = 1, 2, 3, . . . , 7, i 6= j.

In addition, we estimated neural variability using different
window lengths (window length = 30, 40, and 50 s) to test the
robustness of the predictive effects across window lengths.
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FIGURE 1 | Flow chart of the prediction analysis. The neural variability of a node was the temporal variability of functional connectivity between the node and all
nodes across the whole brain. Interdependent self-construal was the difference in the mean score between the interdependent self-construal subscale and the
independent self-construal subscale. The self-dependent neural variability (SDNV) of a node was the interaction (i.e., dot product) between the neural variability of the
node and interdependent self-construal. The leave-one-out cross-validation method was used to study whether SDNV could predict life satisfaction changes.

Prediction Analysis
Whole-Brain Prediction
The self-dependent neural variability (SDNV) of each node
was defined as the interaction (i.e., dot product) between
the normalized neural variability of the node and normalized
interdependent self-construal. We used the leave-one-out cross-
validation method to study whether SDNV could predict the life
satisfaction change score of a novel individual. The prediction
analysis was divided into the following stages: feature selection,
SDNV strength calculation, model establishment, prediction and
model evaluation. The stages from feature selection to prediction
formed an iteration. In each iteration, one participant was

excluded to serve as the test set, and the remaining participants
served as the training set. The training set established the
predictive models, and the test set evaluated the predictive
models. Because each of the 58 participants was excluded once,
there were 58 iterations.

In the feature selection stage, we performed Pearson
correlation analysis between the SDNV of each node and life
satisfaction change scores in the training set (feature selection
threshold ∝ = 0.05). The nodes whose SDNV was significantly
positively correlated with life satisfaction change scores were
allocated to the positive feature set, and the nodes whose SDNV
was significantly negatively correlated were allocated to the
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negative feature set (feature selection threshold ∝ = 0.05). In
addition, we used different feature selection thresholds (∝ = 0.10,
0.05, 0.01) to test the robustness of the predictive effects across
the feature selection thresholds.

In the SDNV strength calculation stage, the SDNV values of
the positive features or the opposite number of the SDNV values
of the negative features were averaged, resulting in the positive
feature SDNV strength or the negative feature SDNV strength,
and the values of these two strengths were averaged together,
resulting in the total feature SDNV strength. The formulas are
as follows:

Total feature SDNV strength = SDNVkmk,

Positive feature SDNV strength = SDNVkm+k ,

Negative feature SDNV strength = SDNVkm−k ,

Where k indexed the node, mk equaled 1 in the positive feature
set and−1 in the negative feature set.

In the model establishment stage, we used simple linear
regression to construct the relationships between each of the
three SDNV strengths and life satisfaction change scores,
resulting in three models: the total model, positive model, and
negative model. The formulas are as follows:

Total model : Predicted life satisfaction change score

= Slope× Total feature SDNV strength+ Intercept,

Positive model : Predicted life satisfaction change score

= Slope× Positive feature SDNV strength+ Intercept,

Negative model : Predicted life satisfaction change score

= Slope×Negative feature SDNV strength+ Intercept.

In the prediction stage, based on the test set, the same features
as the training set were extracted, and the three SDNV strengths
were substituted in the three models, resulting in a predicted life
satisfaction change score in each model.

In the model evaluation stage, the Pearson correlation
coefficient between the life satisfaction change scores predicted
by each model and the observed life satisfaction change scores
measured by the scale was defined as the predictive power of the
model. Only significantly positive predictive power indicated that
the prediction was successful. When no feature was selected in at
least one iteration, we did not perform the prediction analysis to
maintain the consistency of the iteration number. The nodes that
were selected as features in more than 95% of the iterations were
regarded as important nodes.

The process is presented in Figure 1.

Partial Prediction
To control for the effects of neural variability and interdependent
self-construal, we added the two variables as regressors in the
feature selection stage and in the model establishment stage. In

the feature selection stage, we used multiple regression analysis
instead of Pearson correlation analysis in which SDNV, neural
variability and interdependent self-construal were regressors. The
nodes whose regression coefficient of SDNV was significant were
selected as features. Neural variability strength was calculated
with the same features and in the same way as the SDNV
strength calculation. In the model establishment stage and in
the prediction stage, we used multiple regression analysis instead
of simple linear regression analysis in which SDNV strength,
neural variability strength and interdependent self-construal
were regressors. The predictive power of the three models
indicated the survival of the predictive effects.

Permutation Tests
To further confirm the significance of the predictive effects, we
performed permutation tests. In each permutation, we shuffled
the life satisfaction change scores and reran the prediction
analyses. Permutations were repeated 1,000 times in the three
models. Thus, we generated a null distribution of the predictive
effects for each model. Permutation tests provided evidence of
how likely the predictive effects were observed at random.

Network-Based Prediction
To study the contribution of specific networks, we used the nodes
within each network instead of the nodes across the whole brain
to perform the prediction analyses. In other words, only the
neural variability of within-network functional connectivity was
taken into account. Prediction analyses of the uncertain network
were not performed because the function of the uncertain
network was unspecified or unknown.

Meta-Analytic Decoding
To understand the structural location and psychological function
related to the important nodes in whole-brain prediction
and in network-based prediction, we performed meta-analytic
decoding using the Neurosynth Image Decoder (Yarkoni et al.,
2011). We chose the important nodes in the default mode
network to represent the network-based prediction. We pooled
the important nodes or the remaining nodes together as a
map and generated four maps: the important nodes in the
whole-brain prediction, the remaining nodes in the whole-
brain prediction, the important nodes in the default mode
network-based prediction, and the remaining nodes in the default
mode network-based prediction. The Neurosynth Image Decoder
enabled us to compare each map to meta-analytic images related
to various psychological constructs in the Neurosynth database.

Specificity of the Predictive Effects
We tested the specificity of SDNV or life satisfaction change
scores in the predictive effects.

Effects of Neural Variability or Interdependent
Self-Construal
We tested whether neural variability or interdependent self-
construal could predict life satisfaction change scores. To test
the effects of neural variability, we used neural variability instead
of SDNV to perform the prediction analyses. To test the

Frontiers in Human Neuroscience | www.frontiersin.org 5 June 2021 | Volume 15 | Article 679086

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-679086 June 24, 2021 Time: 18:23 # 6

Fan et al. Neural Variability and Life Satisfaction

effects of interdependent self-construal, we conducted Pearson
correlation analysis between interdependent self-construal and
life satisfaction change scores.

Effects on the Life Satisfaction Score at the First and
Second Assessment
We tested whether SDNV could predict the life satisfaction score
at the first assessment or the life satisfaction score at the second
assessment. We used the score at the first assessment and the
score at the second assessment instead of life satisfaction change
scores to perform the prediction analyses.

Effects on Other Dependent Variables
We tested whether SDNV could predict variables that were
independent of life satisfaction change scores, including the place
of origin (urban-rural, independent objective information) and
ethnic identity (independent subjective values) of individuals.
We used the place of origin or ethnic identity instead of life
satisfaction change scores to perform the prediction analyses.

Effects of Head Motion
We tested whether head motion patterns were correlated
with life satisfaction change scores using Pearson correlation
analysis to exclude the effects of head motion. We used six
rigid-body parameters and framewise displacement to estimate
head motion patterns with the DPARSF toolbox (Yan and
Zang, 2010). The six rigid-body parameters reflected head
motion patterns with reference to the first volume, including
three translation parameters and three rotation parameters.
We calculated the maximum absolute value of each parameter
for each participant, resulting in six parameters. We used
all six parameters, the maximum of the six parameters, the
maximum of the three translation parameters, the maximum of
the three rotation parameters, the sum of the six parameters,
the sum of the three translation parameters, and the sum of
the three rotation parameters to conduct correlation analyses.
Framewise displacement reflected frame-to-frame head motion
patterns. We used mean framewise displacement to conduct
correlation analyses.

Leave-Two-Out Prediction
We used the leave-two-out cross-validation method to examine
the accuracy of the predictive effects. In each iteration, two
participants were excluded as the test set, and the remaining
participants composed the training set. Because each pair of
participants was excluded once, except for the pairs with the
same life satisfaction change score, there were 1,548 iterations.
In the prediction stage, we obtained a predicted life satisfaction
change score in each model for each of the two participants in
the test set. The two predicted life satisfaction change scores and
the two observed scores were compared. The accuracy of the
iteration was 1 when the results of the two comparisons were
consistent; otherwise, the accuracy was 0. In the model evaluation
stage, the mean accuracy of all iterations was defined as the
predictive power. The other procedures were similar to those
of the leave-one-out prediction. We compared the leave-two-out
prediction results with a random binomial distribution to test the

effectiveness of the prediction (see the Supplementary Results
and Supplementary Figure 1).

RESULTS

Whole-Brain Prediction
Self-dependent neural variability successfully predicted life
satisfaction change scores in the total model (r = 0.41, p = 0.001,
Figure 2A) and in the positive model (r = 0.40, p = 0.002).
However, SDNV failed to predict life satisfaction change scores
in the negative model (r = 0.13, p = 0.335). The results indicate
that self-construal moderated the relationship between neural
variability and life satisfaction changes. The results were robust
across manipulations of feature selection thresholds (∝ = 0.10,
0.05, 0.01) and window lengths (window length = 30, 40, and 50 s)
(Supplementary Figures 2–4 and the Supplementary Results).

To control for the effects of neural variability and
interdependent self-construal, we added the two variables
as regressors in the feature selection stage and in the model
establishment stage. SDNV remained predictive of life
satisfaction change scores in the total model (r = 0.38, p = 0.003)
and in the positive model (r = 0.37, p = 0.004), whereas the
predictive effect was still not significant in the negative model
(r = 0.08, p = 0.538). The results suggest that the predictive
effects were robust after controlling for neural variability and
interdependent self-construal.

To further confirm the significance of the predictive effects,
we performed permutation tests. In the total model and the
positive model, the observed predictive power significantly
differed from the predictive power in the null distribution (total
model: p < 0.001; positive model: p < 0.001, Figure 2B).
In the negative model, the observed predictive power did
not significantly differ from the predictive power in the null
distribution (p = 0.138).

We conducted a simple effects analysis using the mean
neural variability of important nodes to examine the relationship
between neural variability and life satisfaction change scores
in individuals with high interdependent self-construal (M+SD)
and in those with low interdependent self-construal (M-SD).
Neural variability was positively correlated with life satisfaction
change scores [b = 1.40, SE = 0.42, p = 0.002, 95% CI = (0.56,
2.24), Figure 2C] in interdependent individuals (mean = 1.05)
but negatively correlated with life satisfaction change scores
[b = −1.14, SE = 0.31, p < 0.001, 95% CI = (−1.77, −0.51)] in
independent individuals (mean = −0.98). The results indicate
that interdependent individuals with higher neural variability
and independent individuals with lower neural variability
became more satisfied with their lives. We also conducted a
simple effects analysis using the node whose SDNV was most
correlated with life satisfaction change scores and found the
same patterns of results (Supplementary Figure 5 and the
Supplementary Results).

Network-Based Prediction
In the whole-brain prediction, there were 101 important nodes
in total, among which 98 nodes were included in the positive
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FIGURE 2 | Results of whole-brain prediction. (A) The predictive power (correlation between predicted life satisfaction change scores and observed life satisfaction
change scores) of the total model (left, dark gray), positive model (middle, red) and negative model (right, blue). (B) The results of permutation tests in the total model
(left, dark gray), positive model (middle, red) and negative model (right, blue). The black arrow indicates the observed predictive power in the three models. The light
gray bar indicates the permutations in which no feature was selected in at least one iteration. (C) The simple effects of whole-brain prediction. (D) The location of
important nodes (the nodes that were selected as features in more than 95% of the iterations) in the positive feature set (red) and in the negative feature set (blue).
(E) The distribution of important nodes in the default mode network (red), memory retrieval network (gray), visual network (blue), uncertain network (striated),
frontoparietal task control network (yellow), cingulo-opercular task control network (purple), dorsal attention network (green), subcortical network (brown), salience
network (black), hand sensory-somatomotor network (cyan), ventral attention network (teal), mouth sensory-somatomotor network (orange), auditory network (pink)
and cerebellar network (pale blue). The dark colors indicate the important nodes, and the light colors indicate the remaining nodes. The networks were ranked by the
percentage of the number of important nodes out of all nodes in each specific network.

feature set and three nodes were included in the negative feature
set (Figure 2D). The important nodes were mainly distributed in
the default mode network (n = 36), visual network (n = 16) and
frontoparietal task control network (n = 10) (Figure 2E). We also
calculated the percentage of the important nodes in each of the
14 networks. The percentage of important nodes was the highest
in the default mode network (62.1%, Figure 2E), suggesting the
important role of this network in predicting individuals’ life
satisfaction change scores.

To study the contribution of each network (except for the
uncertain network), we used the nodes within the network
instead of the nodes across the whole brain to perform the
prediction analyses. SDNV significantly predicted life satisfaction
change scores in the default mode network (r = 0.48, p < 0.001,
Figures 3A,B), frontoparietal task control network (r = 0.38,
p = 0.004), visual network (r = 0.32, p = 0.014) and salience
network (r = 0.31, p = 0.018) in the positive model. Except for
the total model of the salience network (r = 0.28, p = 0.033),
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FIGURE 3 | Results of network-based prediction. (A) The predictive power of the positive model in the default mode network (red), frontoparietal task control
network (yellow), visual network (blue) and salience network (black). (B) The location of important nodes in the default mode network (red), frontoparietal task control
network (yellow), visual network (blue), salience network (black) and the remaining nodes (gray) in the four networks. (C) The simple effects of the network-based
prediction in the four networks.

in the total model or in the negative model, no feature was
selected in at least one iteration, and therefore, prediction analysis
was not performed. The predictive effects of the remaining
networks did not survive false discovery rate (FDR) correction
(Supplementary Table 1). These results further confirmed that
the default mode, frontoparietal task control, visual, and salience
networks contributed to the prediction. The results of the default
mode network were robust across feature selection thresholds
(see the Supplementary Results).

Neural variability within the default mode network,
frontoparietal task control network, visual network, and

salience network was positively correlated with life satisfaction
change scores in interdependent individuals [default mode
network: b = 1.12, SE = 0.35, p = 0.002, 95% CI = (0.42,
1.82); frontoparietal task control network: b = 1.21, SE = 0.39,
p = 0.003, 95% CI = (0.43, 1.99); visual network: b = 0.77,
SE = 0.31, p = 0.015, 95% CI = (0.15, 1.39); salience network:
b = 0.40, SE = 0.30, p = 0.180, 95% CI = (−0.19, 0.99)] but
negatively correlated with life satisfaction change scores in
independent individuals [default mode network: b = −1.23,
SE = 0.28, p < 0.001, 95% CI = (−1.79, −0.67); frontoparietal
task control network: b = −1.23, SE = 0.29, p < 0.001, 95%
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FIGURE 4 | Results of meta-analytic decoding. (A) The psychological constructs related to the important nodes (red) and the remaining nodes (blue) in the
whole-brain prediction. (B) The brain structures related to the important nodes (red) and the remaining nodes (blue) in the whole-brain prediction. (C) The
psychological constructs and brain structures related to the important nodes (red) and the remaining nodes (blue) in the default mode network-based prediction.

CI = (−1.81, −0.65); visual network: b = −0.57, SE = 0.24,
p = 0.019, 95% CI = (−1.05,−0.10); salience network: b =−1.02,
SE = 0.25, p < 0.001, 95% CI = (−1.52, −0.52); Figure 3C].
The results show that interdependent individuals with higher
neural variability and independent individuals with lower neural
variability in these four networks became more satisfied with
their lives. The implications of network-based prediction further
confirmed the implications of whole-brain prediction. We also
conducted a simple effects analysis using the node whose SDNV
was most correlated with life satisfaction change scores and
found the same patterns of results (Supplementary Figure 6 and
the Supplementary Results).

Meta-Analytic Decoding
To understand the structural location and psychological function
related to the important nodes in the whole-brain prediction
and in the network-based prediction, we decoded the map
of the important nodes or the remaining nodes in the two
prediction analyses using the Neurosynth Image Decoder
(Yarkoni et al., 2011).

In the whole-brain prediction, the important nodes were
more related to psychological constructs associated with the
social function than the remaining nodes, including self-
referential, face recognition, mentalizing, theory of mind
and social, whereas the remaining nodes were more related
to psychological constructs associated with the sensory and
cognitive functions, including somatosensory, sensorimotor, task
difficulty, pain and language (Figure 4A). In addition, the
important nodes were mainly located in the posterior cingulate,
medial prefrontal, occipital gyrus and anterior cingulate, whereas
the remaining nodes were mainly located in the somatosensory
cortex, sensorimotor cortex, anterior insula, and temporal
gyrus (Figure 4B).

In the default mode network-based prediction, the important
nodes were more related to psychological constructs and brain
structures associated with social and self-oriented functions
and structures, including autobiographical, self-referential,
theory of mind, the medial prefrontal, and the posterior
cingulate, whereas the remaining nodes were more related to
psychological constructs and brain structures associated with
cognitive and other-oriented functions and structures, including

linguistic, dorsal attention, angular and the temporoparietal
junction (Figure 4C).

Specificity of the Predictive Effects
To test whether the predictive effects were specific for SDNV,
we used neural variability or interdependent self-construal to
perform the prediction analyses or Pearson correlation analysis,
respectively. Neural variability failed to predict life satisfaction
change scores in the total model (r = −0.46, p < 0.001), positive
model (r = −0.36, p = 0.005) and negative model (r = −0.26,
p = 0.048). Interdependent self-construal was not significantly
correlated with life satisfaction change scores (r = 0.13, p = 0.314).
The results illustrate that neither neural variability nor self-
construal could predict life satisfaction change scores.

To test whether the predictive effects were specific for the life
satisfaction change scores, we used the life satisfaction score at
the first assessment or the life satisfaction score at the second
assessment to perform the prediction analyses. SDNV failed to
predict the life satisfaction score at the first assessment (total
model: r = 0.10, p = 0.458; positive model: r = 0.21, p = 0.102;
negative model: r = 0.09, p = 0.520) and at the second assessment
(total model: r = −0.06, p = 0.658; positive model: r = −0.07,
p = 0.622; negative model: r = 0.11, p = 0.415).

We also tested whether SDNV could predict individuals’
place of origin (urban–rural, independent objective information)
or ethnic identity (independent subjective values), which were
independent of life satisfaction change scores. SDNV failed to
predict individuals’ place of origin (total model: r = −0.25,
p = 0.060; positive model: r =−0.12, p = 0.367) or ethnic identity
(total model: r = 0.02, p = 0.850; positive model: r = 0.02,
p = 0.855). In the negative model of the two prediction analyses,
no feature was selected in at least one iteration, so the prediction
analyses were not performed. The results illustrate that the
predictive effects were specific for life satisfaction change scores.

To exclude the effects of head motion, we conducted Pearson
correlation analyses between the head motion parameters (six
rigid-body parameters and framewise displacement) and life
satisfaction change scores. Neither the six rigid-body parameters
nor framewise displacement were significantly correlated with life
satisfaction change scores (Supplementary Table 2). The results
illustrate that the head motion patterns were not predictive of life
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satisfaction change scores; thus, the confounding effects of head
motion were excluded.

DISCUSSION

In the current research, we examine the hypothesis that
self-construal moderates the relationship between neural
variability and life satisfaction changes in university freshmen.
Interdependent individuals with higher neural variability and
independent individuals with lower neural variability become
more satisfied with their lives. The default mode network
contributes to the prediction. The predictive effects are robust
(i.e., across window lengths and feature selection thresholds) and
generalize to novel individuals.

We find that SDNV predicts life satisfaction changes.
The results demonstrate that SDNV is an effective indicator
of subjective well-being. Previous brain imaging studies on
subjective well-being have been based on traditional static
indicators, including neural activation (Urry et al., 2004; Kong
et al., 2015c) and functional connectivity (Li et al., 2020; Luo
et al., 2016), ignoring the dynamic nature of neural activities. In
the current research, neural variability, the temporal variability
of regional functional architecture (Zhang et al., 2016), is used
to reveal the neural mechanism of subjective well-being from a
dynamic perspective. In addition, the current research shows that
neural variability can predict not only mental disorders (Hou
et al., 2018; Long et al., 2020; Zhang et al., 2016) but also positive
changes in mental health (i.e., life satisfaction changes), which
expands relevant studies to a new domain.

Specifically, interdependent individuals with higher neural
variability and independent individuals with lower neural
variability become more satisfied with their lives. The results
support the culture–behavior–brain (CBB) loop model proposed
by Han and Ma (2015). According to the CBB loop, the social
environment shapes the brain via behavior, and in turn, the
brain leads behavior to adapt to the social environment. In
other words, the social environment and the brain interact
to influence behavior. University freshmen experience great
changes in their social environment, including their place
of residence and interpersonal relationships (Boujut and
Bruchon-Schweitzer, 2009). Adaptation to the new social
environment is vital to subjective well-being (Bailey and
Phillips, 2016; Zhou and Lin, 2016). Self-construal reflects the
response to the social environment of individuals (Markus
and Kitayama, 1991). Interdependent individuals emphasize
flexibility across different social contexts (Cheng et al., 2011),
whereas independent individuals value self-consistency (Suh,
2002). When interdependent individuals have a flexible brain
(i.e., high neural variability) or independent individuals have a
stable brain (i.e., low neural variability), their social response
matches the functional organization of their brain, which
enables them to spend less time and effort adapting to
the new social environment, which in turn increases their
life satisfaction. In the current research, we find that self-
construal moderates the relationship between neural variability
and life satisfaction changes in Chinese university freshmen.

Future studies may test whether the predictive effects can
generalize to other social environments, such as new jobs
or other cultures.

Moreover, the default mode network contributes to the
prediction of life satisfaction changes. The default mode network
is involved in social processes and overlaps the social network
in structures and functions (Rilling et al., 2008; Mars et al.,
2012; Li et al., 2014). The default mode network shows neural
activation and within-network functional connectivity during
autobiographical memory, prospection and theory of mind tasks
(Spreng and Grady, 2010). Thus, the default mode network is
involved in reflecting the past and the future of oneself and
mentalizing the mind of others. It provides individuals with
the neural and psychological basis to evaluate their present life
situations and to compare with others, which affects subjective
well-being (Hagerty, 2000). The results of our meta-analytic
decoding based on whole-brain prediction support the important
role of social processes in the prediction of life satisfaction
changes. In addition, the results of our meta-analytic decoding
based on default mode network prediction show that self-
oriented functions and structures are related to the prediction,
specifically the medial prefrontal cortex and posterior cingulate
cortex. The medial prefrontal cortex and posterior cingulate
cortex are involved in various domains (e.g., memory, emotional,
and social) of self-referential processes (Northoff et al., 2006).
The neural patterns of the two regions distinguish the self from
others and differentiate various dimensions (i.e., mental, physical,
and social) of self-knowledge (Feng et al., 2018). Specifically, the
medial prefrontal cortex is involved in the representation and
evaluation of self-referential information, whereas the posterior
cingulate cortex is involved in the integration of self-referential
information in the personal context (Northoff and Bermpohl,
2004) and provides further support for the general self-evaluation
of life satisfaction. Our results demonstrate that social processes,
especially self-oriented processes, play an important role in the
prediction of life satisfaction changes.

The current study examines the predictive effects in Chinese
culture, where interdependent self-construal is dominant and
adaptive (Markus and Kitayama, 1991). A previous study has
shown that the relationships between self-construal and life
satisfaction vary with culture (Cheng et al., 2011). Future studies
may test whether the predictive effects can generalize to other
cultures, including Western cultures, where independent self-
construal is dominant. Furthermore, university freshmen are
chosen as the sample since they are experiencing an important
transition under a highly variable environment, and future
studies may test whether the predictive effects can be applied to a
less variable environment. In addition, the Satisfaction with Life
Scale (Diener et al., 1985) is used to measure life satisfaction,
which assesses overall life satisfaction. Future studies may test
whether the predictive effects can be applied to different domains
(i.e., finance, friendship, and health) of life satisfaction using
various assessments (Michalos, 1980). Finally, the current study
examines the predictive effects on changes in life satisfaction.
Given that neural variability is an effective indicator of various
mental disorders (Hou et al., 2018; Long et al., 2020; Zhang
et al., 2016), future studies should test whether neural variability
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can predict the recovery or deterioration of mental disorders in
a clinical sample (i.e., patients with major depressive disorder,
schizophrenia, and attention deficit hyperactivity disorder) or
changes in negative mood in a subclinical sample.

In conclusion, SDNV predicts life satisfaction changes in
university freshmen. Interdependent individuals with higher
neural variability and independent individuals with lower neural
variability become more satisfied with their lives. The current
research sheds light on the neural mechanism of life satisfaction
from a dynamic perspective and complements previous findings.
Furthermore, the current research has important implications
for gaining deeper insight into the adaptation and subjective
well-being of university freshmen.
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