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Abstract

Eastern Equine Encephalitis (EEE) is an arbovirus that, while it has been known to exist

since the 1930’s, recently had a spike in cases. This increased prevalence is particularly

concerning due to the severity of the disease with 1 in 3 symptomatic patients dying. The

cause of this peak is currently unknown but could be due to changes in climate, the virus

itself, or host behavior. In this paper we propose a novel multi-season deterministic model of

EEE spread and its stochastic counterpart. Models were parameterized using a dataset

from the Florida Department of Health with sixteen years of sentinel chicken seroconversion

rates. The different roles of the enzootic and bridge mosquito vectors were explored. As

expected, enzootic mosquitoes like Culiseta melanura were more important for EEE persis-

tence, while bridge vectors were implicated in the disease burden in humans. These models

were used to explore hypothetical viral mutations and host behavior changes, including

increased infectivity, vertical transmission, and host feeding preferences. Results showed

that changes in the enzootic vector transmission increased cases among birds more drasti-

cally than equivalent changes in the bridge vector. Additionally, a 5% difference in the bridge

vector’s bird feeding preference can increase cumulative dead-end host infections more

than 20-fold. Taken together, this suggests changes in many parts of the transmission cycle

can augment cases in birds, but the bridge vectors feeding preference acts as a valve limit-

ing the enzootic circulation from its impact on dead-end hosts, such as humans. Our what-if

scenario analysis reveals and measures possible threats regarding EEE and relevant envi-

ronmental changes and hypothetically suggests how to prevent potential damage to public

health and the equine economy.

Introduction

Eastern Equine Encephalitis (EEE) is an emerging arbovirus threat. While it was discovered in

1933, cases have remained low in number and relatively limited in geography to eastern and

southern coastal areas of the United States [1]. But, in 2019 there was a spike in cases from

around 11 yearly to 38 [2]. This peak could be due to changes in climate, weather, human

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0272130 August 17, 2022 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Petrucciani A, Yu G, Ventresca M (2022)

Multi-season transmission model of Eastern

Equine Encephalitis. PLoS ONE 17(8): e0272130.

https://doi.org/10.1371/journal.pone.0272130

Editor: Eliseo A Eugenin, University of Texas

Medical Branch at Galveston, UNITED STATES

Received: March 18, 2022

Accepted: July 12, 2022

Published: August 17, 2022

Copyright: © 2022 Petrucciani et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data cannot be

shared publicly because the right of data sharing or

publication belongs to the Florida Department of

Health. Data underlying the results presented in the

study are available from the Florida Department of

Health (https://www.floridahealth.gov/ contact via

Dr. Morrison, andrea.morrison@flhealth.gov) for

researchers who meet their criteria for access.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-8294-6155
https://orcid.org/0000-0002-4394-0022
https://orcid.org/0000-0002-1246-297X
https://doi.org/10.1371/journal.pone.0272130
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272130&domain=pdf&date_stamp=2022-08-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272130&domain=pdf&date_stamp=2022-08-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272130&domain=pdf&date_stamp=2022-08-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272130&domain=pdf&date_stamp=2022-08-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272130&domain=pdf&date_stamp=2022-08-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272130&domain=pdf&date_stamp=2022-08-17
https://doi.org/10.1371/journal.pone.0272130
http://creativecommons.org/licenses/by/4.0/
https://www.floridahealth.gov/
mailto:andrea.morrison@flhealth.gov


behaviors, or behaviors of other hosts and vectors [3]. EEE generally circulates from spring

until fall, and mainly between Culiseta melanura mosquitoes and birds, but is occasionally

transmitted through a bridge vector to hosts like humans and horses, as shown in Fig 1 [2]. Ae.
albopictus [4], Oc. j. japonicus [5], Cq. perturbans [6], and Cx. erraticus [7] are known species

that can serve as bridge vectors of EEEV.

While the proportion of asymptomatic cases is uncertain, it is estimated that a majority of

people who are infected with EEE remain asymptomatic [3]. One small study of the 1959 EEE

outbreak in New Jersey suggests less than 5% of those infected develop overt disease of the cen-

tral nervous system [8]. Of those that are symptomatic there is a 33 percent fatality rate [3],

and many of those that survive symptomatic infection have permanent neurological damage.

There is no approved human vaccine, preventative medicine, or treatment for EEE, meaning

interventions must rely on non-pharmaceutical interventions and supportive treatment.

Potential interventions recommended by the CDC include bug spray, wearing long sleeves

and pants, and removing stagnant water [2]. These strategies are targeted at decreasing bites

and reducing mosquito populations. The deadly nature of the disease, the recent unexplained

spike in cases, and the lack of curative care, necessitates a better understanding of the transmis-

sion dynamics of EEE and potential consequences if they change and become more dangerous

to humans.

While transmission models of other vector-transmitted viruses can be applied to EEE, we

are currently aware of only two. One approach focuses on the feeding preferences of Cs. mela-
nura on different bird species using an Susceptible-Infected-Removed (SIR) bird and Suscepti-

ble-Infected (SI) mosquito model simulated over the course of 180 days [9], finding the Wood

Thrush to be an important spreader in Connecticut. The other examines the impact of young-

of-the-year (YOY) on transmission over a single season [10]. YOY in this study corresponded

to birds younger than 120 days, which are more often successfully fed on by mosquito vectors

and more quickly develop higher viral titers. This work suggests that in Alabama YOY are an

important driver of EEE transmission. We have yet to find a multi-season and multiyear

model of EEE, and we determine that Florida is a good place to base a multi-season model

because there is evidence of year round transmission [11], so the question of over-wintering is

less confounding. With a multiyear model, yearly variations may be understood better and the

impacts of any viral, host, or environmental changes can be explored on a longer time scale.

One concern for the future of EEE is its mutation, especially with the current backdrop of

rapid Covid-19 mutations [12–14]. EEE is a Toga virus, which is a family of positive-sense sin-

gle-stranded RNA viruses that includes Chikungunya and Zika, for instance. RNA viruses,

Fig 1. The transmission pathway of EEE. The transmission pathway of EEE consists mainly of a cycle between the enzootic vectors,

mainly Culiseta melanura, and amplifying hosts, which include many species of birds. Occasionally, transmission through a bridge

vector will cause disease in dead-end hosts like humans and horses [2].

https://doi.org/10.1371/journal.pone.0272130.g001
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especially +ssRNA viruses, are known to have very high mutation rates, due in part to the

error-prone RNA-dependent RNA polymerase that copies their genome [15]. In a recent

review of genetic determinants of arboviruses, many Chikungunya mutations were identified

[16]. These 4 mutations included those that caused enhanced fitness in 2 separate mosquito

species and increased transovarial or vertical transmission. Due to the close relationship

between Chikungunya and EEE it is plausible that equivalent mutations could appear in EEE.

The genetic variation of EEE isolates suggests that it has a mutation frequency similar to other

RNA viruses, although it has a slower observed rate of evolution in nature [17]. This low

observed mutation rate is thought to be due to the strong selection pressure from a transmis-

sion cycle that requires alternating hosts [18]. However, rapid evolution has been shown to be

possible in cell culture [18]. Beyond this, natural variation in EEE virus has been observed,

especially over geographically distant isolates [17, 19, 20]. Some of these genetic differences

have been associated with changes in virulence [19, 20]. Mutations have also been introduced

to EEE with the goal of making attenuated virus for vaccine development [21–24]. These are

targeted mutations with the goal of decreasing virulence. Although the rate of evolution is

slower in EEE than other RNA viruses, genetic variation and mutations that impact virulence

are possible even in nature. Other concerning aspects include the impact of climate change on

mosquito populations, the encroachment of humans on wetland regions where EEE has histor-

ically circulated, and the possibility of EEE circulating in new mosquito vectors. The numerous

possible changes in geographical spread, climate, mosquito behavior, or viral mutations that

can impact transmission of EEE along with its deadly, untreatable nature make EEE a potential

threat that requires preemptive attention.

In this work, we propose a new multi-season transmission model of EEE, and use this

model to explore the impacts of potential viral, host, and environmental changes on the

dynamics of EEE spread. After introducing deterministic and stochastic model structures, sen-

tinel chicken data is used to calibrate model parameters. The models are then characterized

using R0, extinction probabilities, and sensitivity analysis. Finally, parameters and models’

structures are adjusted to explore three what-if scenarios and their impacts on EEE

transmission.

Methods

Mathematical models are used to understand the transmission of infectious diseases in popula-

tions and to evaluate the potential impact of control programs in reducing morbidity and mor-

tality. We formulate a deterministic model to analyze transmission dynamics and an

analogous stochastic epidemic model using a continuous-time Markov Chain. Both models

provide actionable information in terms of controlling disease spread and intervention tech-

niques. Employing both models allows us to use a wider variety of analytical techniques

because such techniques are designed to work well with one but not with the other. For exam-

ple, we cannot run a bootstrapping method without having a stochastic model.

Deterministic model

A deterministic compartmental model was built on the complex interactions between birds,

two types of mosquito vectors, and the dead-end hosts. This transmission pattern as it is cur-

rently understood is displayed in Fig 1. The schematic of the model is shown in Fig 2, with

parameters as outlined in S2 Appendix.

Although there are different species of mosquitoes with various feeding behaviors, we sim-

plify the model by assuming that there exist only two types (enzootic vector and bridge vector)

of mosquitoes with significantly different host preferences. This is because the role of the
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enzootic vector in circulating EEEV in amplifying host population is important in understand-

ing the disease dynamics of EEEV, whereas the bridge vector is more likely to play the role of

infecting dead-end hosts. We assume that bridge vectors mainly feed on mammals and less com-

monly feed on birds based on the previous studies on host preference of mosquito species [25–

27]. Previous studies of blood meal analysis of Aedes species show mammal to avian ratios of

83:7 (Ae. albopictus [27]), 71:9 (Ae. triseriatus [27]), 87:6 (Ae. vexans [27]), and 80:11 (Ae. vexans
[25]). This host preference is reflected by setting βH = 9 × βBM. This is in contrast to the host

preference of major enzootic vector species, Cx. melanura, which takes more than 90% of it’s

meals from avian sources (97–99% [28], 98.9% [29], 91.3% [30]). Further, we assume that enzo-

otic vectors only feed on birds based on the reported extreme host preference ratios [28–30].

Seasonal forcing was applied to mosquito’s birth rates with a 1-year period, because the onset

of the mosquito season is typically when the average temperature reaches 50˚F and standing

water is prevalent. In many locations in the US, this occurs in early June and continues until

November. Warmer areas, such as southern Florida, have mosquitoes breeding almost all year

round, but there is a marked increase in population size once a year [31]. The magnitude param-

eters (σC and σM) and the peak location parameters (θC and θM) of seasonal forcing in the two

different mosquito groups’ birth rates are assumed independent, following Wilke et al.’s study

that suggests species have unique seasonality patterns in Florida. Also, Blosser et al. report that

Culiseta melanura’s seasonal peak was observed in March and April in Florida in 2015, which is

significantly earlier than other species’ peaks in Florida [31, 32]. According to Wilke et al., most

of the mosquito species in Florida were most abundant in August or November in 2016, 2017,

and 2018. Note that if σC = σM = 0 the seasonality disappears.

Model structure. The ODE system in Eqs (1a)–(1k) shows the proposed deterministic

model for EEE.

ðEnzooticÞ

d
dt

SC ¼ bC 1þ sC sin
2pt
T
� yC

� �� �

NC � aCbBC
IB
NB

SC � dCSC ð1aÞ

d
dt

IC ¼ aCbBC
IB
NB

SC � dCIC ð1bÞ

8
>>><

>>>:

Fig 2. Schematic of the EEE transmission model with seasonal forcing.

https://doi.org/10.1371/journal.pone.0272130.g002
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ðBridgeÞ

d
dt

SM ¼ bM 1þ sM sin
2pt
T
� yM

� �� �

NM � aMbBM
IB
NB

SM � dMSM ð1cÞ

d
dt

IM ¼ aMbBM
IB
NB

SM � dMIM ð1dÞ

8
>>><

>>>:

ðBirdsÞ

d
dt

SB ¼ bBNB � aBCbBC
SB
NB

IC � aBMbBM
SB
NB

IM � dBSB ð1eÞ

d
dt

IB ¼ aBCbBC
SB
NB

IC þ aBMbBM
SB
NB

IM � dBIB � gBIB � dBIB ð1fÞ

d
dt

RB ¼ gBIB � dBRB ð1gÞ

8
>>>>>>><

>>>>>>>:

ðHostsÞ

d
dt

SH ¼ � aHbH
SH
NH

IM ð1hÞ

d
dt

AH ¼ ð1 � pÞaHbH
SH
NH

IM � �AH � g2AH ð1iÞ

d
dt

IH ¼ paHbH
SH
NH

IM þ �AH � g1IH � dHIH ð1jÞ

d
dt

RH ¼ g1IH þ g2AH ð1kÞ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

For both species of mosquitoes (enzootic and bridge), two compartments were defined, sus-

ceptible (SC or SM) and infectious (IC or IM), assuming that vectors do not recover from the dis-

ease. Birds have 3 compartments susceptible (SB), infectious (IB), and recovered (RB). Births

and deaths were incorporated for mosquitoes and birds, but not dead-end hosts, because the

lifespans were short relative to the length of simulations. For dead-end hosts, compartments

were defined as susceptible (SH), asymptomatic infected (AH), infected with symptoms (IH),

and recovered/removed (RH). The meanings, units, and fitted values of all parameters is

shown in Table 1 in S2 Appendix. One unit of time variable t represents a day accordingly and

T denotes a year.

Stochastic model

We also consider a continuous-time Markov chain (CTMC) model for EEE with discrete num-

bers of hosts and vectors. Stochastic variation in the disease spread model is necessary to con-

sider the randomness caused by different sources such as observation noise, unexpected

genotype mutation, and environmental changes. Bartlett pointed out that stochastic fluctua-

tions in disease spread can often be large enough for transmission to be interrupted by stochas-

tic fade-out and deterministic modeling alone cannot explain the disease spread adequately

[33]. Especially, as there are currently few cases of EEE in the US that a stochastic approach is

better suited. This stochastic model can be examined for small outbreaks that die out quickly,

as seen in real-world outbreaks.

Model structure. The deterministic model given in Eqs (1a)–(1k) was converted into a

continuous-time Markov chain process with transition directions and transition rates shown

in Table 1. Eleven discrete-valued random variables are introduced to record the number of

individuals in each compartment. For example, SB is a random variable that tracks the number

of susceptible birds over time.
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Analytic tools

Basic reproduction number. The basic reproduction number (R0) is the expected num-

ber of new infections from one infected individual that is introduced to a wholly susceptible

population. This metric is often used as a threshold value for whether an outbreak will occur

or not. If R0 > 1, the disease can cause an outbreak, otherwise, the disease will likely die out.

An expression for R0 can be obtained from the next generation approach [34]. The next-gener-

ation matrix (NGM) is a square matrix whose ij-th entry is the number of new infections of

type i from one infected individual of type j. Note that there are 5 infectious categories to

account for in our model: IC, IM, IB, AH, and IH. The previously described equations for these

categories can be broken down into two parts: the new infections (F) and the other movement

between compartments (V). Taking the Jacobian matrices of those two parts at the disease-free

equilibrium (DFE) gives us the two components of the NGM. The disease-free equilibrium is

[SC0(t), 0, SM0(t), 0, SB0, 0, 0, SH0, 0, 0, 0] where SC0(t) and SM0(t) are functions of t. That is, SB0

and SH0 are equal to NB0 and NH0, respectively, at the equilibrium.

F ¼

0 0 aCbBC
SC0

SB0

0 0

0 0 aMbBM
SM0

SB0

0 0

aBCbBC aBMbBM 0 0 0

0 ð1 � pÞaHbH 0 0 0

0 paHbH 0 � 0

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

ð2Þ

Table 1. CTMC transition table. CTMC model transitions between states and rates. For each time interval, the number of each event that occurs is sampled from a Pois-

son distribution with the mean of τ times the corresponding transition rate in the table. When a single event occurs, each compartment’s population changes as described

in the ‘Transition’ column.

Species Event Transition Transition Rate

Enzootic Vector Birth ΔSC = 1 bC 1þ sC sin 2pt
T � yC
� �� �

NC

Infection ΔSC = −1, ΔIC = 1 αCβBC(IB/NB)SC
Death (SC) ΔSC = −1 dCSC
Death (IC) ΔIC = −1 dCIC

Bridge Vector Birth ΔSM = 1 bM 1þ sM sin 2pt
T � yM
� �� �

NM

Infection ΔSM = −1, ΔIM = 1 αMβBM(IB/NB)SM
Death (SM) ΔSM = −1 dMSM
Death (IM) ΔIM = −1 dMIM

Amplifying Host Birth ΔSB = 1 bBNB

Infection (from IC) ΔSB = −1, ΔIB = 1 αBCβBC(SB/NB)IC
Infection (from IM) ΔSB = −1, ΔIB = 1 αBMβBM(SB/NB)IM
Recovery (IB) ΔIB = −1, ΔRB = 1 γB
Death (SB) ΔSB = −1 dBSB
Death (IB) ΔIB = −1 (dB + δB)IB
Death (RB) ΔRB = −1 dBRB

Dead-end Host Infection (AH) ΔSH = −1, ΔAH = 1 (1 − p)αHβH(SH/NH)IM
Infection (IH) ΔSH = −1, ΔIH = 1 pαHβH(SH/NH)IM
Transition (AH! IH) ΔAH = −1, ΔIH = 1 ϕAH

Recovery (AH) ΔAH = −1, ΔRH = 1 γ2AH

Recovery (IH) ΔIH = −1, ΔRH = 1 γ1IH
Death (IH) ΔIH = −1 δHIH

https://doi.org/10.1371/journal.pone.0272130.t001

PLOS ONE Multi-season transmission model of Eastern Equine Encephalitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0272130 August 17, 2022 6 / 23

https://doi.org/10.1371/journal.pone.0272130.t001
https://doi.org/10.1371/journal.pone.0272130


V ¼

dC 0 0 0 0

0 dM 0 0 0

0 0 dB þ dB þ gB 0 0

0 0 0 dS þ g2 0

0 0 0 0 g1 þ dH

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð3Þ

The next generation matrix is then calculated as follows:

FV � 1 ¼

0 0
SC0ðtÞaCbBC

SB0ðdB þ dB þ gBÞ
0 0

0 0
SM0ðtÞaMbBM

SB0ðdB þ dB þ gBÞ
0 0

aBCbBC

dC

aBMbBM

dM
0 0 0

0 �
aHbHðp � 1Þ

dM
0 0 0

0
aHbHp
dM

0
�

�þ g2

0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð4Þ

The spectral radius, or largest eigenvalue, of (4) is the basic reproduction number R0(t). Unlike

models without seasonal forcing, the basic reproduction number of our model is a function of

t and its value depends on when the initial infection occurred. To obtain R0 at a random time

of a year, we integrate SC0(t) and SM0(t) to compute �R0, or the annual R0 as follows where �nc
and �nm represent the average population ratios between mosquitoes and hosts:

�R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aCbBC

dC

aBCbBC

dB þ dB þ gB
�nc

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Transmission cycle between
enzootic vector and birds

þ
aMbBM

dM

aBMbBM

dB þ dB þ gB
�nm

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Transmission cycle between
bridge vector and birds

v
u
u
u
u
t ð5Þ

where �nc ¼

R T

0
SC0ðtÞ dt

TSB0
and �nm ¼

R T

0
SM0ðtÞ dt

TSB0
.

SC0ðtÞ=SB0 ¼ cC exp ðbC � dCÞt �
bCsCT cos

2pt
T
� yC

� �

2p

0

B
B
@

1

C
C
A ð6Þ

SM0ðtÞ=SB0 ¼ cM exp ðbM � dMÞt �
bMsMT cos

2pt
T
� yM

� �

2p

0

B
B
@

1

C
C
A ð7Þ
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SC0(t) and SM0(t) can be obtained by solving the following differential equations.

d
dt

SC0ðtÞ ¼ bc 1þ sC sin
2pt
T
� yC

� �� �

SC0ðtÞ � dcSC0ðtÞ ð8Þ

d
dt

SM0ðtÞ ¼ bm 1þ sM sin
2pt
T
� yM

� �� �

SM0ðtÞ � dmSM0ðtÞ ð9Þ

The idea of integrating the seasonal effect terms is originally suggested by Grassly and Fraser

[35]. Their study demonstrated that the basic reproduction number does not apply when there

exists seasonal forcing in diseases dynamics, and propose the average number �R0 at a random

time of the year as an alternative.

Eq (5) is composed of two parts that represent the transmission cycle of enzootic vector and

bridge vector, respectively. Each part is a multiplication of three fractional terms: (a) mosquito

to bird transmission (the number of newly infected mosquitoes per one infected bird divided

by mosquitoes’ removal rate from the infectious compartment:
aCbBC
dC

and
aMbBM
dM

), (b) bird to

mosquito transmission (the number of newly infected birds per one infected mosquito divided

by birds’ removal rate from the infectious compartment:
aBCbBC

dBþdBþgB
and

aBMbBM
dBþdBþgB

), and (c) initial

mosquito-to-bird ratios (

R T

0
SC0ðtÞ dt

TSB0
and

R T

0
SM0ðtÞ dt

TSB0
). The annual mosquito-to-bird ratios are typi-

cally assumed to be greater than 1 in the existing studies [36]. Therefore, if �R0 < 1, then (a) ×
(b)< 0.5/(c), if the parameter sets for the two different vector species are equivalent. As we can

see from the Eq (5), dead-end host parameters and population size are not considered in �R0

computation. That is, dead-end host’s infection does not affect the disease persistence.

Sensitivity analysis. A common importance measure for factors in deterministic models

is the elasticity index (or normalized sensitivity index), which measures the relative change of

R0 with respect to a certain factor x. In this study, we used �R0 instead of R0 to compute each

factor’s elasticity index to calculate the expected importance of each factor over a year as fol-

lows:

e �R0
x ¼

@ �R0

@x
�

x
�R0

ð10Þ

Extinction probability. A Galton-Watson branching process approximation was used to

calculate the extinction probabilities of the stochastic model of Table 1 [37–40]. The infectious

categories are IC, IM, IB, AH, and IH. The first step is to find the offspring probability-generating

functions (PGFs) for each of these 5 categories, assuming that we are near disease-free equilib-

rium. Offspring PGFs will take the following form:

fiðuÞ ¼ Skn
:::Sk1

Piðk1; :::; knÞu
k1
1 :::ukn

n ð11Þ

Note that Pi(k1, . . ., kn) refers to the probability of a type i individual producing an individual

of type kj. For each probability generating function of type i, we assume one infectious
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individual of type i and none of the others. Based on Table 1, we can establish the following

PGFs:

f1ðuÞ ¼
dC þ aBCbBCu1u3

dC þ aBCbBC
ð12aÞ

f2ðuÞ ¼
dM þ aBMbBMu2u3 þ ð1 � pÞaHbHu2u4 þ paHbHu2u5

dM þ aBMbBM þ ð1 � pÞaHbH þ paHbH
ð12bÞ

f3ðuÞ ¼
aCbBCu1u3 þ aMbBMu2u3 þ ðdB þ dB þ gBÞ

aCbBC þ aMbBM þ ðdB þ dB þ gBÞ
ð12cÞ

f4ðuÞ ¼
�u5 þ g2

�þ g2

ð12dÞ

f5ðuÞ ¼
g1 þ dH
g1 þ dH

¼ 1 ð12eÞ

Note that ui refers to the corresponding infectious compartment. For example, u1 corresponds

to the number of infected enzootic vectors; u2, u3, u4, u5 refer to the infected bridge vectors,

infected birds, asymptomatic humans, and symptomatic humans, respectively.

Equations fi have 3 fixed points in [0, 1]5, specifically [1, 1, 1, 1, 1], and 2 more of the form

[q1, q2, q3, q4, q5] where calculating qi is done by setting fi(q1, q2, q3, q4, q5) = qi and solving for

qi. The probability of extinction is then given byPqi0
i , where i0 is the initial number of infected

individuals in category qi. Note that if R0� 1, then the extinction probability equals 1, and

these equations for extinction probability only apply when R0 > 1.

q1 ¼
dC

dC þ ð1 � q3ÞaBCbBC
ð13aÞ

q2 ¼
dM

dM þ ð1 � q3ÞaBMbBM
ð13bÞ

q3 ¼
aCbBCq1q3 þ aMbBMq2q3 þ ðdB þ dB þ gBÞ

aCbBC þ aMbBM þ ðdB þ dB þ gBÞ
ð13cÞ

q4 ¼ q5 ¼ 1 ð13dÞ

By substituting q1 and q2 into q3, we can find q3 which can be substituted back into q1 and q2.

Now, the probability of extinction can be calculated as:

P ¼ qIC0

1 � qIM0

2 � qIB0

3
ð14Þ

Parameter estimation

Data. We fit our model to the sentinel chicken seroconversion data of Florida, collected

by Florida Department of Health [11, 41, 42]. Initial parameter ranges were defined by litera-

ture values when possible, as with mosquito biting rates [43], species composition [44] and

host preference [29, 45]. For some parameters, we utilized the parameter ranges suggested in
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existing arboviral disease literature (e.g West Nile virus, Malaria, Zika, and Chikungunya) as

proxies. For the parameters with no such prior knowledge, we used [0, 1] boundary as they are

probabilities. Detailed information about the parameter ranges and related publications is

given in S2 Appendix.

Model fitting and formulation. We solve a parameter estimation problem using the least

square objective function as follows:

Minimize
~y

XW� 1

w¼0

X7ðwþ1Þ

t¼7w

sðt;~yÞ
SBð7w;~yÞ

� dðwÞ

 !2

ð15aÞ

subject to sðt;~yÞ ¼ aBCbBC
SBðt;~yÞ
NBðt;~yÞ

ICðt;~yÞ þ aBMbBM
SBðt;~yÞ
NBðt;~yÞ

ICðt;~yÞ ð15bÞ

d
dt

SCðt;~yÞ ¼ f1ðt;~y; SC; IC; � � �Þ ð15cÞ

d
dt

ICðt;~yÞ ¼ f2ðt;~y; SC; IC; � � �Þ ð15dÞ

..

.

SCðt0Þ ¼ SCð0Þ; ICðt0Þ ¼ ICð0Þ; � � � ð15eÞ

nlb �

Z T

0

ðNCðtÞ þ NMðtÞÞdt=
Z T

0

NBð0Þdt
� �

� nub ð15fÞ

Zlb �
R T

0
NCðtÞdt=

R T
0
ðNCðtÞ þ NMðtÞÞdt � Zub ð15gÞ

where the observed weekly seroconversion rates are given as d(w) for week w, W and T denote

the number of weeks and days that we have in the seroconversion data, respectively. The for-

mulation (15) minimizes the sum-of-squares error in the weekly seroconversion rates. The

daily additional bird infection is calculated as sðt;~yÞ to express the weekly seroconversion

rates in the simulation as (15b). Constraints (15c)–(15e) formulate the compartmental ODE

system given in (1a)–(1k). The last two constraints (15f) and (15g) define the upper and lower

bounds of the mosquito-to-bird ratio and the ratio of the enzootic vector out of all types of vec-

tors, respectively. To find the parameter set (~y) that minimizes the squared error, we use

sequential quadratic programming combined with basin-hopping method to solve the con-

strained minimization problem [46–48]. The minimization process is started at 10,000 differ-

ent initial points extracted by the Latin hypercube sampling method. The bootstrapping

approach for epidemic models suggested by Chowell is used to quantify the parameter uncer-

tainty [49]. The results of uncertainty quantification can be found in both result section and S3

Appendix.

Parametrization of population ratios. It is known that the mosquito-to-bird population

ratio or the relative population density is difficult to measure because one needs to observe the

two populations at the same time. The mosquito density to bird values vary between existing

studies [36, 50]. The upper and lower limits of the annual mosquito-to-bird ratio is set to 2

and 8 to align with existing literature [51, 52].
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It is also difficult to measure the exact mosquito community composition in an area because

mosquito habitats and feeding behaviors are significantly different by species and therefore

counting results highly depends on the mosquito trap’s location and design [44]. The popula-

tion ratio of the enzootic vector is assumed to be less than 10% (or ηub = 0.1) because there

exist multiple studies commonly reporting the portion of the mosquito species mostly feed on

birds (i.e. Culiseta melanura and Culex territans) in the mosquito community is very small

(smaller than 5%) [42, 44].

To satisfy the two population ratio constraints (15f) and (15g), the initial mosquito-to-bird

population ratio (n0 ¼
SC0þSM0

SB0
) and the initial enzootic-bridge vector population ratio (η0) are

included as parameters. The following equations show how the two parameters η0 and ν0

determine the initial mosquito populations (NC(0) and NM(0)):

NCð0Þ ¼ Z0n0NBð0Þ ð16aÞ

NMð0Þ ¼ ð1 � Z0Þn0NBð0Þ ð16bÞ

Because the disease is first reported before the first day of our observation data set [1], the ini-

tial population ratios for each disease compartment are also parameterized; four population

parameters, rIC ; rIM ; rIB , and rRB
are added to determine the initial population of each compart-

ment as follows:

SCð0Þ ¼ ð1 � rIC ÞNCð0Þ ð17aÞ

ICð0Þ ¼ rICNCð0Þ ð17bÞ

SBð0Þ ¼ ð1 � rIB � rRBÞNBð0Þ ð17cÞ

RBð0Þ ¼ rRBNBð0Þ ð17dÞ

SMð0Þ ¼ ð1 � rIMÞNMð0Þ ð17eÞ

IMð0Þ ¼ rIMNMð0Þ ð17fÞ

IBð0Þ ¼ rIBNBð0Þ ð17gÞ

Results

In this section, we apply different analytic techniques to the deterministic and stochastic mod-

els with a parameter set that is fitted to the seroconversion data to diagnose the current state of

EEE and analyze how it can potentially change. First, we compute �R0 and the extinction proba-

bility to investigate the current impact of EEE. Then, we use the sensitivity analysis to reveal

how much each parameter could potentially change the �R0 of the EEE. At the end of this sec-

tion, we explore three potential changes of EEE: (1) increased infectivity, (2) vertical transmis-

sion, and (3) changed host preference of the bridge vector. We examine these changes using

what-if scenarios because it is not easy to inspect them in detail through sensitivity analysis.
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Simulation and result analysis

First, the deterministic model with the optimized parameter values is simulated by solving the

corresponding ODEs to visually monitor the infectious population changing trend regarding

EEE in different compartments. The details of the used parameter set that can be found in S2

Appendix, and the empirical distributions of each parameter and their confidence intervals

can be found in S3 Appendix. We also simulate the stochastic model using the tau-leaping

algorithm with the time step (τ) equal to 0.1 days, which is a commonly used value for τ in epi-

demiological simulations [53]. for 1,000 instances with the same parameter set to understand

the stochastic outcomes of our model and to estimate the uncertainty of the parameter set by

using the bootstrapping method [53]. It is noteworthy that the deterministic parameterization

would lead to an underestimation of the basic reproductive ratio in the stochastic model

according to Keeling and Rohani. For each time interval, the number of times each event in

Table 1 occurs is taken as a number sampled from a Poisson distribution with the mean equal

to τ multiplied by the transition rate for the event. The variables are updated to reflect the

number of events that occurred, and this process is repeated until the end of the simulated

time. To have stable simulation results for stochastic models, we set the initial population of

the amplifying host at 400, 000 so that the community size is large enough following the sug-

gestive result of Keeling and Grenfell’s study [54]. The simulation results are shown in Fig 3.

�R0 and sensitivity analysis. The fitted deterministic model has �R0 ¼ 1:1445, and Fig 4

shows the empirical distribution of �R0 computed by the bootstrapping method, where the 95%

confidence interval of �R0 is [1.0783, 1.1711]. As expected from the long-lasting existence of

EEEV in the USA, the �R0 value is greater than 1.

�R0’s normalized sensitivities, or elasticity indices to each of the parameters are also calcu-

lated. The sensitivity values shown in Fig 5 represent the ratio of the relative change in �R0 to

the relative change in each parameter. In general, variables that are related to the enzootic vec-

tor compartment (dC; bBC; aC; aBC; �nC) are 3.34 times more sensitive compared to their counter-

parts in the bridge vector (dM; bBM; aM; aBM; �nM). This result is notable because the average

population ratio between enzootic and bridge mosquitoes in the fitted model is about 4:96. So,

even with a much smaller population size, the enzootic vector characteristics have a large

impact on transmission. The result reconfirms that the enzootic vector plays key role in circu-

lating EEE, while bridge vector has a greater role in causing damage to dead-end hosts. The

recovery rate of infected birds (γB) has the 2nd largest elasticity index magnitude among all

parameters tested, which shows the importance of amplifying host’s infection duration in EEE

circulation.

Extinction probabilities. Considering that EEE is an emerging virus with a limited geo-

graphical presence, the introduction of limited number of cases into a susceptible population

is of concern. The success or extinction of these transmissions can be quantified through

extinction probabilities. Using the parameters as solved in the previous section and the extinc-

tion probability function (14), extinction probabilities can be calculated for various initial con-

ditions as shown in Table 2. Note that there are two solutions to q3, but one of the solutions

produced negative and above one probability, which does not have a physical meaning and is

ignored.

One case in the bridge vector population results in the highest probability of extinction at

44.96%. One case in the enzootic vector population results in a 43.02% probability of extinc-

tion, 4.31% lower than one case in the bridge vector. This difference is expected because, while

bridge vectors are more meaningful for human cases, the survival of EEE is dependent on nat-

ural ecological reservoirs. Surprisingly, the probability of extinction found with one case in the

bird population was 31.45%, the lowest probability of a single introduced infection. This could
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be due to the longer lifespan of birds or the fact that they are able to produce multiple types of

infections that aren’t dead-end. This result is concerning due to the annual migration of many

birds. Introducing cases to more than one compartment decreases the probability of extinction

with a single case in all three compartments resulting in only a 6.08% probability of extinction.

What-if scenarios: Hypothetical mutations and environmental changes

We also use the deterministic model that is fitted to the seroconversion data to explore hypo-

thetical situations which are not easy to delve with sensitivity analysis. We evaluate the poten-

tial threats of EEE by simulating genetic mutation and environmental changes and measuring

their impact.

Fig 3. Simulation result. Simulation results of the deterministic model and stochastic model (50 instances). The 1st

plot presents the weekly seroconversion data points (blue) and the simulated seroconversion rates in the two models.

The remaining plots describe the population changes over time in the amplifying host compartment (2nd and 3rd) and

the vector compartments (4th).

https://doi.org/10.1371/journal.pone.0272130.g003
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Although EEEV mutations do not attract much attention due to its small number of cases,

mutations can affect the spread of arboviral disease [55]. In fact, EEE is classified as a positive-

strand RNA virus (or +ssRNA) according to Berman’s taxonomic guide to infectious diseases

[56]. Peck and Lauring report that ssRNA viruses generally mutate faster than other groups of

viruses [15], which is important as it may result in resistance, antibody escape, expanded host

range, and other critical changes in disease dynamics. Global warming or environmental

change is also accelerating the mutation of diseases and has a direct effect on the spread of dis-

eases. For example, existing studies report that the infectivity of vectors can be increased by

higher ambient temperature [57, 58].

To examine the impact of changes potentially caused by mutation and global warming, we

establish the scenarios in this section and compare the result to the outcome we obtained from

the default model. Among all the possible changes that can alter the parameter values

described in our model, we test some of them selectively. Since our study is about the potential

threat that EEE can cause, we create scenarios focusing on the change in the direction of

increasing R0, as some existing studies in disease mutation suggested [59, 60].

The first scenario is increased infectivity, which can be caused by genetic mutation of EEE

and increased ambient temperature. Second, we explore a change that extends the infectious

period of EEE in bird hosts. Change in the duration of the infectious period is another scenario

that is commonly tested in many other studies in epidemiology [61, 62]. To examine the

Fig 4. Empirical distribution of �R0 obtained by the bootstrapping method. Fitted �R0 is shown by the red dashed line

(1.1445), and its 95% confidence interval is the grey region.

https://doi.org/10.1371/journal.pone.0272130.g004

Fig 5. Sensitivity analysis results. X-axis corresponds to the elasticity index for the parameter. The magnitude of these

values shows the strength of the relationship, while the sign tells whether the relative change in the parameter increases

or decreases the magnitude of �R0. For example, the elasticity index of βBC is a large positive value meaning that an

increase in the bird biting rate of the enzootic vector will result in a large increase in �R0. On the other hand, γB has a

large negative elasticity index meaning an increase in the bird recovery rate will decrease �R0. Variables with elasticity

values that are close to zero have little to no impact on �R0 when they change.

https://doi.org/10.1371/journal.pone.0272130.g005
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impact, we decrease the γB value to simulate such mutation. In the third scenario, we simulate

the situation where the bridge vector’s host preference is changed. The change can be caused

by adaptive mutation, opportunistic behavior, or a change in mosquito species composition.

According to existing studies, bridge vectors, or the mosquitoes that are infecting dead-end

hosts such as horses, prefer mammal hosts compared to the avian hosts, or amplifying host of

EEE [25, 27]. We change the feeding behavior of bridge vector with different host preference

and assess the impact of changed host preference. Since our concern is the possible future out-

comes, the final population ratio of the deterministic simulation in the result section is used as

the initial population for the three what-if scenarios.

Increased infectivity. Four different transmission rate parameters describe the infectivity

of EEE: αC, αM, αBC, and αBM. αC and αBC represent the transmission rates of EEE from/to

enzootic vectors while αM and αBM represent the transmission rates from/to bridge vectors.

Each row of Fig 6 shows the simulation results where the infectivity values are increased in

only enzootic vectors, only bridge vectors, and both vector types, respectively. In each column,

we display the results where only the transmission rate to vector, only the rate from vector,

and both rates are increased, respectively. In each case, we increase the selected transmission

rates by 5%, 10%, and 15% and compare the host infection trends to the default case.

Fig 6 shows how the number of the infected amplifying hosts are affected by each change in

transmission rates. In general, the magnitude of the impact is greater when infectivity increases

in enzootic vectors than in bridge vectors. When αM and αBM are increased by 15%, the maxi-

mum peak size in bird infection increases only 1.53 fold. Whereas the peak size increases 6.58

fold when αC and αBC are increased by 15%. Also, increased infectivity in enzootic vector

boosts the peak size in the first year’s host infection compared to the default case but the

impact size is smaller in the 2nd and 3rd year. Moreover, in the 2nd year, the peak size can be

smaller than the default result when the increase in the peak size is too large in the first year

and cause an increase in immunity of the bird population. For example, when comparing the

case with 15% increase in all infectivity parameter which obviously shows the most drastic

change, to the default scenario, there is a ratio of 7.45 in the peak of the first year, but a ratio of

0.51 in the second year.

Extended infectious period. The next scenario examines the impact of the extended

infectious period of EEEV in bird hosts or reduced γB. As we can see in the sensitivity analysis,

decrease in the bird recovery rate will significantly increase the basic reproduction number.

We explore how this type of mutation can have greater impact on EEE’s disease dynamics

when it is combined with increased infectivity. Each plot in Fig 7 shows the simulation results

where the infectivity values (αC, αM, αBC and αBM) are increased by 0% (default), 2.5% and 5%,

respectively. Under each infectivity condition, we increase the infectious period of EEE in

Table 2. Extinction probabilities for various initial conditions using parameters fitted to deterministic model. Col-

umns represent the initial number of infections in enzootic vector (IC0), bridge vector (IM0), and bird (IB0) populations

and the corresponding probability of extinction in the population.

IC0 IM0 IB0 Probability of extinction

1 0 0 0.4302

0 1 0 0.4496

0 0 1 0.3145

1 1 0 0.1934

1 0 1 0.1353

0 1 1 0.1414

1 1 1 0.0608

https://doi.org/10.1371/journal.pone.0272130.t002
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hosts by 5%, 10%, and 15% and compare the trend of the infectious bird population to that of

the default case.

Under the default infectivity condition (the left-most plot), the impact of the extended

infectious period is similar to those of increased αC or increased αBC shown in Fig 7 in the pre-

vious what-if scenario. The maximum peak increases 1.46, 2.02, and 2.83 fold when the infec-

tious period is increased by 5%, 10%, and 15%, respectively. The increased infectivity amplifies

the maximum peak even larger. When the infectivity parameters are increased by 2.5% and

5%, the peak size in the 1st year increases by 4.03 and 5.45 fold with a 15% extended infectious

period compared to the default case. The result demonstrates that small changes in multiple

parameters can result in a large impact on the disease dynamics of EEE. It also shows that simi-

lar disease dynamics can be driven by different combinations of changes in multiple

parameters.

Change in host preference. It is known that bridge vector species of EEE prefer mammals

more than birds, and only a small portion of bridge vector species has an opportunistic, evenly

mixed feeding preference [27, 29, 30, 45]. In this what-if scenario, the bridge vector’s feeding

behavior is changed to be more opportunistic and we compare the outcomes of this adjusted

behavior to that of default scenario. That is, the proportion of βBM in (βH + βBM) is changed.

As βBM increases, the size of IM increases, which also boosts the number of dead-end host

Fig 6. What-if scenarios with increased infectivity in different set of parameters. The bottom right shows the

situation with all four infectivity parameters increased. In this case, 15% increased infectivity causes a large peak

initially, which is subsequently dampened, but then elevates slightly again. In general, a greater increase in infections is

seen with the increased infectivity in enzootic vectors than the change in bridge vectors.

https://doi.org/10.1371/journal.pone.0272130.g006
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infections because the number of vectors that biting hosts is increased. At the same time, βH
decreases, which negatively affects the number of dead-end host infections because now bridge

vectors are less likely to bite dead-end host. Since all the other parameters are fixed, the value

of the cumulative dead-end host infections in the next two-year period (bH

R T
0
IMðtÞdt) is

tracked to measure and compare the impact on the equine economy and public health. We

also track the change in �R0 to understand how the change in host preference affect EEE’s

spread.

Fig 8 shows the result where values on the x-axis varies the bridge vector’s host preference

ratio for birds (or
bBM

bBMþbH
). The dead-end host infection size is maximized at 50% and increases

significantly in the 10%-20% interval. Since the current default is known to be smaller than

10%, this result suggests that disease control authorities need to be wary of the influx of inva-

sive mosquito species with opportunistic feeding behavior.

Discussion

As a result of the 2019 spike in EEE cases, a greater understanding of the transmission patterns

of EEE is needed. In this study, the multi-season transmission of EEE was explored using epi-

demic modeling methods. The modified basic reproductive number is greater than 1.0, which

indicates that EEEV does not die out naturally in the current situation. Both the sensitivity

analysis and the calculated extinction probabilities show the importance of the enzootic vector

population size and properties in maintaining EEE transmission.

Fig 7. What-if scenarios with extended infectious period of EEE in bird hosts. The three plots show the trend in the

infected bird population where the infectivity values (αC, αM, αBC, and αBM) are increased by 0% (default), 2.5%, and

5%, respectively. In each plot, trends that are changed by the increased infectious period by 5%, 10%, and 15% are

presented.

https://doi.org/10.1371/journal.pone.0272130.g007

Fig 8. Cumulative dead-end host infections and �R0 for different bridge vector host preference ratios. The current

host preference is 10%. As feeding preference shifts from 90% dead-end host and 10% avian there is an increase in total

dead-end host cases and �R0. Disease burden is maximized at 50% dead-end host and 50% avian, while �R0 is maximized

at 0% dead-end host and 100% avian.

https://doi.org/10.1371/journal.pone.0272130.g008
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Using the epidemic model, potential viral and host mutations were also investigated by

comparing the expected impact of each change. Both the increased infectivity and the extended

infectious period result in greater annual peak size in the host infection, while the effect size of

the increased infectivity is greater within the tested ranges. A change in mosquito biting behav-

ior shows a peak in the dead-end host cases at 30 percent bird bites to 70 percent dead-end

host bites. Further increases in bird biting reduce the dead-end host disease burden as the

decrease in the dead-end host. This result indicates that the influx of mosquito species with

rather more opportunistic feeding behavior than major species such as Aedes aegypti and the

change in existing species’ feeding behavior can be an amplifier of damage caused by EEE. It

suggests that we need to pay attention to such changes that can be caused by global warming

and other environmental changes. In the appendices, we present the results of two additional

what-if scenarios: one with vertical transmission and the other with vector control policy. The

former shows that the existence of a vertical transmission path also can increase the peak in

host infection. The latter presents that immediate vector control is one way to minimize the

potential spread of virulent mutation in EEEV.

There are, of course, limitations to the presented model. The data used for fitting is from

sentinel flocks of chicken in Florida [3, 41], so while available for every week it might not rep-

resent the full variation of different bird species [9]. Existing studies of West Nile Virus point

out that the seroprevalence of an arbovirus in wild birds is significantly different depending on

bird species, location, and age (adult or juvenile) [63–65]. Levine et al. report that blue jays

(71.4%), northern cardinals (49.5%), and northern mockingbirds (52.3%) had significantly

higher seroprevalence rates of WNV than other species such as American robins (15.3%) and

Carolina wrens (10.6%) [64]. They also present that the highest probability of being seroposi-

tive for WNV is observed in the park areas with artificial water features for all wild bird species.

Maquart et al.’s study of WNV on domestic birds also demonstrates that there are significant

differences in seroprevalence rates for different species [65]. They report that a significantly

higher seroprevalence was observed with geese and turkeys compared to that of chicken and

ducks. For example, the seroprevalence of WNV in turkeys is greater than double that in

chickens. Beveroth et al. present that there also exists a significant difference in the seropreva-

lence between adult (12.1%) and juvenile (5.5%) birds in Illinois [63]. Although these studies

are about the seroprevalence of West Nile virus not EEE, we assume that the results of the

study on WNV, one of the major arboviruses, are meaningful as a proxy given the lack of stud-

ies on the seroprevalence of EEE in wild birds. That is, it is possible that the dataset from senti-

nel chickens underestimates or overestimates the seroconversion rate of EEE for wild birds.

There also exist studies of EEE suggesting that the dataset from sentinel chickens is potentially

inaccurate. One study suggests that wilds birds within swamp areas lead to almost 2 times

more EEE isolations than those outside of swamp areas [66]. Another study shows that 65% of

sentinel chickens had EEE antibodies compared to 33% of wild birds nearby [67]. These sug-

gest species and locations are also important for EEE data, emphasizing the parameter uncer-

tainty associated with using the sentinel chicken data for calibrating the model. The species

composition of the mosquito community also has great uncertainty because it highly depends

on the environment surrounding the observation tools [44].

Additionally, assumptions were made for the model. Birds, enzootic vectors, humans, and

bridge vectors were all assumed to be homogeneous populations without any variation in

parameters or behavior. No spatial features were used. These are major simplifications that

were selected due to the lack of data and can be adjusted in future works. Future work could

address these issues by creating larger models and simulations.

Another assumption was that the only seasonal change was that of mosquito birth rates.

There are multiple other potential seasonal factors. For example, people, mosquitoes, and
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birds are less active during the winter season resulting in lower biting rates. All the other sea-

sonal factors, such as changes in human behavior, bird behavior, and bird migration, were

ignored to keep the model as simple as possible. Due to these assumptions, detail is lost regard-

ing any seasonal differences not arising from mosquitoes. Hypotheses about human behavior,

bird behavior, and bird migration are also unable to be incorporated or tested without chang-

ing the model structure. However, the model can be iterated to add more complexity to

address these questions in the future studies.

Our next goal is to use this model to explore hypotheses about the reintroduction of EEE

each season from a location with year-round circulation. Moving forward this model could

also be used to explore questions about migration and overwintering, or more importantly

develop policies and interventions to reduce the dangers of EEE in the future.

Conclusions

In this paper, we have established the first multi-season mathematical model for EEE transmis-

sion by using seasonal forcing to understand EEE’s repeating prevalence and the correspond-

ing potential threats. We have utilized a 16-year seroconversion data set from sentinel

chickens in Florida. By taking advantage of the seroconversion rates, we have circumvented

the limitations caused by the scarcity of data about wild birds’ infections. Our analysis has con-

firmed that the roles of the enzootic vectors and the bridge vectors in EEE transmission are sig-

nificantly different. While the former is more involved in the EEE’s persistence, the latter

determines the direct impact on public health and the equine industry. Our results also show

many hypothetical mechanisms that could lead to increased case numbers including increased

infectivity, vertical transmission, and changes in feeding preference of bridge vectors. While

our scenarios are hypothetical, the US has already experienced an increase in EEE cases in

2019. In 2020, human EEEV neuroinvasive cases in the United States fell from 38 to 13, still

above the average of 11 human cases [68]. This could mirror the biannual pattern seen in our

what-if scenarios, something that can be explored as case numbers for 2021 become available.

The US also faces ongoing climate change, which further increases the probability of disease

variation. What should be done about EEE is still unclear, but we have developed a valuable

framework that can be used to test hypotheses about spread, mutations, interventions, and

prevention.
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