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Immunotherapy targeting T cells is increasingly utilized to treat solid tumors including non-

small cell lung cancer (NSCLC). This requires a better understanding of the T cells in the

lungs of patients with NSCLC. Here, we report T cell repertoire analysis in a cohort of 236

early-stage NSCLC patients. T cell repertoire attributes are associated with clinicopathologic

features, mutational and immune landscape. A considerable proportion of the most prevalent

T cells in tumors are also prevalent in the uninvolved tumor-adjacent lungs and appear

specific to shared background mutations or viral infections. Patients with higher T cell

repertoire homology between the tumor and uninvolved tumor-adjacent lung, suggesting a

less tumor-focused T cell response, exhibit inferior survival. These findings indicate that a

concise understanding of antigens and T cells in NSCLC is needed to improve therapeutic

efficacy and reduce toxicity with immunotherapy, particularly adoptive T cell therapy.
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NSCLC bears a high mutational load1,2 which has been
linked to tumor-specific antigens, termed neoantigens,
that may activate host anti-tumor T cell responses3,4. This

has led to renewed excitement for therapies targeting the T cell
repertoire, such as checkpoint blockade using cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4)5, programmed death-
1 (PD-1)6, and programmed death ligand-1 (PD-L1)7, as well as
personalized mutation-specific vaccines8 and T cell-based thera-
pies9. Therefore, there is a considerable need to better understand
the tumor-infiltrating T lymphocyte (TIL) repertoire. Targeted
sequencing of the highly variable CDR3 region of the beta chain
of the T cell receptor (TCR) can be used to identify T cell clones,
their frequencies, and the existence of antigenic responses within
a repertoire10. It has been suggested that patients with greater T
cell clonal expansion (clonality), a characteristic of antigenic
responses, have improved clinical responses to immune check-
point inhibitors in melanoma11,12. However, T cell responses may
vary in their kinetics and distribution in different organs, which
complicates T cell repertoire analysis. This is further com-
pounded in lung cancer due to the local inflammation linked to
smoking exposure and non-tumor-associated pathogens13.
Recent studies have investigated protective immune responses in
the lung by defining the role of neutrophils, antigen-presenting
cells (APCs), and T cells14,15. However, little is known about the
attributes of the T cell repertoire and how they relate to patient
outcome. Here, we delineate the T cell repertoire in a cohort of
236 localized NSCLC patients, 11 chronic obstructive pulmonary
disease (COPD) patients without lung cancer, and 24 healthy
lung donors (Table 1) to define the relationship between the T cell
repertoire and tumor clinicopathologic features as well as the
tumor immunogenomic landscape and to determine its impact on
patient survival in early stage NSCLC. We show that a significant
proportion of T cells are shared between the tumor and adjacent
lung, and that these T cells may be enriched for their ability to
recognize shared mutations throughout the lung or viruses. We
also demonstrate that patients with a less tumor-focused T cell
repertoire exhibit worse outcome.

Results
T cell clonality is associated with CD8 T cells. To study the
attributes of the T cell repertoire in localized lung cancers, we
performed next generation sequencing of the CDR3 variable
region of the beta chain of the TCR involved in antigen binding

from 236 resected tumors from treatment-naïve NSCLC
patients16,17. T cell density, an estimate of T cell infiltration in the
tumor, ranged from 0.01 to 1.0 (n= 225; average= 0.24) (Sup-
plementary Fig. 1A), while richness, a measure of T cell diversity
ranged from 204 to 20,479 unique T cell rearrangements (n=
224; average= 5335 unique rearrangements) in this cohort of
NSCLC tumors (Supplementary Fig. 1B). T cell clonality ranged
from 0.06 to 0.36 (n= 225; average= 0.15) (Supplementary
Fig. 1C). Overall, T cell density was positively correlated with
richness and clonality (Density vs Richness: r= 0.75, p < 0.0001;
Density vs Clonality: r= 0.20, p= 0.003, Spearman rank corre-
lation, Supplementary Fig. 1D–E). However, richness and clon-
ality were inversely correlated, highlighting that overall, a more
diverse T cell infiltrate may be suggestive of lower reactivity (r=
−0.16, p= 0.019, Spearman rank correlation, Supplementary
Fig. 1F).

To define the phenotype of T cells comprising the T cell
repertoire in these tumors, we reanalyzed our recently published
T cell profiling data from immunohistochemical staining (IHC)18

as well as gene expression data19,20 from the same cohort.
Analysis of IHC data for 8 T cell-associated markers: CD3
(T cells), CD4 (helper T cells), CD8 (cytotoxic T cells), FoxP3
(regulatory T cells), CD45RO (antigen-experienced T cells),
Granzyme B (cytotoxic T cells), and PD-1 (activated/dysfunc-
tional T cells) as well as PD-L1 (Supplementary Fig. 2A)
demonstrated that T cells in this cohort of NSCLC tumors were
predominantly CD4-positive with an average CD4:CD8 ratio of
1.65 (ranging from 0.3 to 5.3) (n= 146; Supplementary
Fig. 2B–C), consistent with prior work from our group21. Though
all T cell markers were positively correlated, the density of CD4
T cells was most highly correlated with the density of FoxP3 (n=
146; r= 0.63, p < 0.0001, Spearman rank correlation, Supplemen-
tary Fig. 2D). Alternately, CD8 T cell density correlated most
strongly with GzmB (n= 146; r= 0.76, p < 0.0001, Spearman
rank correlation, Supplementary Fig. 2E), highlighting the
cytotoxic potential of this subset.

When evaluating the relationship between immune markers
and the tumor T cell repertoire, T cell density and richness were
correlated with CD3 (r= 0.53; p < 0.0001 and r= 0.30; p=
0.0004, Spearman rank correlation), CD4 (r= 0.39; p < 0.0001
and r= 0.33; p < 0.0001, Spearman rank correlation), and CD8 (r
= 0.51; p < 0.0001 and r= 0.27, p= 0.002, Spearman rank
correlation), as anticipated (n= 146; Supplementary Fig. 3A–F).
However, T cell clonality correlated only with CD3 (n= 135; r=
0.24; p= 0.005, Spearman rank correlation, Fig. 1a), and CD8 (r
= 0.30; p= 0.0003 Spearman rank correlation), but not with CD4
(n= 135; r=−0.03; p= 0.753, Spearman rank correlation,
Fig. 1b–c), highlighting the greater proliferative potential of
CD8 T cells and suggesting T cell clonality may be mainly driven
by the clonal expansion of CD8-positive T cells22. Importantly,
analysis of RNA expression from these tumors20 demonstrated
that T cell clonality was also positively correlated with GzmB (n
= 141; r= 0.47; p < 0.0001, Spearman rank correlation, Fig. 1d)
and IFN-γ expression (n= 141; r= 0.52; p < 0.0001, Spearman
rank correlation, Fig. 1e), further capturing the activated and
cytotoxic phenotype of CD8 T cells following antigen encounter.

We further investigated the relationship between T cell
phenotype and repertoire by comparing T cell density, richness,
and clonality in tumors with high versus low CD45RO (antigen-
experienced T cells) and PD-1 (activated T cells). As shown in
Fig. 2, CD45ROhi tumors exhibited higher T cell infiltration (n=
135; p= 0.0016, Mann–Whitney test), and moderately increased
richness (n= 134; p= 0.0851, Mann–Whitney test) but no
difference in clonality (n= 135; p= 0.5027, Mann–Whitney test)
when compared to their CD45ROlo counterparts (Fig. 2a–c).
However, analysis of PD-1hi tumors demonstrated higher T cell

Table 1 Clinicopathologic features of studied subjects.

Category NSCLC (n= 236) COPD (n= 11) Healthy (n= 24)

Age (yr) 66.3 ± 9.9 61.7 ± 8.8 38 ± 16.8
Gender
Female 107 (45) 2 (18) 12 (50)
Male 129 (55) 9 (82) 12 (50)
Tumor type
ADCA 146 (62) NA NA
SCCA 89 (37) NA NA
ADCA/SCCA 1 (1) NA NA
Stage
Stage I 114 (48) NA NA
Stage II 79 (33) NA NA
Stage III 43 (19) NA NA
Smoking status
Current 102 (43) 1 (9) 11 (46)a

Former 114 (48) 10 (91) NA
Never 20 (9) 0 8 (33)
Unknown 0 0 5 (21)

aHealthy lung samples are classified by smoker or non-smoker only.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14273-0

2 NATURE COMMUNICATIONS |          (2020) 11:603 | https://doi.org/10.1038/s41467-019-14273-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


density (n= 135; p < 0.0001, Mann–Whitney test), richness (n=
134; p= 0.0083, Mann–Whitney test) and clonality (n= 135; p=
0.0104, Mann–Whitney test) than their PD-1lo counterparts
(Fig. 2d–f).

The distribution of T cells within the tumor microenvironment
can be suggestive of an efficacious anti-tumor T cell response,
with several groups showing enrichment for T cells at the
periphery or center is related to improved outcome11,23. As such,
we evaluated the relation between enrichment of T cell markers
CD3, CD4, and CD8 at the tumor center versus periphery, and
how this relates to attributes of the T cell repertoire. Overall, no
trends were observed with CD3 and CD8 spatial distribution,
though higher CD4 at the periphery of the tumor was associated
with lower T cell richness (p= 0.0006, Mann–Whitney test) and
higher T cell clonality (p= 0.0120, Mann–Whitney test) at the
tumor center by CDR3 sequencing (n= 119; Supplementary
Fig. 4A–I). This suggests accumulation of CD4 T cells, particu-
larly regulatory T cells, in the tumor center could impair the
ability of CD8 T cells to expand in response to antigens (i.e., drive
up clonality). Multi-region sequencing was not performed in this
cohort, therefore we cannot exclude the possibility that
intratumor heterogeneity may have played a role, as shown
previously by our group and others21,24,25.

Tumor mutational burden is correlated with T cell activation.
The tumor mutational burden (TMB) contributes to immuno-
genicity through the generation of neoantigens targeted by T cell
responses. Accordingly, a higher TMB has been reported to be
associated with a higher response rate and favorable survival in
lung cancer patients across multiple clinical trials26,27. Therefore,
we first reanalyzed our recently published whole exome sequen-
cing data in the same patient cohort17 to evaluate the relationship

between the TMB and attributes of the T cell repertoire. On
average, 176 (ranging from 3 to 857) nonsynonymous exonic
mutations (NSEM) per tumor were identified (n= 215; Supple-
mentary Fig. 5A). Higher TMB was correlated with higher T cell
clonality (r= 0.19; p= 0.015, Spearman rank correlation), a lower
CD4:CD8 ratio (r=−0.38; p= 0.0002, Spearman rank correla-
tion), and higher GzmB (r= 0.32; p= 0.0019 by IHC, r= 0.26; p
= 0.02 by gene expression profiling, Spearman rank correlation)
(n= 215; Fig. 3a and n= 146; Supplementary Fig. 5B–G), sup-
portive of the critical role of somatic mutations in enhancing
tumor immunogenicity and triggering T cell responses through
the generation of neoantigens. However, no link was seen
between HLA loss of heterozygosity (HLALOH) and T cell
density, richness and clonality suggesting this resistance
mechanism may not have played a key role in this group of
patients (n= 164; Supplementary Fig. 6A–C).

EGFR mutation is associated with low T cell clonality. The
discovery of oncogenic driver mutations, which confer growth
advantage to cancer cells has improved our understanding of
multiple cancers28. Recent studies have suggested that these
mutations may impact anti-tumor immune responses, which in
turn can alter the dynamics of tumor evolution, particularly
under immunotherapy29,30. Therefore, we next sought to assess
the correlation between the presence of canonical oncogenic
driver mutations and attributes of the T cell repertoire. These
analyses demonstrated that EGFR-mutant tumors had sig-
nificantly higher richness (p= 0.017, Mann–Whitney test) and
lower T cell clonality (p= 0.001, Mann–Whitney test) compared
to EGFR-wildtype tumors, though no difference was noted in the
density of the T cell repertoire (p= 0.103, Mann–Whitney test)
(n= 186; Fig. 3b–e). This is in line with the lower response rate
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Fig. 1 TCR clonality is associated with CD8 T cell function. Correlation between T cell clonality and (a) CD3 density (n= 135), (b) CD4 density (n= 135)
and (c) CD8 density (n= 135) by IHC as well as (d) GzmB expression (n= 141), (e) IFN-γ expression (n= 141) by gene expression profiling.
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and survival benefit of EGFR-mutant NSCLCs treated with
immune checkpoint blockade31–33 despite the high expression of
PD-L1 in many of these tumors34,35. The exact molecular
mechanisms underlying resistance of EGFR-mutant NSCLC to
immunotherapy are not yet understood, with a concomitant low
mutation load thought to be a major culprit31–33. Accordingly, all
EGFR-mutant patients were found to exhibit a TMB within the
bottom tertile of the cohort (p < 0.0001, Mann–Whitney test,
Fig. 3b). In order to adjust for this difference in TMB, we focused
exclusively on EGFRWT tumors within the lowest TMB tertile.
Although TMB was comparable between EGFRMUT and EGFRWT

TMBlo tumors in this subgroup (n= 51; Fig. 3f), T cell clonality
remained higher in EGFRWT tumors (n= 43; p= 0.015,
Mann–Whitney test, Fig. 3g–i). These results suggest that
EGFRWT tumors could potentially induce better T cell expansion
regardless of a low TMB or alternatively that the low TMB in
these tumors may have resulted from depletion of immunogenic
tumor clones (more likely with higher TMB) by reactive T cells,
and as a result driven down the TMB. Conversely, clonality was
consistently lower in EGFRMUT tumors, thereby suggesting that
T cells may not be expanding (leading to low clonality), most
likely due to the existence of alternative immunosuppressive
mechanisms, which prevent antigen recognition and T cell
expansion. Of note, even within the highest TMB EGFRMUT

tumors, no differences were observed in T cell repertoire attri-
butes (n= 12; Supplementary Fig. 7A–F). Taken together, these
results suggest that there exist TMB-independent mechanisms
contributing to the low clonality in EGFRMUT NSCLC tumors.
Otherwise, no associations were observed between the T cell

repertoire and other frequently mutated cancer genes in NSCLC
such as KRAS and TP53.

T cell repertoire link to clinicopathologic attributes. We next
sought to assess whether T cell attributes correlated with the
clinicopathologic features of these tumors. T cell density and
richness showed no differences based on tumor differentiation,
though poorly differentiated tumors did exhibit higher T cell
clonality than well and moderately differentiated tumors (n=
223; p= 0.0019 and p= 0.0318, respectively; Dunn's multiple
comparisons test, Supplementary Fig. 8A–C). T cell density (n=
225; p= 0.01, Mann–Whitney test) and richness (n= 224; p=
0.009, Mann–Whitney test) were higher in adenocarcinoma
(ADCA) than squamous cell carcinoma (SCCA) (Fig. 4a–b),
though clonality was higher in SCCA, in line with prior reports
(n= 225; p= 0.055, Mann–Whitney test, Supplementary
Fig. 9A)15. This highlights the distinct T cell response to these
major histological subtypes of NSCLC. Negative associations
between the T cell repertoire and tumor size were also observed,
with smaller tumors more densely (r=−0.26; p= 0.0001,
Spearman rank correlation) and diversely (r=−0.25; p= 0.0002,
Spearman rank correlation) infiltrated than their larger counter-
parts (n= 224; Fig. 4c–d). Furthermore, T cell clonality was
higher in current and former smokers than in never smokers
(n= 224; Fig. 4e) and the difference remained statistically sig-
nificant upon adjustment for TMB using a linear fit model
incorporating TMB, demonstrating the impact of cigarette smoke
on T cell responses independent of TMB. However, no difference
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in T cell density or richness was noted (n= 224; Supplementary
Fig. 9B–C), suggestive of a more antigen-reactive T cell repertoire
in smokers, consistent with prior studies15. Notably, higher T cell
richness in ADCA patients was associated with a lower rate of
recurrence (n= 134; p= 0.026, Mann–Whitney test, Fig. 4f).
These data demonstrate the existence of unique T cell repertoire
attributes related to clinicopathologic features in NSCLC tumors
and their potential impact on patient outcome.

T cell clonality is highest in the tumor-adjacent lung. We next
evaluated the T cell repertoire systemically by comparing per-
ipheral blood mononuclear cells (PBMCs), uninvolved tumor-
adjacent lungs (≥2 cm from tumor margin without atypia asses-
sed by two pathologists independently), and tumors. T cell den-
sity showed no correlation across compartments, though matched
samples were positively correlated in richness as well as clonality
(n= 121; Supplementary Fig. 10A–C). Comparison of the T cell
repertoire between these compartments demonstrated a sig-
nificantly higher T cell density in the tumor than the uninvolved
tumor-adjacent lung (n= 225; Fig. 5a), though richness was
highest in PBMC, as expected. Meanwhile, T cell richness was
significantly higher in the tumor compared to the uninvolved
tumor-adjacent lung (n= 224; Fig. 5b). Surprisingly, T cell
clonality was highest in the uninvolved tumor-adjacent lung,

suggesting more focused antigenic responses than in the tumor
(n= 225; Fig. 5c). These findings could reflect bystander T cell
reactivity in the adjacent uninvolved lungs as recently descri-
bed36, or an accumulation of exhausted tumor-reactive T cells
outside the tumor microenvironment.

We then compared the T cell repertoire of tumor-adjacent,
COPD, and healthy lung samples and determined that tumor-
adjacent and COPD lungs showed a higher T cell density than
lungs from organ donors, presumably reflective of the inflamma-
tion in these patients (n= 253; p < 0.0001, Dunn's multiple
comparisons test, Fig. 5d). Interestingly, richness was lowest (n=
250; p < 0.0001, Dunn's multiple comparisons test) while clonality
was highest (n= 253; p < 0.0001, Dunn's multiple comparisons
test) in the uninvolved tumor-adjacent lungs of smokers and non-
smokers, highlighting a more active antigenic response that could
be related to the tumor (Fig. 5e–f).

Repertoire homology between tumor-adjacent lung and tumor.
We next evaluated the overlap in T cell repertoire between
PBMC, uninvolved tumor-adjacent lung and tumor. Limited
homology was noted between the PBMC and uninvolved tumor-
adjacent lung or tumor using the Jaccard Index (JI) and Morisita
Overlap Index (MOI) (n= 215; Fig. 6a and n= 215; Supple-
mentary Fig. 11A). However, we observed greater homology
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between the paired uninvolved tumor-adjacent lung and tumor
with both metrics (JI, p < 0.0001; MOI, p < 0.001, Dunn's multiple
comparisons test, Fig. 6a and Supplementary Fig. 11A). Fur-
thermore, among the top 100 most prevalent T cell clones
identified in tumors, a median of 57 were detected in uninvolved
tumor-adjacent lung tissue, with 28 also among the top 100 most
prevalent T cell clones identified in uninvolved tumor-adjacent
lungs (n= 225; Fig. 6b). Analysis of the lung-enriched T cell
repertoire (versus paired PBMC) revealed a 1.9- and 1.8-fold
increase in homology between the uninvolved tumor-adjacent
lung and tumor by JI (p < 0.0001, Dunn's multiple comparisons
test) and MOI (p < 0.0001, Dunn's multiple comparisons test),
respectively, underscoring the parallels in ongoing localized
antigenic responses (n= 215; Fig. 6c and Supplementary
Fig. 11B). Homology across patients was further analyzed, and
confirmed hundreds of thousands of CDR3 sequences to be
shared (i.e. public TCRs - Supplementary Fig. 12A–D and Sup-
plementary Data 1A–D).

Shared T cells may target shared mutations or viruses. As
somatic mutations that alter protein sequences can be presented
to T cells as neoantigens, we next investigated whether shared
nonsynonymous exonic mutations (NSEM) contribute to the T
cell repertoire homology between the uninvolved tumor-adjacent
lung and tumor. Whole exome sequencing from a subset of 96
patients with available germline DNA from PBMC, paired tumor
and uninvolved tumor-adjacent lung tissues demonstrated that an
average of only 0.7% of NSEM (0% to 4.5%) were shared between
tumor and uninvolved tumor-adjacent lung tissues (n= 96;
Fig. 7a–e). In regards to the T cell repertoire, a higher proportion
of mutations unique to the tumor was modestly associated with a

higher T cell clonality in the tumor (n= 96; r= 0.22; p= 0.028,
Spearman rank correlation, Supplementary Fig. 13A), while more
unique mutations in the uninvolved tumor-adjacent lung (r=
−0.23; p= 0.027, Spearman rank correlation) or more shared
mutations (r=−0.20; p= 0.048, Spearman rank correlation) was
associated with lower tumor T cell clonality (n= 96; Supple-
mentary Fig. 13B–C). Though few mutations were shared
between the uninvolved tumor-adjacent lung and tumor, a weak
but positive correlation was observed between the proportion of
shared NSEM and the proportion of shared prevalent T cells
suggesting some of the overlap in T cell repertoire may be driven
by reactivity to shared mutations/neoantigens (n= 92; r= 0.23,
p= 0.028, Spearman rank correlation, Fig. 8a).

Alternately, T cells in the lung could also be targeting
viruses. Accordingly, we studied TCR motifs and their
antigenic specificity using the GLIPH algorithm37, a computa-
tional tool validated on tuberculosis antigens utilized to predict
antigen binding based on comparison of TCR sequencing data
to tetramer-validated sequences to identify shared amino acid
motifs and infer antigen specificity. To allow comparison of
viral and non-viral motifs in spite of the skewing of the
database towards non-viral motifs, we normalized the number
of non-viral and viral motifs separately, based on whether they
were only in the tumor, only in the uninvolved tumor-adjacent
lung, or shared in both the tumor and uninvolved tumor-
adjacent lung, and proportions were compared. Although the
proportion of non-viral-associated TCRs found in the tumor or
uninvolved tumor-adjacent lung tissues was generally greater
than those from viral TCRs, the T cells shared between tumor
and uninvolved tumor-adjacent lung showed a substantial
enrichment for predicted viral-associated TCRs in 67% of
patients, a 2.1-fold enrichment in the proportion of predicted
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viral-associated motifs within this group (n= 178; p < 0.0001;
Dunn's multiple comparisons test, Fig. 8b–d). These results
suggest that anti-viral T cell responses across the lung may
have contributed to T cell repertoire homology between tumor
and uninvolved tumor-adjacent lung tissue. Interestingly, a

greater proportion of predicted viral motifs were seen in lungs
from healthy donors, implying that a larger proportion of the T
cell repertoire may be linked to smoking-related inflammation
within the lungs of COPD or NSCLC patients (n= 215;
Fig. 8e–f).
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Tumor-focused T cell repertoire linked to better survival.
Considering the role of the T cell repertoire in anti-tumor
responses, we next evaluated its relationship with overall survival
(OS) and the results demonstrated that patients with a greater T
cell density in peripheral blood had significantly longer OS (n=
120; p= 0.041, HR: 0.38-0.98, Mantel–Cox test, Fig. 9a). Con-
versely, a higher T cell density (n= 216; p= 0.036, HR:
1.024–2.001, Mantel–Cox test, Fig. 9b) and higher T cell clonality
in uninvolved tumor-adjacent lung (based on T cells enriched
compared to the tumor) correlated with significantly shorter OS
(n= 214; p= 0.014, HR: 1.09–2.138, Mantel–Cox test, Fig. 9c).
Multivariate analysis confirmed these associations, with T cell
density in the blood (p= 0.032, Mantel–Cox test) and clonality in
the uninvolved tumor-adjacent lung (p= 0.032, Mantel–Cox test)
remaining statistically significant, but T cell density in the
uninvolved tumor-adjacent lung no longer statistically significant
(p= 0.073, Mantel–Cox test). Analysis of lung cancer-specific
survival revealed much the same trends though smaller numbers
may have limited statistical significance (n= 90, n= 157, and n
= 156; p= 0.0717, p= 0.1428, and p= 0.0511, respectively;
Mantel-Cox test, Fig. 9d–f). As mentioned above, a higher pro-
portion of tumor-only mutations was moderately associated with
a higher T cell clonality in the tumor (r= 0.22; p= 0.028,
Spearman rank correlation, Supplementary Fig. 13A), while more
mutations unique to the uninvolved tumor-adjacent lung (r=
−0.23; p= 0.027) or more shared mutations (r=−0.20; p=
0.048, Spearman rank correlation) was associated with lower
tumor T cell clonality (Supplementary Fig. 13B–C). Interestingly,

compared to non-relapsed patients, relapsed patients demon-
strated a greater proportion of shared mutations and higher level
of TCR overlap between the tumor and uninvolved tumor-
adjacent lung (n= 96 and n= 215; p= 0.011 and p= 0.06,
respectively, Mann–Whitney test, Supplementary Fig. 14A–B).
Overall, these findings suggest that the host’s capacity to generate
a stronger T cell response (as indicated by more T cells in PBMC)
and a lower density and reactivity of T cells outside the tumor in
the uninvolved tumor-adjacent lung (i.e., bystander T cells) may
be associated with better survival, while T cell responses targeting
viral infections or shared mutations could hamper the immune
system’s ability to effectively combat the tumor.

Discussion
Our results highlight the systemic heterogeneity in the T cell
repertoire in NSCLC tumors of different histological subtypes and
clinicopathological traits, between matched PBMC, uninvolved
tumor-adjacent lung and tumor. Exposure to the outside envir-
onment complicates T cell analysis in lung tumors, as anti-tumor
T cell responses may be intermingled with responses to pathogens
and other pro-inflammatory agents. As such, the substantial
overlap in the T cell repertoire between the uninvolved tumor-
adjacent lung and tumor suggests many T cells may be
responding to common antigens throughout the lung. Further-
more, the significantly higher clonality in uninvolved tumor-
adjacent lung tissue compared to that of COPD patients and
healthy lung donors suggests a more active T cell response, pre-
sumably related to anti-tumor surveillance in lung cancer patients
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and/or to promoting factors within the tumor immune micro-
environment. A salient finding was the lower clonality observed
in NSCLC tumors compared to paired uninvolved tumor-
adjacent lungs, indicative of an impaired antigenic response,
potentially as a result of an immunosuppressive microenviron-
ment within the tumor, as described by others14,15.

Though few mutations were detected in the lung, these may
play a significant role. The lung as a whole is exposed to the same
mutagens, though intact DNA damage repair pathways may lead
to the repair of many of these aberrations. However, though less
numerous, as many as 247 NSEM were detected in the unin-
volved tumor-adjacent lung. Interestingly, the majority of muta-
tions detected in the uninvolved tumor-adjacent lung tissues were
not present in the paired tumors and could therefore detract from
the host immune response against tumor cells. This is highlighted
by the inverse correlation between the number of unique muta-
tions detected in the uninvolved tumor-adjacent lung and the T
cell clonality observed within the tumor microenvironment.
Interestingly, though few of these mutations were shared between
the uninvolved tumor-adjacent lung and tumor, they were found
to be increased in patients who relapsed compared to those who
did not, and were correlated with the proportion of high fre-
quency T cells shared between the uninvolved tumor-adjacent
lung and tumor, which may suggest they play an important role.
Furthermore, patients in whom more mutations were shared or
unique to the uninvolved tumor-adjacent lung presented lower T
cell clonality in their tumors, suggesting these non-tumor-specific

background mutations may be detrimental to the anti-tumor T
cell response, and they may blunt the host immune system's
ability to clear the tumor, though additional studies are required
to validate this hypothesis.

Across numerous tumor types and therapies11,12,38,39, higher T
cell clonality in tumors has been reported in patients with
improved clinical benefit, though lack of paired tissues in these
studies has prevented analysis of the relationship between unin-
volved tumor-adjacent lung and the tumor. However, the expo-
sure of the lung to pathogens highlights the potential for strong
antigenic responses unrelated to the tumor within the uninvolved
tumor-adjacent lung as well as NSCLC tumors. Importantly, the
immune microenvironment likely also plays a role, as immuno-
suppression in the tumor14,15 may impede the ability of T cells to
expand in response to antigen, thereby preventing the associated
increase in clonality.

Finally, our multi-pronged approach highlights the importance
of evaluating the relationship between T cell compartments to
control for inter-patient and inter-tissue variability. Our findings
demonstrate the association between higher T cell density in the
blood and improved outcome following surgery, suggesting that
the peripheral T cell repertoire in these patients may be reflective
of increased systemic immunity. However, the substantial shared
T cell population between the matched uninvolved tumor-
adjacent lung and tumor may pose therapeutic concerns. TIL-
based immunotherapy has been tested in other cancer types4,40

and has recently become a cause for excitement for lung cancer
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immune therapy (NCT03419559, NCT03215810, NCT02133196).
However, TIL expansion and activation is agnostic of antigen
restriction. Therefore, because of the substantial overlap of pre-
valent and potentially reactive T cells between uninvolved tumor-
adjacent lung and tumor tissues from NSCLC patients, T cell
expansion and ex vivo activation based on their sole presence
within NSCLC tumors could result in underwhelming anti-tumor
responses or increased immune-related adverse events through
expansion of T cell subsets unrelated to the tumor and should
thus be taken into consideration in the design and execution of
TIL-based therapeutic trials.

Methods
Patient cohort and sample collection. Informed consent was obtained from all
study participants. Patient samples were collected as part of the Profiling of
Resistance patterns and Oncogenic Signaling Pathways in Evaluation of Cancers of
the Thorax study (PROSPECT - LAB07-0233) approved by the University of Texas
MD Anderson Cancer Center's Institutional Review Board (IRB). Peripheral blood,
uninvolved tumor-adjacent lung, and tumor were collected at time of diagnosis
from 236 treatment-naïve NSCLC patients and were a mix of fresh-frozen and
FFPE16,17. As a control, lung samples were obtained from 11 COPD patients and
24 organ donors. Subject characteristics are presented in Table 1. An overview of all
available samples and assays is shown in Supplementary Table 1.

TCR variable beta chain sequencing. Sequencing of the CDR3 regions of human
TCR-β chains was performed using the immunoSEQ® Assay (Adaptive Bio-
technologies, Seattle, WA)10,41,42. T cell density was calculated by normalizing TCR-
β template counts to the total amount of DNA usable for TCR sequencing, where
the amount of usable DNA was determined by PCR-amplification and sequencing
of housekeeping genes expected to be present in all nucleated cells. Richness, a
measure of the number of unique T cell rearrangements, was calculated using the
preseqR package by extrapolating to 400,000 templates for PBMCs and 120,000
templates for tissue. Both richness and clonality are designed to normalize for
sampling depth (the number of T cells sampled in a repertoire) to allow fair
comparison of samples with different numbers of T cells. Clonality was defined as 1-
Peilou’s evenness43. To identify TCRs that were enriched in one tissue compared to
another, we applied a differential abundance framework as described previously44.
Parameters were as follows: minTotal= 5, productiveOnly= True, alpha= 0.1,
count= aminoAcid. Statistical analysis was performed in R version 3.2. TCR
sequencing data are available through the immuneACCESS platform (10.21417/
AR2019NC - https://clients.adaptivebiotech.com/pub/reuben-2019-natcomms). The
immunoSEQ assay is for research use only and not for use in diagnostic procedures.

Grouping of lymphocyte interactions by paratope hotspots. For identifying T
cell specificity groups, Grouping of Lymphocyte Interactions by Paratope Hotspots
(GLIPH) was used to cluster CDR3 rearrangements37. Briefly, the CDR3 sequences
of the TCR-β chain from the uninvolved tumor-adjacent lung, healthy lung, COPD
lung, and tumors were used in conjunction with publicly available, tetramer-
defined viral CDR3 sequences45. Viral motifs are defined as a GLIPH motif
composed of at least 3 viral tetramer-derived CDR3 sequences as well as the
enrichment for a given V-gene (p < 0.05 by Fisher’s exact test).

Whole exome sequencing. Whole exome sequencing (WES) was performed on
tumors and uninvolved tumor-adjacent lung tissues to determine the tumor
mutational landscape using the NimbleGen 2.1M human exome array and 75bp
paired-end sequencing on an Illumina HiSeq2000 in a prior study16,17. Pre-
processed BAM files were then analyzed to detect single nucleotide variants (SNV)
and small insertions and deletions (indels) using MuTect46 and Pindel47 algo-
rithms, respectively, against virtual normal sequence developed in-house. Variants
were annotated and filtered48. In addition, DNA from 96 available matched per-
ipheral blood samples was also sequenced as germline DNA control to identify the
mutations in the uninvolved tumor-adjacent lung tissues. Blood DNA was analyzed
to identify mutations related to clonal hematopoiesis of indeterminate potential
(CHIP) based on annotation specified previously49. WES data are available in the
EGA (EGAS00001004026).

Human leukocyte antigen loss of heterozygosity analysis. For Human Leu-
kocyte Antigen Loss Of Heterozygosity (HLALOH) analysis, we first performed
HLA typing using PHLAT50. For each patient, we merged tumor and normal BAM
files and inferred 4-digit HLA types for the major class I HLA genes (HLA-A,
HLA-B and HLA-C). To evaluate HLA loss, we used a computational tool,
LOHHLA51 using purity and ploidy information estimated by Sequenza52. As
stated in the original paper of LOHHLA, we defined a sample as being subject to
HLA loss when any of the two alleles of HLA-A, HLA-B or HLA-C showed a copy
number < 0.5 with a paired Student’s t test p < 0.01.

RNA microarray. RNA microarray was performed in a prior study on 141 patients
included here19,20 using the Illumina HumanWG-6 v3.0 expression bead chip.
Then an extended robust multi-array analysis (RMA) background correction
model53 was applied to obtain normalized gene expression profiles for individual
samples. Gene expression data are available in the GEO repository (GSE42127).

Immunohistochemistry. Tumor tissue was fixed in formalin and embedded in
paraffin. For immunohistochemical staining, tissue was cut and mounted at a
thickness of 4μm per slide. Slides were then stained with CD3 polyclonal (1:100,
DAKO), CD4 clone 4B12 (1:80, Leica Biosystems), CD8 clone C8/144B (1:25,
Thermo Scientific), PD-L1 clone E1L3N (1:100, Cell Signaling Technology), PD-1
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clone EPR4877-2 (1:250, Abcam), CD45RO clone UCHL1 (ready-to-use, Leica
Biosystems), FoxP3 clone 206D (1:50, BioLegend), and Granzyme B clone F1
(ready-to-use, Leica Biosystems)18. Slides were then stained using diaminobenzi-
dine as chromogen and the Leica Bond Polymer refine detection kit (Leica Bio-
systems). Slides were then counterstained with hematoxylin and scanned using an
Aperio AT2 automated slide scanner (Leica Biosystems). Quantification was per-
formed on 5 × 1mm2 regions per tumor sample within the tumor center and
measuring the average density of positive cells per region as a count of positive
cells/mm2. For PD-L1, H-score was calculated by multiplying the proportion of
positive cells in the sample (0–100%) by the intensity of staining (1+, 2+, or 3+) to
obtain a score ranging between 1 and 300.

Statistical analysis. All plots were generated using GraphPad Prism 8.0 (La Jolla,
CA). Because not all TCR variables met the normality assumption, a Kruskal-
Wallis test (two-sided) was applied for assessing differences among groups. Wil-
coxon matched-pairs signed rank tests were used to compare matched samples.
Spearman’s rank correlation (two-sided) was used to assess monotonic relation-
ships between two continuous variables. For survival analysis, we first performed
univariate Cox analysis on individual TCR variables. Then we fit Cox multiple
regression on each TCR variable that tested statistically significant in univariate
analysis together with clinical and pathological covariates of interest (age, gender,
tumor type, stage, smoking status, and tumor size). Multivariate analysis evaluated
each TCR variable with clinical factors taken into account. Due to the exploratory
nature of the study, unadjusted p-values not accounting for false-discovery rate
(FDR) were used to select TCR variables from univariate analysis.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
WES data are available in the EGA (EGAS00001004026). RNA microarray data are
available in the GEO repository (GSE42127). TCR sequencing data are available through
the immuneACCESS platform (10.21417/AR2019NC https://clients.adaptivebiotech.
com/pub/reuben-2019-natcomms). Data are available to all researchers upon request.
The source data underlying Figs. 1–9 and Supplementary Figs. 1–14 are provided as a
Source Data file.
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