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Significant interest in the mechanistic underpinnings of obsessive-compulsive disorder
(OCD) has fueled research on the neural origins of compulsive behaviors. Converging
clinical and preclinical evidence suggests that abnormal repetitive behaviors are driven by
dysfunction in cortico-striatal-thalamic-cortical (CSTC) circuits. These findings suggest
that compulsive behaviors arise, in part, from aberrant communication between lateral
orbitofrontal cortex (OFC) and dorsal striatum. An important body of work focused on
the role of this network in OCD has been instrumental to progress in the field. Disease
models focused primarily on these regions, however, fail to capture an important aspect
of the disorder: affective dysregulation. High levels of anxiety are extremely prevalent
in OCD, as is comorbidity with major depressive disorder. Furthermore, deficits in
processing rewards and abnormalities in processing emotional stimuli are suggestive
of aberrant encoding of affective information. Accordingly, OCD can be partially
characterized as a disease in which behavioral selection is corrupted by exaggerated
or dysregulated emotional states. This suggests that the networks producing OCD
symptoms likely expand beyond traditional lateral OFC and dorsal striatum circuit
models, and highlights the need to cast a wider net in our investigation of the circuits
involved in generating and sustaining OCD symptoms. Here, we address the emerging
role of medial OFC, amygdala, and ventral tegmental area projections to the ventral
striatum (VS) in OCD pathophysiology. The VS receives strong innervation from these
affect and reward processing regions, and is therefore poised to integrate information
crucial to the generation of compulsive behaviors. Though it complements functions
of dorsal striatum and lateral OFC, this corticolimbic-VS network is less commonly
explored as a potential source of the pathology underlying OCD. In this review, we
discuss this network’s potential role as a locus of OCD pathology and effective
treatment.

Keywords: OCD (obsessive-compulsive disorder), compulsive behavior, amygdala, dopamine, OFC, ventral
striatum, accumbens, network
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REPETITIVE BEHAVIORS IN
OBSESSIVE-COMPULSIVE DISORDER
MAY BE DRIVEN BY DYSREGULATION OF
CORTICOLIMBIC AND VENTRAL
STRIATAL NETWORKS

The basic architecture of neuronal circuits creates a system rich
with opportunities for interactions between brain regions. These
interregional functional neuronal connections are fundamental
to cognition, and when disrupted, can contribute to numerous
pathologies (Singer and Gray, 1995; Crick and Koch, 2003;
Knight, 2007; Bassett and Bullmore, 2009; Siegel et al.,
2012; Moghaddam and Wood, 2014). In this review, we
highlight the role of information transmission from the medial
orbitofrontal cortex (OFC), amygdala, and ventral tegmental
area (VTA) to the ventral striatum (VS), in producing the
pathologic repetitive behaviors and dysregulated affect observed
in obsessive-compulsive disorder (OCD; Figure 1). We focus
on this network because: (1) the VS is an interface between
striatal and limbic circuitry, and thus is uniquely poised to
process affective and behavioral selection information; (2) this
network is likely to be complementary to dorsal striatal networks
in the context of OCD models, and is therefore an important
area of study; and (3) an incomplete understanding of the
neural substrates of OCD and ineffective treatments suggest
a more encompassing view of the disorder is necessary. Our
central goal is to illustrate that the convergence of these
inputs in the VS may underlie the role of the corticolimbic-VS
network in producing repetitive behavioral selection in OCD.
We suggest that the simplified framework proposed here can
be used to understand the circuit mechanisms underlying OCD
symptomatology.

Clinical Features of Obsessive-Compulsive
Disorder
OCD affects 2–3% of the world’s population, greatly diminishes
quality of life, and is a leading cause of illness-related
disability (Bystritsky et al., 2001; Milad and Rauch, 2012;
Subramaniam et al., 2013; Pauls et al., 2014; Ahmari and
Dougherty, 2015). OCD is a heterogeneous disorder, and the
obsessive thoughts and accompanying compulsive behaviors
that define OCD are often conceptualized as either four
or five distinct symptom dimensions, that potentially map
onto distinct neuronal substrates (Mataix-Cols et al., 2005;
Pinto et al., 2007; American Psychiatric Association D-TF,
2013; Pauls et al., 2014). Examples of obsession-compulsion
pairs in these categories include: (1) intrusive thoughts
regarding harm or doubt, and compulsive checking behavior;
(2) obsessions with symmetry, and compulsive ordering,
counting, and repeating; (3) taboo obsessive thoughts, and
compulsive neutralizing thoughts or behaviors; (4) obsessive
thoughts about contamination and compulsive cleaning and
sanitation; and (5) obsessive thoughts about hoarding paired
with hoarding behavior. However, it should be noted that
hoarding disorder is a separate diagnostic category in the
most recent version of the Diagnostic and Statistical Manual

(DSM-5; Mataix-Cols et al., 2005; Pinto et al., 2007; American
Psychiatric Association D-TF, 2013; Pauls et al., 2014).
Although patients with OCD often have symptoms in multiple
dimensions, and symptom content can fluctuate throughout
the course of illness, obsessive thoughts, compulsive behaviors,
and/or mental rituals are generally present in all OCD
patients.

Affective Dysregulation is a Critical
Component of OCD Pathology
Though the DSM-5 classifies OCD and related disorders as
a separate entity, based on potential unique neurobiological
substrates, it was originally categorized as an anxiety disorder
in older versions of the DSM (Stein et al., 2010; American
Psychiatric Association D-TF, 2013). How to classify OCD,
and its relationship to other anxiety disorders, is a topic of
ongoing debate in the field (Nutt and Malizia, 2006; Craig
and Fineberg, 2008; Bienvenu et al., 2012). Regardless, it is
clear from both clinical presentation and ongoing research that
anxiety is an important component of the disorder. Patients
with OCD compulsively engage in repetitive or ritualistic
behavioral sequences, which are typically performed to alleviate
or avoid the severe distress and anxiety that often accompanies
obsessive thoughts (Stein et al., 2010; Milad and Rauch,
2012; de Haan et al., 2013; Pauls et al., 2014; Ahmari and
Dougherty, 2015). High levels of anxiety, or even panic, may
occur if compulsive behaviors cannot be executed (Nutt and
Malizia, 2006; Stein et al., 2010). Thus, for many patients,
anxiety links the two defining features of OCD: obsessions and
compulsions.

The fact that anxiety typically serves as a key moderator of
OCD symptoms underscores the fact that affective dysregulation
is a critical component of OCD pathology. In keeping with this
idea, deep brain stimulation targeting the nucleus accumbens
(NAc) core has been found to improve both obsessive-
compulsive symptoms and anxiety (Mantione et al., 2015).
Additionally, cessation of NAc deep brain stimulation worsens
scores on the Yale-Brown Obsessive Compulsive Scale (YBOCS)
and the Hamilton Anxiety Rating Scale (HAM-A; de Koning
et al., 2011; Ooms et al., 2014). Improvements in both obsessive-
compulsive and affective symptoms by a single treatment suggest
an underlying connection between affective dysregulation and
OCD, strengthening the idea that emotional dysregulation
is critical to promoting OCD symptoms. This is supported
by epidemiological evidence showing that anxiety disorders,
particularly social anxiety, panic disorder, and generalized
anxiety disorder, have higher than chance levels of comorbidity
in patients with OCD (Black et al., 1992; Nestadt et al., 2001;
Bartz and Hollander, 2006; Murphy et al., 2013). Taken as
a whole, these findings support the presence of convergent
neuropathologies in anxiety and OCD (Nestadt et al., 2003),
and suggest that it is critical to model both components
of the disorder for a more accurate understanding of OCD
pathophysiology. There is also substantial comorbidity between
OCD and major depressive disorder (Nestadt et al., 2001, 2003;
Denys et al., 2004c; Stein et al., 2010), further suggesting that the
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FIGURE 1 | Organization of corticolimbic-ventral striatal network. Stylized coronal section schematics of the corticolimbic inputs to the ventral striatum (VS)
are depicted alongside a schematic of the VS. Input regions are pictured in the left column, and coronal schematics are organized from top to bottom according to
relative anterior to posterior locations. (A) Prefrontal section with the two regions comprising the medial OFC and ventromedial OFC–depicted in blue tones.
(B) Simplified depiction of the amygdala complex in orange and violet tones. The amygdala contains several nuclei, which follow numerous naming conventions. The
left hemisphere contains a more detailed depiction of subregion outlines, and the right hemisphere highlights several nuclei. The lateral, basolateral (also known as
basal nucleus), and basomedial (also known as accessory basal nucleus) nuclei collectively form the basolateral complex. The cortical nucleus is not depicted in this
schematic. (C) The two largest nuclei of the VTA, the parabrachial and paranigral nuclei, are highlighted in green tones. Some definitions of the VTA also include
midline nuclei not depicted, such as the interfascicular, rostral linear, and central linear nuclei. (D) The VS is depicted, with special emphasis on the NAc. The core
and shell regions of the NAc are denoted with arrows and bounded by dashed lines. For reference, the dorsal striatum (caudate/putamen) is notated. All schematics
adapted from the 3rd edition of The Mouse Brain, by Franklin and Paxinos (1997).

pathologic processes underlying OCD impact limbic circuitry.
While obsessions and compulsions are not purely a product of
emotional dysregulation, these observations support the notion
that affective dysregulation–in particular pathologic anxiety–is of
central importance to OCD.

Corticolimbic-Ventral Striatal Models may
Capture the Affective Components of OCD
In this review we focus on the role that converging inputs
from a corticolimbic network to the VS may play in producing

compulsive behaviors in OCD, with several important caveats in
mind: (1) No model is a complete account of a neuropsychiatric
disorder, and a corticolimbic-VS explanation of OCD does
not capture all features of the disorder; (2) OCD is a
heterogeneous disorder. Different symptom clusters may be
produced by different neuronal or circuit abnormalities, and
future work should address how the data and ideas covered
here can be applied to different subtypes of OCD; (3) We
focus on VS circuitry, with the understanding that other brain
regions, including dorsal striatum, are clearly important to the
pathophysiology of OCD, and that circuits including dorsal
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and VS are likely to be cooperative, and not antagonistic
(Insel and Winslow, 1992; Graybiel and Rauch, 2000; Milad
and Rauch, 2012; Burguière et al., 2013, 2015; Gremel and
Costa, 2013; Gillan and Robbins, 2014; Pauls et al., 2014).
Despite these caveats, investigating corticolimbic-VS circuitry
and developing more expansive OCD models that take limbic
information processing into account (Milad and Rauch, 2012;
de Haan et al., 2013; Ahmari and Dougherty, 2015) are
likely to help elucidate the pathophysiologic processes leading
to OCD.

VENTRAL STRIATUM AS A
CORTICOLIMBIC INTEGRATOR

Ventral Striatal Cell Types and Connectivity
Over 90% of the neurons in the VS are medium spiny, γ-
aminobutyric acid (GABA) projection neurons, and several
types of interneurons comprise the remaining population
(Kawaguchi et al., 1995; Kawaguchi, 1997; Meredith, 1999;
Nicola et al., 2000; Kreitzer, 2009; Gerfen and Surmeier,
2011; Gittis and Kreitzer, 2012). Medium spiny neurons (also
known as spiny projection neurons) are the main output
neurons of the striatum, and reside in an intermingled
pair of compartments, known as patch and matrix. These
compartments are identified by distinct immunoreactivity and
gene expression patterns, and medium spiny neurons tend
to have dendritic arbors that are confined to their respective
patch or matrix compartments (Graybiel and Ragsdale, 1978;
Crittenden and Graybiel, 2011). These data suggest striatum
follows complex organizational principles that are critical to
understanding the function of this system. Striatal interneurons
(fast-spiking parvalbumin positive, low-threshold spiking,
calretinin positive, and cholinergic tonically active neurons)
can powerfully influence the function of spiny projection
neurons (Graybiel and Ragsdale, 1978; Kawaguchi et al.,
1995; Kawaguchi, 1997; Tepper and Bolam, 2004; Humphries
and Prescott, 2010; Crittenden and Graybiel, 2011). Some
of these interneuron subtypes have been linked to OCD
(Burguière et al., 2013) and Tourette’s syndrome (Xu et al., 2015)
pathophysiology.

Critical Features of VS Circuitry
The VS contains, and is often synonymous in the literature
with, the NAc core and the NAc shell. Subsets of NAc core
projection neurons may form direct and indirect pathways
homologous to those seen in dorsal striatum, which have
classically been thought to promote or suppress movements,
respectively (Albin et al., 1989). However, it remains unclear how
well this model applies to VS projections (Sesack and Grace,
2010; Kupchik et al., 2015). The NAc core direct pathway is
formed by medium spiny neurons that predominantly express
D1 dopamine receptors, and projects to the substantia nigra
pars reticulata and VTA; the indirect pathway contains medium
spiny neurons expressing D2 receptors, and projects to the
ventral pallidum and subthalamic nucleus (Albin et al., 1989;
Zahm and Brog, 1992; Graybiel, 2000; Zhou et al., 2003;
Humphries and Prescott, 2010; Kravitz et al., 2010; Sesack

and Grace, 2010; Freeze et al., 2013). It is more difficult to
extrapolate the direct and indirect pathway model to the NAc
shell, though some authors have argued that connections with
regions not traditionally included in the classic pathways form
direct and indirect pathways (O′Donnell et al., 1997; Nicola
et al., 2000; Sesack and Grace, 2010; Kravitz and Kreitzer,
2012). As an alternative to conceptualizing the shell within
the direct/indirect pathway framework, it can also be thought
of as an extension of the amygdala complex on the basis
of intermingled and overlapping projection targets, as well as
cytoarchitecture (Zahm and Brog, 1992; Sesack and Grace, 2010;
Zorrilla and Koob, 2013). Therefore, the NAc shell region
is also part of a larger limbic network. Taken together, the
connectivity of the NAc core and shell place the VS in a
key position to integrate behavioral selection and affective
information processing (Kelley, 2004; Balleine and O′Doherty,
2010; Volman et al., 2013).

Among the VS neurons that project to dopamine neurons,
NAc shell neurons preferentially innervate dopamine neurons in
the VTA, while NAc core neurons tend to innervate dopamine
neurons in substantia nigra (Sesack and Grace, 2010). Subsets of
substantia nigra and VTA dopamine neurons project to striatal
subregions more dorsal to the striatal subregions they receive
projections from Haber et al. (2000); Joel and Weiner (2000).
This leads to a flow of information from ventral to dorsal striatal
circuits via communication with dopamine neurons, and enables
information processed within the VS to iteratively influence
dorsal striatal computations (Figure 2).

Corticolimbic Inputs Converge in Ventral
Striatum
The VS inputs detailed in this review, transmit diverse
information (Zorrilla and Koob, 2013), and the capacity of VS
to integrate disparate information content is a defining feature
of the region. Multiple cortical (Finch, 1996; Sesack and Grace,
2010) and amygdala (McGinty and Grace, 2009) inputs converge
onto the same NAc neurons. In fact, up to 5-way convergence
between afferent inputs to the VS can be demonstrated on single
NAc neurons (Finch, 1996). Additional studies demonstrate
basolateral amygdala and subiculum (French and Totterdell,
2003), and medial prefrontal cortex and subiculum (French
and Totterdell, 2002), synaptic inputs on the same NAc
neuron. Furthermore, NAc excitatory post-synaptic potentials
evoked by basolateral amygdala stimulation are blocked by
D1 dopamine receptor activation (Charara and Grace, 2003),
suggesting that VS is an interface between dopamine and
amygdala systems. Projections from the mOFC also terminate
in the same VS regions as projections from VTA and the
basolateral amygdala (Kelley et al., 1982; Ongur and Price,
2000; Voorn et al., 2004; Whiteside et al., 2004), though it
is important to note that there is less direct evidence of
convergence between amygdala and OFC inputs onto single
NAc neurons. Because it is suggested that activation of NAc
projection neurons is likely driven by nearly simultaneous co-
activation of multiple inputs (Pennartz et al., 1994), converging
inputs from these regions are likely to be essential for the VS

Frontiers in Systems Neuroscience | www.frontiersin.org 4 December 2015 | Volume 9 | Article 171

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Wood and Ahmari Corticolimbic-Ventral Striatal Contributions to OCD-Like Behavior

to function as a limbic-behavioral interface (Mogenson et al.,
1980).

Converging Information in Ventral Striatum
could Lead to OCD Symptomatology
By integrating several modalities of limbic information into
striatal circuitry, the VS is a strong candidate for selection and
promotion of compulsive behaviors in OCD patients. In support
of this notion, the rodent VS has long been implicated in aspects
of behavior that may play a role in, or reflect, compulsivity.
These include reward, effort, cue-driven behavior, conditioning,
and drug seeking (Parkinson et al., 1999; Robbins and Everitt,
2002; Salamone and Correa, 2002; Wise, 2004; Kalivas et al.,

FIGURE 2 | Spiraling striatal-dopamine connections from ventral
striatum to dorsal striatum. Some striatal neurons project to dopaminergic
regions of the midbrain, and dopamine neurons in turn innervate the striatum;
there is a general ventral-to-dorsal topography of these connections. This
figure presents a highly simplified schematic, depicting the ultimate flow of
information from ventral to dorsal striatum, and from ventral to dorsal
dopamine systems–VTA and substantia nigra pars compacta (SNpc). Arrows
depicted in darker shades of green denote more dorsal pairs of striatal and
dopamine projections. Note that dopamine regions receive input from a given
striatal region and in turn, innervate a more dorsal region of the striatum.
These connections suggest that there is a general ventral to dorsal flow of
information through striatal-dopamine circuits, allowing information processed
in VS to influence neuronal activity in the entire striatum, through a
poly-synaptic pathway (Haber et al., 2000). This suggests that VS is able to
integrate information transmitted by the corticolimbic inputs highlighted in this
review into the dorsal striatum. Furthermore, these pathways provide one
anatomical mechanism for a complementary relationship between the
corticolimbic-ventral striatal model put forth here, and traditional
cortico-striatal-thalamo-cortical circuit models of OCD. Dopamine neurons
which innervate the same striatal region they receive input from are not
depicted, but do exist.

2005; Ikemoto, 2007; Yin et al., 2008; Carlezon and Thomas,
2009; Russo et al., 2010; Volman et al., 2013). Thus, a strong
line of prior research suggests corticolimbic-VS networks may
contribute to OCD symptomatology.

AMYGDALA SIGNALING IN THE VENTRAL
STRIATUM

Amygdala-Ventral Striatum Circuit
Anatomy
The amygdala complex consists of several subregions, including
the cortico-medial region (cortical, medial, and central nuclei),
and basolateral region (Pitkänen et al., 1997; LeDoux, 2000).
The basolateral region is often further subdivided according
to several schemes, into lateral, basal, and accessory basal
nuclei, or into lateral, basolateral, and basomedial nuclei.
The basolateral subregion of the amygdala issues a dense
glutamatergic projection to the VS. This projection is roughly
topographical, such that rostral regions project to lateral VS
(preferentially to NAc core), and caudal regions project more
medially (preferentially to NAc shell; Kelley et al., 1982; Wright
et al., 1996; Pitkänen et al., 1997; LeDoux, 2000; Voorn et al.,
2004; Sesack and Grace, 2010; Janak and Tye, 2015). Projections
from the basolateral amygdala to the NAc core also tend
to follow compartmental boundaries (Figure 3). Specifically,
basal nucleus projections largely terminate in NAc core patches
(Wright et al., 1996). Since dopaminergic neurons preferentially
receive input from medium spiny neurons that are located in
the patch compartments, including those dopamine neurons
projecting to more dorsal segments of the striatum (Berendse
et al., 1992; Wright et al., 1996; Crittenden and Graybiel,
2011), basal amygdala inputs to the NAc core could influence
information processing throughout the entire striatum and
dopamine system. In contrast, amygdala accessory basal nucleus
projections preferentially terminate in the matrix compartments
of the core (Wright et al., 1996). Many NAc core matrix
neurons project to the substantia nigra pars reticulata, an output
nucleus of the basal ganglia, and therefore could contribute
directly to behavioral selection (Berendse et al., 1992; Wright
et al., 1996). Thus, the VS serves as a region in which limbic
information from the amygdala can directly impact behavior
and modulate the flow of information throughout the entire
striatum.

Amygdala Processes Multiple Forms
of Affective Information
The amygdala facilitates appropriate behavioral responses to
aversive or harmful stimuli (Davis, 1992; LeDoux, 2000), and has
classically been associated with fear (also conceptualized
as threat) conditioning and extinction (LeDoux, 2000,
2007, 2014). According to simplified models of fear/threat
conditioning in rodents, multimodal, threat-related, sensory
information from cortical and thalamic projections is
transmitted directly to the lateral nucleus of the amygdala
(LeDoux et al., 1990), and is subsequently transferred to
other basolateral nuclei. Information then flows from the
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FIGURE 3 | Amygdala projections to ventral striatum. The VS receives a glutamatergic projection from the basolateral amygdala complex. (A) Schematics of VS
and amygdala following the same conventions as Figure 1 are presented for clarity. (B) Substantia nigra par compacta (SNpc), which receives input from projection
neurons in the patch compartments of the NAc core, sends a large number of dopamine projections to the dorsal striatum. The substantia nigra pars reticulata
(SNpr), which is part of the traditional striatal direct pathway and promotes selection of behaviors, is preferentially innervated by projection neurons in the matrix
compartments of the NAc core. This compartmental segregation of NAc-SN projections is followed by the basolateral amygdala complex as well. Projections from
the basolateral nucleus terminate preferentially in the patch compartments of NAc, while projections from the basomedial nucleus terminate preferentially in the matrix
compartments of the NAc. Thus, a basolateral nucleus-NAc core patch- SNpc circuit could regulate dopamine transmission in the striatum. On the other hand, a
basomedial-NAc core matrix- SNpr circuit could modulate information transmission in the direct pathway. Thus, these circuits provide a theoretical foundation for
amygdala-VS circuits to modulate behavioral selection and striatal processing. Dysregulation of this circuit in OCD could potentially contribute to compulsive behavior.

basolateral nuclei to the central nucleus of the amygdala,
which functions as an output to numerous brain regions
(LeDoux, 2007; Janak and Tye, 2015). Lesions of the basolateral
amygdala disrupt acquisition of conditioned fear (Nader et al.,
2001), and central amygdala is commonly associated with
expression of conditioned fear (Hitchcock and Davis, 1986).
Therefore, the amygdala is critical for threat learning and
promoting behaviors driven by fearful situations (LeDoux,
2014).

In addition to a role in fear and threat conditioning, the
amygdala also regulates anxiety. The activity of basolateral
amygdala networks reflects the anxiogenic potential of the
environment, and points to a role for this subregion in processing
anxiety-related information (Likhtik et al., 2014). Recent
reports also suggest that subsets of intra-amygdala projections
bidirectionally modulate anxiety-like behavior (Tye et al., 2011;
Janak and Tye, 2015). Finally, the basolateral amygdala also

contributes to anxiogenic effects through connections with
the ventral hippocampus (Felix-Ortiz et al., 2013). These
findings detail some of the circuits of the basolateral amygdala
that contribute to anxiety-related behaviors. Though these
projections have not been fully mapped, and their effects on
information processing in VS are not completely understood,
it is clear that interconnected basolateral amygdala networks
modulate anxiogenic and anxiolytic states. These same networks
could convey anxiety-related information to VS, which could
directly impact behavioral selection and reinforcement processes
important to OCD.

Early amygdala lesion studies suggested that amygdala
is involved in numerous aspects of cognition, and is not
limited to processing aversive information (Zorrilla and
Koob, 2013; Janak and Tye, 2015). Specifically, basolateral
amygdala, and its projections to the VS, are necessary for
some forms of reward-related Pavlovian and instrumental
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behavior (Cador et al., 1989; Everitt et al., 1989; Hiroi and
White, 1991; Hatfield et al., 1996; Setlow et al., 2002; Stuber
et al., 2011), and neurons in the basolateral amygdala also
respond to rewarding stimuli (Schoenbaum et al., 1999; Paton
et al., 2006; Morrison and Salzman, 2010), indicating that
the same regions that drive fear learning also contribute to
appetitive learning. A growing appreciation for the complexity
of the amygdala complex has resulted in a more nuanced
understanding of this region’s role in fear learning, appetitive
learning, and value encoding (Janak and Tye, 2015), and
it is clear that the amygdala promotes adaptive behavioral
responses to both positive and negative environmental
stimuli.

Dysregulation of Emotional Information
Processing in Amygdala could Contribute
to Compulsivity
By transmitting information related to anxiety, fear, and
reward to the VS, the amygdala regulates how affect and
motivation influence adaptive behavior. As mentioned
above, compulsivity is often driven by anxiety, threat
avoidance, or aberrant motivation in OCD patients (Milad
and Rauch, 2012; Pauls et al., 2014; Ahmari and Dougherty,
2015). Since the amygdala is central to processing these
forms of information (Janak and Tye, 2015), aberrant
communication of anxiety-related information from
amygdala to VS could mediate anxiety-driven compulsive
behavior. Likewise, active threat avoidance behavior
requires intact basolateral amygdala and VS (Bravo-
Rivera et al., 2014), suggesting that activity in this circuit
could lead to excessive avoidance behavior in OCD.
Collectively, this suggests that amygdala is central to multiple
aspects of cognition that are impaired in OCD, and that
amygdala dysregulation may contribute to compulsivity
by imparting excessive affective influence on behavioral
selection.

In support of this theory (though less commonly
highlighted in the literature), structural and functional
amygdala abnormalities are associated with OCD. For
instance, decreased amygdala volume has been shown in
OCD patients (Szeszko et al., 1999; Pujol et al., 2004).
Functional imaging studies have also suggested that
amygdala representations of neutral or positive valences
may be blunted in OCD. Specifically, when OCD patients
view neutral faces (Cannistraro et al., 2004; Britton et al.,
2010) or are anticipating rewards (Marsh et al., 2015),
amygdala is hypoactive compared to controls (but see
Simon et al., 2014). In contrast, amygdala is hyperactive
in patients viewing images of fearful expressions; the
degree of activation is correlated with symptom severity
(Via et al., 2014). Likewise, threatening stimuli (Admon
et al., 2012), and symptom provoking stimuli (Breiter
et al., 1996; Mataix-Cols et al., 2004; van den Heuvel et al.,
2004; Simon et al., 2010, 2014; Milad and Rauch, 2012)
overactivate the amygdala of OCD patients. It should be
noted, however, that these findings have not been uniformly

replicated (Cannistraro et al., 2004). While it is unclear
what underlies these discrepancies in the literature, a
substantial amount of data suggest that threatening, fearful,
and symptom provoking stimuli are over-represented in
amygdala in OCD.

All told, these data suggest that the amygdala can be
either hyperactive or hypoactive in patients with OCD. This
could lead to low signal-to-noise representations of neutral
or positive affective information. In other settings, such as
during symptom provocation or when dealing with threatening
stimuli, amygdala could be overactive and produce excessive
emotional processing in VS. These disruptions could lead
to weakened representations of neutral stimuli (for example,
items in a room), but excessively strong representations
of symptom provoking stimuli (for example, a trashcan
or a messy bathroom). The effect of this imbalance in
representational strength could ultimately lead to selection of
behaviors in striatal circuits on the basis of disproportionately
strong emotional representations. In this example, the sight
of a trashcan or bathroom mess could provoke cleaning
and sanitation compulsions. Thus, through connections with
the VS, the amygdala may play a critical role in OCD
symptoms.

VENTRAL TEGMENTAL AREA SIGNALING
IN THE VENTRAL STRIATUM

Ventral Tegmental Area Anatomy
Preclinical anatomical studies indicate that the VTA is a
functionally and anatomically heterogeneous structure which
contains a pair of major nuclei, the parabrachial and paranigral,
and is often described as containing several smaller nuclei,
including the central linear, rostral linear, and interfasicular
nuclei (Oades and Halliday, 1987; Ikemoto, 2007; Sanchez-
Catalan et al., 2014). Approximately two thirds of the
neurons in the VTA are dopaminergic, and the majority
of the remaining neurons are GABAergic (Swanson, 1982;
Nair-Roberts et al., 2008; Sesack and Grace, 2010). While
there are local GABAergic connections in the VTA, many
VTA GABA neurons are projection neurons (Van Bockstaele
and Pickel, 1995; Carr and Sesack, 2000; Omelchenko and
Sesack, 2009). In recent years, it has come to light that
VTA also contains a sizeable population of neurons that
release glutamate, and that dopamine neurons can co-release
glutamate and GABA (Yamaguchi et al., 2007, 2011; Hnasko
et al., 2010; Stuber et al., 2010; Tritsch et al., 2012). Thus,
the VTA projects a chemically diverse signal to regions
such as the prefrontal cortex, amygdala, and VS (Swanson,
1982; Van Bockstaele and Pickel, 1995; Carr and Sesack,
2000). The various VTA projections are intermingled and
have differing electrophysiological properties and protein
expression patterns, largely along a mediolateral gradient
(Lammel et al., 2008, 2014; Volman et al., 2013). These
anatomical characteristics enable the VTA to subserve a
diverse assortment of cognitive functions in downstream brain
regions.
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Dopaminergic Signaling in Ventral Striatum
Directly Contributes to Behavioral
Selection
The VS receives a dense dopaminergic projection from the
VTA, and a much less studied GABAergic projection (Swanson,
1982). The firing patterns of dopamine neurons, including those
projecting to the VS, encode errors in the predicted value
of rewards (Ljungberg et al., 1992; Schultz et al., 1993, 1997;
Montague et al., 1996; Schultz, 1998). This signal establishes
learned associations and guides behavioral selection (Houk et al.,
1995; Montague et al., 1996; Schultz et al., 1997; Schultz, 1998;
Waelti et al., 2001; Joel et al., 2002; Morris et al., 2006; Roesch
et al., 2007; Glimcher, 2011). Moreover, this projection subserves
various aspects of reinforcement and motivation (Schultz, 1998;
Wise, 2004; Salamone et al., 2007). Thus, VTA innervation of VS
strongly modulates and sustains behavioral output.

Dopamine is released in the VS in response to rewarding
or reward-predictive stimuli, including food and drugs of abuse
(Phillips et al., 2003; Roitman et al., 2004, 2008; Stuber et al.,
2005; Brown et al., 2011; McCutcheon et al., 2012), and often
decreases the activity of VS medium spiny neurons (Peoples and
West, 1996; Cheer et al., 2005; Roitman et al., 2005; Wheeler
and Carelli, 2009). Some studies, however, have reported that
subsets of VS projection neurons are also activated by aversive
stimuli (Setlow et al., 2003; Roitman et al., 2005; Kravitz and
Kreitzer, 2012), which highlights the heterogeneity of striatal
representations. Taken together, these data suggest that the
activity of VS medium spiny neurons is strongly modulated by
dopaminergic input, which contributes to behavioral selection
and value representation.

Multiple Lines of Clinical Evidence Suggest
that OCD is Characterized by a
Hyperdopaminergic State
There are several lines of evidence for dopamine system
pathology in OCD patients. Several studies have reported
reduced D1 and D2 dopamine receptor binding in striatum
(Denys et al., 2004b; Hesse et al., 2005; Nikolaus et al., 2010;
Klanker et al., 2013), including in the VS (Figee et al., 2014),
which is hypothesized to be a compensatory response to
increased dopaminergic tone (Klanker et al., 2013). These
findings go hand-in-hand with several pharmacological findings.
For instance, cocaine, amphetamine, and methylphenidate,
which are indirect dopamine agonists, can induce or
exacerbate OCD symptoms (Denys et al., 2004a). When
dopamine antagonists are used to augment selective serotonin
reuptake inhibitors, symptom improvement is sometimes
observed; this is especially the case in patients with comorbid
tic disorder (McDougle et al., 2000; Denys et al., 2004a;
Klanker et al., 2013). Thus, abnormalities in the dopamine
system could account for some of the dysfunction observed
in OCD.

Abnormalities in the gene encoding catechol-o-methyl-
transferase (COMT), which metabolically terminates dopamine
signaling following neurotransmitter release, also suggest that
dopamine signaling may be disrupted in patients with OCD.

A functional allele of COMT that is linked to decreased
metabolism of dopamine is associated with susceptibility to
OCD (Karayiorgou et al., 1997, 1999; Alsobrook et al.,
2002). Additionally, there are significant differences between
distributions of COMT high activity homozygotes, low activity
homozygotes, and heterozygotes in OCD patient and control
populations (Schindler et al., 2000; Niehaus et al., 2001). It should
also be noted that several studies have found no association
between this COMT allele and OCD patients (Denys et al.,
2004a); however, the limited evidence available suggests that
COMT could be hypofunctional in OCD, and may ultimately
lead to hyperdopaminergic signaling (Denys et al., 2004a;
Klanker et al., 2013).

While a substantial proportion of the available evidence
suggests that OCD is associated with a hyperdopaminergic
state, there are also findings that are generally suggestive of a
more complex relationship between OCD symptomatology and
dopamine. For instance, in spite of the above findings suggesting
that excessive dopamine signaling may contribute to pathology
in OCD, there is: (1) evidence that dopamine antagonism can
also exacerbate symptoms or fail to produce a clinical benefit
(Denys et al., 2004a; Klanker et al., 2013; Simpson et al., 2013);
and (2) imaging data suggesting both increased and decreased
dopamine transporter binding (Denys et al., 2004a; van der
Wee et al., 2004; Hesse et al., 2005; Klanker et al., 2013).
These inconsistencies suggest that unidirectional disruptions
of dopaminergic signaling may not provide a straightforward
explanatory model of OCD. We therefore theorize that OCD
may be associated with a trend towards excessive dopaminergic
signaling, with the understanding that this literature is
evolving, and must account for some inconsistencies moving
forward.

Relationship between Dopamine Signaling
and Repetitive Behaviors in Animal Models
One approach to clarifying the role of dopamine signaling
in OCD is to employ animal models and systematically
probe the function of the dopamine system. There is
clear evidence that modulating dopamine signaling in
the striatum leads to abnormal repetitive behaviors in
animals. Knockdown of the dopamine transporter leads
to excessive grooming in rodents (Berridge et al., 2005),
and D1 agonists and partial agonists also produce a similar
effect (Molloy and Waddington, 1987; White et al., 1988).
Likewise, when amphetamine is injected directly into the
VS, it produces stereotyped and repetitive behaviors (Colle
and Wise, 1991). Quinpirole, a D2/D3 dopamine receptor
agonist, has also been used to model compulsive behaviors
associated with OCD, and electrical stimulation of the
VS alleviates the increased frequency of these abnormal
behaviors (Einat and Szechtman, 1995; Joel, 2006; Mundt
et al., 2009). Thus, dopaminergic manipulations produce
repetitive behaviors that may be used to model some
aspects of compulsivity in OCD patients. While these
manipulations do not reproduce all aspects of the disorder,
they are important tools for understanding the neuronal
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underpinnings of some of the behavioral symptoms seen
in OCD.

All told, dopaminergic inputs to the VS likely contribute
to selecting and sustaining appropriate behavioral sequences,
in part through representations of action value and through
reinforcement processes. A hyperdopaminergic state, however,
could lead to excessive valuation of a behavior, or repetitive
selection of a behavior. With this in mind, dopamine signaling in
the VS is well positioned to directly contribute to OCD-related
compulsivity. VTA projections to the VS may be particularly
relevant to OCD because this pathway is classically associated
with producing and sustaining effortful behaviors, mediating
locomotor arousal, and energizing behavioral responses
(Salamone and Correa, 2002; Wise, 2004; Salamone et al.,
2007). Thus, through several mechanisms, dysregulation of this
circuitry could contribute to compulsive behavior.

ORBITOFRONTAL CORTEX SIGNALING IN
THE VENTRAL STRIATUM

Orbitofrontal Cortex Projections
The OFC receives a wide variety of inputs from sensory
structures, the subiculum, entorhinal cortex, and amygdala, so
that the external world is richly represented and integrated
with contextual, limbic, and sensory information (Krettek and
Price, 1977; Groenewegen et al., 1997; Ongur and Price,
2000). Rodent prefrontal regions are identified on the basis
of thalamic projections (Rose and Woolsey, 1948; Leonard,
1969; Uylings et al., 2003). Thus, the lateral orbitofrontal,
ventrolateral orbitofrontal, and agranular insular cortices are all
considered lateral OFC (Ongur and Price, 2000; Zald and Rauch,
2006; Price, 2007), while the medial OFC and ventromedial
OFC comprise the mOFC. It is important to clarify that
the term ‘‘medial OFC’’ can be used to refer to a specific
subregion in the prefrontal cortex, or can refer to the pair
of aforementioned regions. Throughout this review the term
is used in the latter sense. Based on connectivity, the mOFC
regions bear a stronger resemblance to other medial prefrontal
cortex regions, such as infralimbic and prelimbic cortex, than
to the lateral OFC (Zald and Rauch, 2006; Price, 2007).
Specifically, the mOFC preferentially innervates the VS, while
lateral OFC innervates more dorsal components, particularly
the centromedial striatum (Ongur and Price, 2000; Price, 2007;
Schilman et al., 2008; Hoover and Vertes, 2011; Rodriguez-
Romaguera et al., 2015). The striatal projection patterns of lateral
OFC and mOFC thus implicate these structures in distinct
cognitive operations.

Medial Orbitofrontal Cortex Regulates
Behavioral Selection and Value-Based
Information Processing
The mOFC is closely linked to outcome-based behavioral
selection. A thorough meta-analysis of 87 functional imaging
studies in humans revealed an association between mOFC
activation and positive valence stimuli, such as reward
(Kringelbach and Rolls, 2004). This region is also implicated

in evaluating and choosing between actions, as demonstrated
by the fact that mOFC lesions impair the ability of non-
human primates to select the most advantageous option when
comparing differently-valued outcomes (Rudebeck and Murray,
2011; Milad and Rauch, 2012; Noonan et al., 2012). Further
implicating mOFC in choosing between behavioral options are
lesion studies in rodents which demonstrate excessive risky
behavioral choices (Stopper et al., 2014). Finally, in support of
the idea that mOFC encodes information governing behavioral
selection, a meta-analysis of human imaging studies suggests
that mOFC represents a common neuronal currency for rewards
and punishments, so that different modalities of value are
encoded in the same networks (Levy and Glimcher, 2012).
These observations suggest that mOFC could subserve decision
making by integrating information about the outcomes that
could result from an animal’s competing behavioral options
(Rudebeck and Murray, 2014). Congruent with this view, mOFC
has been implicated in selecting and adapting goal-directed
behaviors and transforming value representations into behavior
(Hollerman et al., 2000; Balleine and O′Doherty, 2010; Gourley
et al., 2010). Thus, mOFC dysregulation could contribute
to OCD symptoms by encoding aberrant representations of
value comparisons between behaviors, leading patients with
OCD to engage in compulsive behaviors despite negative
consequences.

Medial OFC is Structurally and Functionally
Altered in OCD
Before discussing OFC abnormalities in OCD patients, it is
important to note that some studies do not clearly differentiate
between medial and lateral OFC, and thus focusing exclusively
on mOFC in the human imaging literature can be challenging.
OCD is generally associated with hyperactivity in OFC (Saxena
et al., 2001; Whiteside et al., 2004), and a meta-analysis of
imaging studies confirmed that abnormalities in OFC activity
are consistently observed in OCD patients (Menzies et al.,
2008). Early functional imaging studies reported increased
activity in bilateral OFC (Alptekin et al., 2001), left OFC
(Swedo et al., 1989), and orbital gyrus (Baxter et al., 1988)
of OCD patients at rest; the magnitude of OFC metabolic
activation was correlated with clinical ratings of symptom
severity (Swedo et al., 1989). Supporting suggestions that
OFC hyperactivity may lead to obsessions and compulsions,
symptom provocation in OCD patients increases bilateral
OFC metabolic activity (Rauch et al., 1994). Furthermore,
left OFC activity is increased relative to resting state when
OCD patients, but not healthy controls, are exposed to stimuli
designed to evoke feelings of disgust (Stein et al., 2006).
Thus, most evidence suggests that increased OFC activity
is a component of OCD pathophysiology (Saxena et al.,
2001). In support of this idea, selective serotonin reuptake
inhibitors, which are first-line treatments for OCD, decrease
OFC metabolic activity; activity in both lateral and mOFC is
more strongly reduced in treatment responsive patients than
non-responsive patients (Swedo et al., 1992; Saxena et al., 1999,
2002).
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However, hyperactivity in the OFC of OCD patients has
not been uniformly reported. Functional imaging studies have
reported decreased OFC metabolic activity during several
cognitive tasks. For example, during a stop signal task, which
measures inhibitory control, adolescents with OCD show
decreased metabolic activity in right OFC vs. healthy controls
(Woolley et al., 2008). During reversal learning tasks, metabolic
activity in lateral OFC and mOFC is also reduced in patients
with OCD and their family members, but not healthy controls
(Remijnse et al., 2006; Chamberlain et al., 2008). Further
mechanistic studies in both humans and animals are needed
to relate hyperactivity at rest and during symptom provocation
(Insel and Winslow, 1992; Saxena et al., 2001; Nakao et al., 2005;
Milad and Rauch, 2012; Ahmari and Dougherty, 2015) with these
reports of hypoactivation during cognitive tasks. One potential
explanation is that OFC representations may have decreased
signal-to-noise ratios in OCD patients (greater activity levels at
baseline and blunted activation when the region is engaged).
This could ultimately lead to improper value-based behavioral
selection, and potentially contribute to the symptoms manifested
in OCD.

OCD is also generally associated with structural OFC
abnormalities–specifically decreased OFC volume, including in
mOFC, compared to healthy controls (Szeszko et al., 1999; Pujol
et al., 2004; Rotge et al., 2009). Furthermore, treatment-refractory
patients have decreased OFC volume compared to treatment-
responsive cases (Atmaca et al., 2006). These findings, however,
have not been uniformly replicated (Kim et al., 2001); several
factors may underlie this contradiction (for further details, see
Ahmari, 2015). Because this review focuses on interregional
communication with the VS, reports of increased structural
and functional connectivity between mOFC and VS are of
particular interest (Sakai et al., 2011; Nakamae et al., 2014).
This increased connectivity significantly predicts YBOCS score
(Harrison et al., 2009), strongly suggesting a relationship between
signaling in these regions and OCD symptoms. However, care
must be taken interpreting these results, as a recent study
found a significant negative correlation between VS and mOFC
connectivity and YBOCS score (Posner et al., 2014). In total,
these findings suggest that patients with OCD have both aberrant
OFC activity and altered anatomy and connectivity with other
brain regions.

These data support the idea that OFC dysregulation may
produce abnormal repetitive behaviors, in part through mOFC
signaling in the VS. Potential mechanisms include aberrant
processing within mOFC leading to corrupted representations
of value related information, which the VS utilizes for action
selection. A second complementary idea is that mOFC activity
in OCD patients could preferentially drive direct pathway
VS neurons, ultimately leading to aberrant and repetitive
behavioral output (Pauls et al., 2014). Although OFC control
over striatal production of compulsive behaviors is classically
associated with dorsal regions of the striatum (Fineberg et al.,
2010; Albelda and Joel, 2012), the data summarized above
suggest a more complex view, by strongly implicating the
mOFC and its VS connections in the production of OCD
symptoms.

CORTICOLIMBIC-VENTRAL STRIATUM
NETWORKS INVOLVED IN THE
PRODUCTION OF COMPULSIVE
BEHAVIORS

In the final section of this review, we will discuss the role
of corticolimbic-VS networks in instrumental and Pavlovian
behaviors, and explore the relationship of these behaviors to
OCD. We then theorize how dysfunction in this network could
contribute to compulsive behaviors in OCD. Last, we discuss how
the VS may be both a locus of pathology and site of effective
intervention in OCD.

Goal-Directed, Habitual, and Pavlovian
Behaviors
Behaviors can be classified according to the relationship between
an action and the resulting outcome of that action. Instrumental
behaviors, which require execution of an action in order to
earn an outcome, can be either goal-directed or habitual. Goal-
directed behaviors are those that are selected according to
a representation of the contingency (the causal relationship)
between the action and the resulting outcome, and the value
of the outcome. An animal will stop selecting a goal-directed
behavior if the outcome is devalued, or if the contingency
between the action and outcome is degraded. In contrast,
habitual behaviors are highly automatized behaviors that are
triggered by stimuli in the environment, despite devaluation
of the outcome, or degradation of the contingency between
actions and outcomes (Balleine and Dickinson, 1998; Daw
et al., 2005; Yin et al., 2008; de Wit and Dickinson, 2009).
Pavlovian behaviors are elicited by a stimulus predicting an
outcome; the animal’s performance of the behavior does not
cause outcome delivery (Balleine and Dickinson, 1998; Yin
et al., 2008; de Wit and Dickinson, 2009). Distinct neural
mechanisms may contribute to these three forms of behavioral
selection.

Compulsive Behaviors in OCD may be
Mediated by Several Selection
Mechanisms
Compulsive behaviors in OCD are an example of how
neuropathological processes can subvert behavioral selection,
and how dysregulation of behavioral selection may contribute to
debilitating symptomatology. The specific mechanisms involved
are an open question, as it is unknown to what extent
compulsive behaviors in OCD are selected by habit-like
mechanisms (Graybiel and Rauch, 2000; Gillan and Robbins,
2014; Burguière et al., 2015), goal-directed mechanisms (McFall
and Wollersheim, 1979; Rachman, 1997), or both (Piantadosi
and Ahmari, 2015). Several lines of evidence also suggest that
Pavlovian processes may contribute to OCD symptomatology
(Milad et al., 2013; McLaughlin et al., 2015). Thus, multiple
behavioral selection processes could contribute to compulsive
symptoms (Sjoerds et al., 2014; Piantadosi and Ahmari, 2015).
The corticolimbic-VS network is well positioned to modulate
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aspects of habitual, goal-directed, and Pavlovian behavior in
OCD, as discussed further below.

The Corticolimbic-Ventral Striatal Network
Subserves Performance of Goal-Directed
Behavior
The VS guides performance of goal-directed behaviors (Cardinal
et al., 2002a; Yin et al., 2008; Hart et al., 2014), and the importance
of this region is most apparent when greater levels of motivation
or behavioral organization are required. For instance, while NAc
core lesions do not disrupt performance of actions resulting
in immediate delivery of outcomes, acquisition is impaired
when reinforcement is delayed (Cardinal et al., 2002b; Cardinal
and Cheung, 2005). Additionally, depleting dopamine levels
in the NAc selectively impairs behavioral performance when
large numbers of actions are required (Aberman and Salamone,
1999). These findings suggest that VS, in conjunction with VTA
dopamine neurons, encodes information critical for performing
behavior across delays in time and until behavioral requirements
are fulfilled. Thus, the VS facilitates and sustains performance of
complex goal-directed behaviors.

While some earlier work suggested that NAc does not
support sensitivity to outcome value (Balleine and Killcross,
1994), lesions of the NAc core cause animals to respond
equivalently for devalued and non-devalued outcomes (Corbit
et al., 2001), suggesting that NAc core facilitates selective
outcome value-based performance. Disconnection of basolateral
amygdala and NAc core also produces deficits in selective
outcome value sensitivity (Shiflett and Balleine, 2010). As noted
above, medial orbitofrontal lesions impair value comparisons
between different outcomes (Noonan et al., 2010). These findings
suggest that the VS, in conjunction with the mOFC, dopamine
system, and basolateral amygdala, could underlie outcome-value
comparisons, behavioral selection, and performance of goal-
directed behavioral choice (Figure 4).

Theoretical Contributions of
Corticolimbic-Ventral Striatal
Dysregulation to Habitual and
Goal-Directed Behaviors
Habitual behaviors often emerge when regions supporting goal-
directed behaviors are compromised (Balleine and Dickinson,
1998; Killcross and Coutureau, 2003; Daw et al., 2005; Yin et al.,
2005, 2006; Yin and Knowlton, 2006; Gruner et al., 2015). As
discussed in the preceding sections, OCD is associated with
many examples of disrupted information processing (Figure 4)
in networks supporting goal-directed behavior, which could
potentially bias behavior toward habit-like selection via improper
or ineffective evaluation and representations of actions and
outcomes (Gruner et al., 2015). Consistent with this idea, OCD
patients form habits more readily than healthy controls (Gillan
and Robbins, 2014; Gillan et al., 2014, 2015). VS connections
with dopamine neurons projecting to dorsal striatum could form
a polysynaptic pathway to dorsal striatal regions commonly
associated with habitual behavior. Through this pathway,

dysregulation in VS could theoretically contribute to habit-like
production of compulsive behaviors in OCD.

Damage to the VS also alters goal-directed decision-making
(Floresco et al., 2008). For instance, NAc core lesions cause rats
to make risk-averse choices (Cardinal and Howes, 2005) and
prefer smaller rewards at shorter delays (Cardinal et al., 2001;
Mar et al., 2011). Compromised VS information processing in
patients with OCD could therefore impair or alter decision-
making processes. In turn, this could lead to goal-directed
selection of compulsive behaviors, if the patient believes their
compulsions are either less risky (because of beliefs that
performing the compulsion will prevent the outcome associated
with the obsessive thought), or more likely to lead to immediate
reward (because performing the compulsion leads to immediate
anxiety relief). The basic premise of these notions is consistent
with cognitive and goal-directed models of compulsive behavior
in OCD (Piantadosi and Ahmari, 2015). Synthesizing these
points with those mentioned in the preceding paragraph suggests
that disrupted VS activity could theoretically lead to selection
of compulsive behaviors via either habit-like or goal-directed
mechanisms.

The Corticolimbic-Ventral Striatal Network
Underlies Pavlovian Influences on
Behavior
Strong evidence shows that VS is essential for Pavlovian
conditioning (Cardinal et al., 2002a; Yin et al., 2008),
including studies demonstrating that lesions of the NAc core
impair Pavlovian autoshaping (Parkinson et al., 2000), and
produce deficits in reestablishing pre-lesion Pavlovian approach
(Parkinson et al., 1999). As discussed below, Pavlovian learning
requires converging limbic inputs from amygdala andVTA to the
VS, which emphasizes the importance of interregional signaling
for the role of VS in cognition (Kelley, 2004).

The VTA is particularly important in this regard, because
it is the main source of dopamine for the VS. Several lines
of evidence highlight the contributions of this projection
system to Pavlovian behavior. First, dopamine receptor blockade
disrupts acquisition and performance of conditioned approach
to stimuli associated with reward (Di Ciano et al., 2001).
Similarly, lesioning dopaminergic inputs to the NAc with 6-
hydroxydopamine impairs acquisition of Pavlovian approach
behavior (Parkinson et al., 2002), and post-training infusion
of D1 dopamine receptor antagonists blocks consolidation of
Pavlovian associations (Dalley et al., 2005). Taken together,
this suggests that VS and the VTA dopaminergic neurons that
project to the VS form part of a network mediating Pavlovian
conditioning.

The amygdala also serves as an ideal candidate to support
Pavlovian conditioning, because disconnecting basolateral
amygdala and VS via contralateral lesions disrupts performance
of conditioned place preference (Everitt et al., 1991), and
impairs both autoshaping (Chang et al., 2012) and second
order conditioning (Setlow et al., 2002). Thus, the basolateral
amygdala’s connections to the VS also strongly contribute to
Pavlovian conditioning.
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FIGURE 4 | Theoretical model of how dysregulated information processing in corticolimbic inputs to ventral striatum could underlie compulsive
behavior in OCD. Each of the corticolimbic inputs highlighted in this review are depicted in the left column. VS is depicted in the right column for illustrative
purposes. Bulleted text highlights information that is processed by each input region, and could theoretically be a source of dysregulated information processing in
VS of OCD patients. (A) Value comparisons and decision-making are important functions of mOFC. Aberrant representations of this information could lead
individuals with OCD to improperly evaluate behavioral choices. This could, in turn, lead to inflated valuation, and subsequent selection of compulsive behaviors.
Alternatively, these aberrant representations could render goal-directed decision making ineffective, and bias behavioral control toward habit-like selection of
compulsive behaviors. (B) The amygdala processes threatening/fearful stimuli, rewarding stimuli, and aversive stimuli. Aberrant representations of this information in
OCD could lead to improper behavioral selection and compulsive behavior. As summarized in the text, amygdala is often hypoactive in response to rewarding or
neutral stimuli, and hyperactive in response to threatening or symptom-provoking stimuli, which could lead to excessive influence of these stimuli over behavior. This
is consistent with clinical observations of provocation of compulsive behaviors by environmental stimuli that are perceived as threatening. Amygdala projections to VS
are particularly important to Pavlovian instrumental transfer (PIT). Symptom provoking stimuli could theoretically acquire an influence over behavior through PIT, and
thus, dysregulation of PIT could also contribute to OCD. Amygdala is also important for processing anxiety, which is associated with the generation and/or
maintenance of compulsive behaviors in OCD; this link places special emphasis on amygdala-based information processing in OCD. (C) The VTA is a major source
of dopamine input to VS, and processes reinforcement signals which inform behavioral selection. This input is also necessary for sustaining behavioral sequences
and effortful behavior. Considerable evidence suggests that OCD is associated with dysregulation of the dopamine system, potentially leading to a
hyperdopaminergic state. These disruptions would theoretically impact information processing necessary for selecting and sustaining behavioral sequences, and
could promote compulsive behavioral patterns. VTA input to VS is also necessary for PIT, and a hyperdopaminergic state could also contribute to the ability of
environmental stimuli to impact behavioral selection in OCD.

Pavlovian associations can influence performance of
instrumental behaviors via the process of Pavlovian to
instrumental transfer (PIT), which occurs when presentation
of a conditioned stimulus associated with reward increases
instrumental responding (Estes, 1948). Lesion studies
demonstrate that NAc core and shell support PIT (Corbit
et al., 2001; Corbit and Balleine, 2011). Dopamine bidirectionally
modulates PIT, as VTA inactivation attenuates PIT (Murschall
and Hauber, 2006; Corbit et al., 2007), and intra-accumbens
microinjections of amphetamine, an indirect dopamine agonist,
enhance PIT (Wyvell and Berridge, 2000). Amygdala projections
to the VTA also contribute to PIT (Corbit and Balleine, 2005;
Shiflett and Balleine, 2010). Finally, OFC lesions decrease PIT,
though it is unclear if this effect generalizes to both medial
and lateral OFC (Ostlund and Balleine, 2007a,b; Balleine et al.,
2011). Thus, the combined network of VS, amygdala, VTA, and

OFC produce a motivational effect of Pavlovian associations on
performance of instrumental behaviors.

Dysregulation of Corticolimbic-Ventral
Striatal Networks could Promote Pavlovian
Influences on Compulsive OCD
Symptomatology
It is critical to note the impact of Pavlovian motivational
influences on behavioral selection, because abnormally high
motivation to select a behavior may be a critical feature of
compulsivity (Sjoerds et al., 2014; Piantadosi and Ahmari, 2015).
For instance, symptom-provoking stimuli may have excessively
strong conditioned associations with aversive outcomes (Simon
et al., 2010; Ludvik et al., 2015). These stimuli could, in turn, bias
behavioral selection and motivate compulsive behavior through
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PIT of aversive associations, or Pavlovian fear conditioning-
like processes (Figure 4). The abnormally strong amygdala
activation or hyperdopaminergia that may occur in OCD
patients (Breiter et al., 1996; Denys et al., 2004a; Mataix-Cols
et al., 2004; van den Heuvel et al., 2004; Simon et al., 2010,
2014; Milad and Rauch, 2012; Klanker et al., 2013) could
underlie this motivational influence on behavioral selection.
This notion is in line with previous suggestions that the
corticolimbic regions addressed in this review process affect
and value, and inform behavioral selection in VS (Mogenson
et al., 1980; Cardinal et al., 2002a; Wise, 2004; Sesack and Grace,
2010; Zorrilla and Koob, 2013). Further support for aberrant
Pavlovian information processing in OCD patients is provided
by recent findings of abnormal Pavlovian fear extinction in
patients with OCD (Milad et al., 2013; McLaughlin et al.,
2015). Consistent with the idea that Pavlovian processes could
underlie symptomology, extinguishing negative conditioned
associations via exposure to symptom provoking stimuli has
proven efficacious in OCD patients (Foa et al., 2005; Franklin and
Foa, 2011; Simpson et al., 2013; Lewin et al., 2014; Ludvik et al.,
2015).

PREDICTIONS OF
CORTICOLIMBIC-VENTRAL STRIATAL
MODEL

We have discussed the evidence suggesting that affective
dysregulation is a key component of OCD, as well as evidence
indicative of amygdala, OFC, and VTA pathologies in OCD.
We also highlighted theoretical interregional circuit level
mechanisms that could mediate or contribute to compulsive
behavioral selection. These points lead to at least three additional
predictions: (1) functional and structural abnormalities in
VS should be present in patients with OCD; (2) a causal
relationship should exist between corticolimbic-VS hyperactivity
and compulsive-like behaviors in animal models; and (3)
interventions which target the VS should ameliorate both
affective and compulsive symptoms. The remainder of this
review will explore these points below.

Prediction 1: Structural and Functional
Abnormalities in Ventral Striatum are
Observed in Patients with OCD
In support of this prediction, non-medicated OCD patients
have increased local connectivity in the VS compared to
medicated patients and healthy controls (Beucke et al., 2013).
As assessed by diffusion-weighted imaging, patients with
OCD also have increased connectivity between the VS and
OFC (Nakamae et al., 2014). This finding is key, because it
confirms the presence of aberrant anatomical connectivity
between VS and other networks implicated in OCD. Significant
negative correlations between NAc volume and YBOCS
scores have also been found (Narayanaswamy et al., 2013),
and further suggest that these structural abnormalities play a
key role in the disorder. In addition to aberrant anatomical
connectivity, there is increased resting state functional

connectivity between VS and OFC (Harrison et al., 2009;
Sakai et al., 2011). It should be noted, however, that one study
has shown that VS functional connectivity is not correlated
with symptom severity (Sakai et al., 2011), and that some
groups have reported decreased connectivity between VS
and frontal cortex regions (Admon et al., 2012; Posner et al.,
2014).

In addition to changes in connectivity, VS is also associated
with aberrant task-evoked activity and altered communication
with other brain regions in OCD. Functional imaging studies
demonstrate that during anticipation of a monetary reward,
healthy controls have increased VS activity. In patients with
OCD, however, this activity is significantly reduced (Figee et al.,
2011). Decreased VS activity at reward receipt has also been
found in patients with OCD (Admon et al., 2012). These findings
are critical because they demonstrate dysregulated information
processing in the VS of patients, which confirms localization
of pathophysiological activity to VS in OCD. These findings
also demonstrate abnormal activity related to understanding
the consequences of one’s actions, transferring motivational
information to action selection, and/or reward processing.
Thus, these data support a part of our central thesis: that
dysregulation in corticolimbic-VS networks of patients with
OCD leads to deficits in processing information critical for
selecting behaviors.

Prediction 2: Aberrant Activity in Ventral
Striatal Circuits Causes Compulsive-Like
Behaviors
While it has been hypothesized that dysregulated
communication in corticolimbic inputs to VS could give rise to
compulsive behavior, this is difficult to conclusively prove in
humans. Animal studies can be used to address this hypothesis
by allowing researchers to investigate causal relationships
between abnormal VS inputs and OCD-like phenotypes
(Monteiro and Feng, 2015). To perform a direct test of this
idea, our group recently modeled mOFC-VS hyperactivity using
optogenetics in mice. Brief, repeated, optogenetic stimulation
of mOFC terminals in VS progressively led to the development
of repetitive grooming behavior that may be relevant to OCD
(Ahmari et al., 2013). This repeated stimulation likely led to
pathological plasticity, as acute stimulation did not produce
this behavioral effect, and the behavioral phenotype emerged
in conjunction with an increase in VS firing rates evoked by
OFC stimulation. This finding is especially interesting in light
of the aforementioned increased functional connectivity of
mOFC and VS in patients with OCD, which may be mimicked
by the stimulation-induced plasticity. Importantly, both the
behavioral and electrophysiological effects of stimulation were
reversed by chronic administration of high-dose fluoxetine,
a first line treatment for OCD. Together, these data suggest
that abnormal functional connectivity in this interregional
connection could underlie pathological repetitive behaviors
(Ahmari et al., 2013).

Demonstrating causality, not just correlation, between
hyperactivity in VS circuitry and OCD-like behaviors in a
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rodent model strongly suggests that corticolimbic-VS networks
could directly contribute to compulsive behaviors in OCD. The
spatial specificity of this manipulation is critically important; this
optogenetic paradigm selectively stimulated mOFC connections
in the VS, so that the behavioral effects of the manipulation
originated in a circuit implicated in the pathophysiology
of OCD. While these findings demonstrate that a circuit-
level manipulation of OFC-VS projections produces OCD-like
behaviors in mice (Ahmari et al., 2013), all the corticolimbic
inputs detailed in this review could theoretically contribute to
compulsive behavioral selection; however, this has not been
demonstrated at the present time. While future work should
investigate the relationship between dysregulation throughout
this network and compulsive-like behaviors, the available data
confirm another part of the central thesis of this review:
dysregulation of interregional activity in VS circuits is sufficient
to cause compulsive-like behavior.

Prediction 3: Treatments Targeting Ventral
Striatal Circuits Ameliorate Affective,
Obsessive, and Compulsive Symptoms in
Patients with OCD
A final point suggesting that VS circuits contribute to OCD
symptomatology is that deep brain stimulation (DBS) in the VS
has been shown to improve affective, obsessive, and compulsive
symptomatology. Though it should be noted that targeting
internal capsule, thalamic peduncle, and subthalamic nucleus has
also yielded positive clinical effects (de Koning et al., 2011), we
focus here on data from DBS treatment in the VS to convey that
this is a locus of effective intervention in OCD.

In an early pilot study, unilateral DBS in the NAc shell
improved symptoms in three of four patients tested (Sturm et al.,
2003). A subsequent open trial in 10 adult patients demonstrated
that bilateral DBS in VS/ventral capsule decreased obsessive-
compulsive symptoms from severe to moderate, and improved
depression and anxiety ratings three years after treatment was
initiated (Greenberg et al., 2006). These studies were highly
suggestive that VSDBS could be beneficial for treating OCD. Due
to the inevitable difficulties in studying experimental surgical
procedures, however, these first studies suffered from low
numbers of patients and a lack of double blinding. More recent
work has addressed these issues. A combined multi-site, long-
term study indicates that VS DBS reduced OCD symptoms in
over 60% of the 26 patients who had previously been treatment
resistant (Greenberg et al., 2010). Affective symptoms, such
as anxiety and depression, were improved in these patients as
well (Greenberg et al., 2010). Additionally, Denys et al. (2010)
conducted a study with eight months of open treatment, followed
by a double-blind crossover phase and resumption of open
treatment. Both the open phase and the double-blind crossover
phase were associated with decreases in YBOCS scores, anxiety,
and depression symptoms. Thus, DBS in the VS of OCD patients
has been shown to be an effective treatment for both obsessive-
compulsive and affective symptoms.

In addition to improving symptoms, NAc DBS has been
shown to reduce functional connectivity with lateral and

medial prefrontal cortex (Figee et al., 2013). Thus, DBS can
ameliorate not only symptomatology, but also underlying circuit
abnormalities. NAc DBS has also been found to decrease D2/3
dopamine receptor binding and dopamine metabolite levels
(Figee et al., 2014), and may therefore correct the dopaminergic
abnormalities that have been reported in patients with OCD
(see above). Additionally, abnormal low frequency (2–5 Hz)
oscillations in the frontal cortex are observed in OCD, and NAc
DBS reduces the power of these oscillations (Figee et al., 2013).
Taken together, these data demonstrate that NAc or VS DBS
can reverse neuronal activity disruptions linked to OCD. The
reductions in affective, obsessive, and compulsive symptoms,
coupled with alterations in neuronal activity, all support the
notion that the VS is a locus of effective intervention in OCD.

Insight into the mechanisms underlying this clinical effect
can be provided by animal studies. DBS in rat VS subregions
receiving preferential innervation from mOFC (dorsal to the
anterior commissure) causes increased expression of plasticity
markers and neurotrophic growth factors in the mOFC and
amygdala (Do-Monte et al., 2013; Rodriguez-Romaguera et al.,
2015). It has also been suggested that DBS may override
hyperactivity in cortico-striatal projections (Tass et al., 2003); in
accord with this hypothesis, NAc DBS decreases orbitofrontal
cortex neuronal activity in anesthetized rats (McCracken and
Grace, 2007). Taken together, these data suggest that in rodents,
DBS in some portions of VS produces electrophysiological
changes and plasticity in multiple corticolimbic regions that are
linked to compulsivity.

CLOSING STATEMENTS—THE EMERGING
ROLE OF CORTICOLIMBIC-VENTRAL
STRIATAL NETWORKS IN OCD

In closing, we have examined how abnormal activity in amygdala,
VTA, and mOFC could lead to aberrant or dysregulated affective
representations. These representations may, in turn, impact
information processing in the VS, and promote compulsive
behavioral selection in patients with OCD. Though areas
outside of this network are also clearly important in OCD
pathophysiology, our focus on this corticolimbic-VS network
complements more extensively studied dorsal striatal circuits
by emphasizing the role of affective dysregulation in producing
compulsive behavior. In support of this VS model, anatomical
or functional abnormalities have been observed in all regions
of this network in patients with OCD. Additionally, circuit
level disruptions in the VS produce compulsive-like behavior in
animal models, and VS DBS can ameliorate both affective and
obsessive-compulsive symptomatology in patients with OCD.
Much of the data supporting these final two points has emerged
within the last decade. Thus, this is a critical period in the
study of this severe neuropsychiatric disorder, as new data and
treatment approaches contribute to an emerging understanding
of the role of corticolimbic-ventral striatal networks in OCD.
Collectively, the data highlighted here suggest that the affective
dysregulation that is associated with OCD, and aberrant
information processing by medial orbitofrontal, VTA, and
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amygdala inputs to the VS, are critical to producing OCD
symptoms. Thus, this network plays a potentially critical role,
and is fertile ground for future theoretical and experimental
investigations on the origins and treatment of OCD.
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