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Dynamic regulation of serum aryl
hydrocarbon receptor agonists in MS

ABSTRACT

Objective: Several factors influence the clinical course of autoimmune inflammatory diseases
such as MS and inflammatory bowel disease. Only recently, the complex interaction between
the gut microbiome, dietary factors, and metabolism has started to be appreciated with regard
to its potential to modulate acute and chronic inflammation. One of the molecular sensors that
mediates the effects of these environmental signals on the immune response is the aryl hydrocar-
bon receptor (AHR), a ligand-activated transcription factor with key functions in immune cells.

Methods: In this study, we analyzed the levels of AHR agonists in serum samples from patients
with MS and healthy controls in a case-control study.

Results: We detected a global decrease of circulating AHR agonists in relapsing-remitting MS pa-
tients as compared to controls. However, during acute CNS inflammation in clinically isolated syn-
drome or active MS, we measured increased AHR agonistic activity. Moreover, AHR ligand levels
in patients with benign MS with relatively mild clinical impairment despite longstanding disease
were unaltered as compared to healthy controls.

Conclusions: Collectively, these data suggest that AHR agonists in serum are dynamically modu-
lated during the course of MS. These findings may guide the development of biomarkers to mon-
itor disease activity as well as the design of novel therapeutic interventions for MS. Neurol
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GLOSSARY
AHR 5 aryl hydrocarbon receptor; CIS 5 clinically isolated syndrome; DMT 5 disease-modifying therapy; HEK 5 human
embryonic kidney; IBD 5 inflammatory bowel disease; Kyn 5 Kynurenine; RRMS 5 relapsing-remitting MS.

The Aryl hydrocarbon receptor (AHR) is a key regulator of innate and adaptive immune responses
relevant to the pathogenesis of autoimmune diseases such as inflammatory bowel disease (IBD)
and MS.1–4 AHR is a ligand-activated transcription factor, whose function is regulated by small
agonists that promote AHR activation, nuclear translocation, and the control of specific tran-
scriptional programs.5–14 These agonists are provided by diverse sources, including environmental
pollutants, dietary components, microbial products, as well as endogenous metabolites.3,6–11,13–17

The relevance of endogenous AHR ligands during inflammation has been investigated in dif-
ferent experimental paradigms. L-Kynurenine (Kyn), for example, is an AHR agonist generated by
endogenous metabolism. Of interest, Kyn is increased in the context of inflammation and damp-
ens proinflammatory T-cell responses, limiting immune-mediated pathology.18,19 Similarly, syn-
thetic agonists can also activate AHR to therapeutically modulate the immune response.
Laquinimod is an AHR agonist that shows anti-inflammatory and neuroprotective effects in
the MS model experimental autoimmune encephalomyelitis probably as a result of the inhibition
of NF-kB activation in mouse and human dendritic cells.20–25 Indeed, beneficial effects of laqui-
nimod were also documented in the Benefit-Risk Assessment of Avonex and Laquinimod

From the Ann Romney Center for Neurologic Diseases (V.R., D.M.B., M.A.M., C.C.H., K.R., A.P., P.K., R.B., H.L.W., F.J.Q.), Brigham and
Women’s Hospital, Harvard Medical School, Boston, MA; Molecular Biology Service and MS Unit (M.I.G.S., G.I.), University of Seville, Spain;
and Broad Institute of MIT and Harvard (F.J.Q.), Cambridge, MA.

Funding information and disclosures are provided at the end of the article. Go to Neurology.org/nn for full disclosure forms. The Article Processing
Charge was funded by the NIH.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC
BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used
commercially without permission from the journal.

Neurology.org/nn Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 1

mailto:fquintana@rics.bwh.harvard.edu
http://nn.neurology.org/lookup/doi/10.1212/NXI.0000000000000359
http://nn.neurology.org/lookup/doi/10.1212/NXI.0000000000000359
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://neurology.org/nn


(BRAVO) study, in which laquinimod-treated
patients with MS showed a reduction in the
rate of cerebral atrophy vs placebo that sug-
gested a neuroprotective role of AHR activation
during CNS inflammation.26

Anti-inflammatory AHR ligands are also
provided by the diet and commensal bacte-
ria.2,9 These ligands have the capability to
dampen ongoing inflammation in the colonic
mucosa and improve the outcome of experi-
mental colitis.6 Moreover, alterations in the
composition of the commensal flora as well
as genetic polymorphisms detected in IBD
patients have been shown to impair the gen-
eration of these protective AHR ligands,
ultimately contributing to immune dysregula-
tion and disease pathology.6

AHR agonists provided by the diet and
commensal bacteria also contribute to the con-
trol of CNS inflammation. We have recently
shown that AHR agonists generated by the
interaction of the gut microbiome and host
metabolism cross the blood-brain barrier and
dampen CNS inflammation by activating
AHR in resident cells.5 Accordingly, we de-
tected decreased CNS AHR activation in
a small set of MS samples, as well as decreased
circulating AHR agonists.5,6

In this study, we analyzed AHR agonists in
serum samples from patients with MS and
healthy controls. We detected a decrease in
serum AHR agonists in relapsing-remitting
MS (RRMS) patients.5 However, during acute

CNS inflammation in clinically isolated syn-
drome (CIS) or patients with RRMS, we
detected increased AHR agonist levels as com-
pared to healthy controls or clinically stable
patients with RRMS. Serum AHR agonists in
patients with benign MS with relatively mild
clinical impairment despite longstanding dis-
ease, however, exhibited unaltered AHR ligand
levels as compared to healthy controls. Collec-
tively, these findings suggest that serum AHR
agonists are dynamically modulated during the
course of MS. Low basal levels of circulating
AHR agonists are detected in patients with
MS, probably reflecting deficits associated not
only with the diet and commensal flora but also
in the pathways that control the production
and degradation of AHR agonists. Inflamma-
tion increases AHR agonists in serum, probably
by promoting the production of endogenous
anti-inflammatory metabolites such as Kyn.
Finally, a fraction of patients with MS main-
tains control levels of circulating AHR agonists
concomitant with a more benign disease
course, suggesting a protective role of AHR
ligands in later stages of MS in the absence of
acute inflammation. These observations might
guide the development of novel therapeutics
for MS and biomarkers for risk stratification
and treatment selection in patients with MS.

METHODS Determination of AHR agonistic activity.
Fifteen thousand human embryonic kidney (HEK)-293 cells per

well were plated in 96-well plates (flat bottom). Twenty-four

hours after plating, cells were transfected with equal amounts of

Table Characteristics of patients with MS and controls tested in luciferase assays

Figure Cohorts Females Age, y Disease duration EDSS Treatment

1 Controls (26) 16 (61.5) 29.0 (26.0, 30.3) None None None

RRMS (91) 71 (78) 44.2 (40.0, 48.9) 13.6 (7.8, 17.6) 1.8 (1.0, 2.5) 62 (68.1)

2 Controls (26) 16 (61.5) 31.9 (26.0, 38.0) None None None

RRMS remission (32) 26 (81.2) 44.7 (40.7, 51.6) 14.8 (12.0, 18.8) 1.8 (1.5, 2.0) 11 (34.4)

RRMS active (20) 16 (80) 38.3 (31.2, 49.7) 6.6 (3.0, 11.5) 1.6 (1.0, 2.5) 10 (50)

3 Controls (33) 20 (60.1) 36.2 (26.0, 45.5) None None None

CIS (15) 9 (60) 32.8 (28.1, 34.6) Onset 1.6 (1.5, 2.0) 0

4 Controls (7) 6 (85.7) 48.9 (42.0, 52.0) None None None

Benign (11) 10 (90.9) 54.1 (51.0, 56.0) 21.0 (17.0, 28.0) 0.6 (0, 1.5) 2 (18.2)

Abbreviations: CIS 5 clinically isolated syndrome; RRMS 5 relapsing-remitting MS.
In column “Females,” numbers represent absolute numbers, and in parentheses, percentages of females. In columns Age,
Disease duration, and Expanded Disability Status Scale (EDSS), numbers represent mean, numbers in parentheses rep-
resent 25% and 75% percentiles, respectively. In column “Treatment,” numbers represent absolute numbers of treated
patients, and in parentheses, percentages of patients under immunomodulatory treatment.
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pGud-Luc (Firefly luciferase under control of AHR-responsive

promoter element27) and pTK-Renilla (Renilla luciferase under

control of constitutively active thymidine kinase promoter;

Promega, Madison, WI) using Fugene Transfection Reagent

(Promega) as suggested by the manufacturer. After 24 hours,

transfected cells were incubated with Dulbecco’s modified eagle

medium (DMEM) supplemented with 10% of patient serum in

duplicates. Luciferase activity was analyzed 24 hours later using

the Dual-Luciferase Reporter System (Promega). Firefly luciferase

activity was divided by Renilla luciferase activity and normalized

to their respective control levels, which were set as 100%.

The study was approved by the Institutional Review Board of

Brigham and Women’s Hospital, and all participants provided

written informed consent.

Statistical analysis. Statistical analyses were performed with

Prism software (GraphPad, San Diego, CA), using the statistical

tests indicated in the individual figure legends. No samples were

excluded. The investigators were blinded as to sample cohorts

when performing AHR ligand level measurement and samples

were run in duplicates. p Values of ,0.05 were considered sig-

nificant. All error bars represent SEM.

RESULTS AHR agonistic activity in serum is decreased

in stable RRMS. To study circulating AHR agonistic
activity in MS samples, we first analyzed sera from
a cohort of patients with RRMS and compared
these to sera from healthy controls (table). In these
studies, we used a reporter assay based on HEK-

Figure 1 Detection of aryl hydrocarbon receptor ligands from different sources

Aryl hydrocarbon receptor (AHR) agonistic activity was measured for a collection of AHR li-
gands from exogenous and exogenous sources, including the pollutant 2,3,7,8-Tetrachloro-
dibenzo-p-dioxin (TCDD) (A), the diet-derived ligand Indole-3-carbinol (I3C) (B), ligands
derived from microbial and host tryptophan metabolism Indole (C), Indoxyl-3-sulfate
(I3S) (D), Indirubin (E), and 29Z-Indirubin (F), the mucosal ligand 2-(19H-indole-39-carbonyl)-
thiazole-4-carboxylic acid methyl ester (ITE) (G), and the endogenous metabolite Kynurenine
(H). Data are normalized to 100% (maximum activity per ligand) and are representative of 2
independent experiments.

Figure 2 Aryl hydrocarbon receptor ligand
levels are decreased in patients with
relapsing-remitting MS

Aryl hydrocarbon receptor (AHR) agonistic activity in serum
samples of healthy controls (controls, n5 26) and relapsing-
remittingMS (RRMS) patients (RRMS, n591) was assessed
in duplicates using an AHR ligand–sensitive luciferase
assay. Relative activity was calculated by dividing firefly
luciferase activity (pGud-Luc) by Renilla luciferase activity
(pTK-Renilla). Values are means of duplicate measurements.
Lines represent mean and error bars standard error of the
mean (SEM). Significance levels were derived using the
Student t test. **p , 0.01.
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293 cells cotransfected with a plasmid containing
an AHR-responsive promoter element (xenobiotic
response element) driving firefly luciferase expres-
sion (pGud-Luc27), and a thymidine kinase
promoter-driven Renilla luciferase construct (pTK-
Renilla) to control for transfection efficiency.5

Following transfection, the reporter cells were
incubated with patient serum, and relative luciferase
activities (pGud-Luc/pTK-Renilla) were determined
after 24 hours using a commercial dual-luciferase
assay. This assay detected AHR activation in
response to a broad range of AHR agonists,
including the pollutant 2,3,7,8-Tetrachlorodibenzo-
p-dioxin (TCDD), the dietary ligand Indole-3-
carbinol (I3C), ligands derived from microbial and
host tryptophan metabolism such as Indole,
Indoxyl-3-sulfate (I3S), Indirubin, and 29Z-In-
dirubin, the mucosal ligand 2-(19H-indole-39-car-
bonyl)-thiazole-4-carboxylic acid methyl ester (ITE)
and the endogenous metabolite Kyn (figure 1).
Using this approach, we detected a global decrease in
AHR agonistic activity in RRMS patient sera as
compared to healthy controls (figure 2). Note that
some patients displayed higher serum AHR agonistic
activity than healthy controls, suggesting that addi-
tional disease-linked mechanisms may increase AHR
agonits in patients with MS. However, patient age,
disease duration, or the prevalence of disease-
modifying therapy (DMT) were not associated
with the detected AHR agonistic activity (figure e-1
at Neurology.org/nn).

Circulating AHR agonists are increased during acute

CNS inflammation. AHR ligands are generated during
acute inflammation by different mechanisms
including the enzymatic activity of indoleamine 2,3-
dioxygenase (IDO) which produces anti-inflammatory
Kyn.1–3 Thus, we speculated that acute CNS inflam-
mation such as that linked to MS relapses might
modulate AHR agonists in serum. To test this
hypothesis, we analyzed an additional cohort of patients
with MS with active CNS inflammation as determined
by the presence of cerebral gadolinium-enhancing le-
sions in MRI at the time of sample acquisition and
compared them to a group of patients with RRMS with
nonactive disease (table). While we still detected
a global decrease in AHR ligand levels in comparison to
healthy controls, RRMS active patients displayed
increased AHR serum levels as compared to the samples
from the RRMS remission cohort (figure 3).

To further validate these findings, we used an inde-
pendent cohort of patients who had been recently diag-
nosed with CIS, the first clinical manifestation of
autoimmune CNS inflammation (table). CIS does not
fulfill anamnestic or MRI tomographic criteria for MS
and does not always convert into clinically definitive

MS, the risk of which can be assessed by evaluating
additional biomarkers, such as MRI, CSF composition,
or electrophysiologic studies, among others.28,29

Sera from CIS patients displayed increased AHR
agonistic activity as compared to healthy controls
(figure 4). Together with our findings on patients
with RRMS during a disease relapse, these findings
suggest that acute CNS inflammation results in
increased serum AHR agonist levels.

Unaffected AHR agonist levels in patients with benign

MS. Patients with benign MS present a relatively
mild disease course, despite long disease duration
and limited use of DMTs.30 Based on the anti-
inflammatory effects of AHR in several experimen-
tal models of autoimmunity2,3,13 and potentially
MS,21,22 we analyzed circulating AHR agonist levels
in a cohort of patients with benign MS characterized
by mild clinical impairment despite longstanding
RRMS (“Benign MS,” table). We found that serum
samples from patients with benign MS showed AHR

Figure 3 Aryl hydrocarbon receptor ligand
levels are modulated by disease
activity

Aryl hydrocarbon receptor (AHR) agonistic activity in serum
samples of healthy controls (controls, n 5 26), relapsing-
remitting MS (RRMS) patients during remission (RRMS
remission, n 5 32), and patients with RRMS with active dis-
ease (RRMS active, n5 20) was assessed in duplicates using
an AHR ligand–sensitive luciferase assay. Values are means
of duplicate measurements. Lines represent mean and error
bars standard error of the mean (SEM). Significance levels
were derived using 1-way analysis of variance followed by
the Tukey multiple comparisons test. ****p , 0.0001.
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agonist levels comparable to those detected in con-
trols (figure 5).

DISCUSSION In this work, we analyzed serum levels
of AHR agonists in patients with MS. Our data
suggest that AHR agonist levels are dynamically mod-
ulated during the course of MS: in acute inflamma-
tion, such as the first relapse in CIS or during
relapses in RRMS, AHR agonistic activity is increased
as compared to controls or patients with RRMS with
stable disease, respectively. By contrast, during stable
disease, AHR ligand levels negatively correlate with
disease severity, since patients with benign MS exhibit
higher levels of AHR agonistic activity than patients
with MS suffering from more severe disease (figure 6).

Several factors might contribute to the decrease in
circulating AHR agonists detected in patients with
MS. It has become clear in recent years that genetic
polymorphisms correlate with an increased risk of
developing MS. While most of these polymorphisms
have been linked to the immune system,31–34 meta-
bolic pathways relevant to the uptake, activation, or
degradation of AHR ligands are also affected, as indi-
cated by reported alterations in enzymes that catalyze

the generation of AHR ligands from dietary trypto-
phan.35–37 Moreover, genetically defined factors have
the potential to influence the composition of the gut
microbiome, for example, via the production of mi-
croRNAs or altered cytokine signaling.6,38,39 Finally,
the genetic background of patients with MS may
impair the uptake of microbiota-produced AHR ag-
onists and their precursors, as well as their activation
into potent AHR agonists. Collectively, these factors
may influence AHR-dependent immunoregulation
in MS.

Inflammation seems to increase circulating AHR
agonists in MS. Inflammation has profound effects
on metabolism. Indeed, it has been reported that
the AHR agonist Kyn is produced by the metabolism
during inflammation.18,19 Thus, together with addi-
tional AHR agonists that may be generated during
inflammation, Kyn may participate in a negative feed-
back loop aimed at limiting immunopathology. This
anti-inflammatory mechanism may cross-talk with
additional immunoregulatory pathways40 and/or
DMTs. Type I interferons, for example, modulate
Kyn levels41 in patients with MS.

Figure 5 Aryl hydrocarbon receptor ligand
levels in patients with benign
relapsing-remitting MS are unchanged
as compared to healthy controls

Aryl hydrocarbon receptor agonistic activity in serum sam-
ples of healthy controls (controls, n 5 7) and patients with
benign relapsing-remitting MS as defined by low EDSS
scores despite longstanding disease (benign MS, n 5 11)
was assessed in duplicates. Values are means of duplicate
measurements. Lines represent mean and error bars stan-
dard error of themean (SEM). Significance level was derived
by the Student t test. n.s. 5 not significant.

Figure 4 Aryl hydrocarbon receptor ligand
levels are increased in clinically
isolated syndrome as compared to
healthy controls

Aryl hydrocarbon receptor agonistic activity in serum sam-
ples of healthy controls (controls, n 5 33) and patients with
clinically isolated syndrome (CIS, n 5 15) was assessed in
duplicates. Values are means of duplicate measurements.
Lines represent mean and error bars standard error of the
mean (SEM). Significance level was derived by the Student t
test. **p , 0.01.
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Several limitations and potential confounding fac-
tors have to be taken into consideration when assess-
ing AHR agonist levels in human samples in our
study. First, some of our cohorts were limited in
patient numbers and exhibited imperfect matching
of age, disease duration, or prevalence of DMT.
Although we did not detect systematic changes when
analyzing the correlation of these factors with agonis-
tic activity (figure e-1), additional potentially
unknown variables, such as preanalytical sample pro-
cessing, storage conditions, or selective AHR ligand
degradation or enrichment during sample preparation
cannot be excluded. Also, cohort-specific differences,
including dietary factors, changes in the gut flora, and

potential effects of specific therapies, might constitute
additional confounding factors. Indeed, some pa-
tients showed an increased activity of serum AHR li-
gands, the reasons for which are not clear as of now.
Future longitudinal studies may be helpful in deter-
mining the clinical relevance of this observation.
Moreover, our assay determines the net agonistic
activity of AHR ligands in biological samples. Thus,
relative changes in specific agonistic or inhibitory
AHR ligand levels could be masked or missed by
our approach. Finally, technical aspects need to be
taken into consideration, since AHR ligand binding
and activation has been shown to be species and cell
line specific.42–45 Thus, the use of different cell lines
or transfection techniques (e.g., stable vs transient
transfection) may lead to varying results in individual
assay systems.

Based on our observations, it is tempting to spec-
ulate that different sources of AHR agonists drive
chronic and acute AHR activation in MS. Chronic
AHR activation may be controlled by the genetic
background, diet, and/or the commensal flora, with
potential confounding effects provided by environ-
mental factors such as sun exposure and daylight that
may differentially influence specific cohorts of pa-
tients with MS and controls.31,46 Acute AHR activa-
tion may be controlled by AHR-activating
metabolites, such as Kyn, produced in the context
of inflammation to limit immunopathology. The
integration of these multiple sources of AHR agonists
determines the contribution of AHR signaling to
immune modulation. Longitudinal studies based on
metabolomic approaches are therefore needed to ana-
lyze the correlation between specific AHR agonists,
their sources, and disease activity in MS and, poten-
tially, other conditions such as IBD. More impor-
tantly, given the potential of AHR agonists to cross
the blood-brain barrier and modulate CNS inflam-
mation,5 AHR activation could represent a novel
therapeutic avenue for MS.
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