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Vimentin intermediate filaments, a type III intermediate filament, are among the most widely
studied IFs and are found abundantly in mesenchymal cells. Vimentin intermediate
filaments localize primarily in the cytoplasm but can also be found on the cell surface
and extracellular space. The cytoplasmic vimentin is well-recognized for its role in providing
mechanical strength and regulating cell migration, adhesion, and division. The post-
translationally modified forms of Vimentin intermediate filaments have several implications
in host-pathogen interactions, cancers, and non-malignant lung diseases. This review will
analyze the role of vimentin beyond just the epithelial to mesenchymal transition (EMT) marker
highlighting its role as a regulator of host-pathogen interactions and signaling pathways for the
pathophysiology of various lung diseases. In addition, we will also examine the clinically
relevant anti-vimentin compounds and antibodies that could potentially interfere with the
pathogenic role of Vimentin intermediate filaments in lung disease.
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INTRODUCTION

Vimentin, a type III intermediate filament, is one of the cell cytoskeleton proteins in mesenchymal
cells (Herrmann et al., 1996) and is prominently associated with the maintenance of cell structure,
and migration (Ivaska et al., 2007; Eriksson et al., 2009; Herrmann et al., 2009; Battaglia et al., 2018).
The Vim−/− mice survive and grow normally (Colucci-Guyon et al., 1994). However, subsequent
studies demonstrated that Vimentin intermediate filaments have crucial physiological roles in cell
homeostasis (Gurland and Gundersen, 1995; Ivaska et al., 2007; Battaglia et al., 2018; Schaedel et al.,
2021), and the Vim−/− mice and cells have altered functions under stress conditions (Henrion et al.,
1997; Terzi et al., 1997; Eckes et al., 2000; Nieminen et al., 2006). These studies brought attention to
the silent yet crucial role of Vimentin intermediate filaments in the pathophysiological arena. This
review will focus on the role of Vimentin intermediate filaments in the pathogenesis of various lung
diseases.

VIMENTIN INTERMEDIATE FILAMENTS AND
POST-TRANSLATIONAL MODIFICATIONS

Vimentin is a type III intermediate filament named by Frank andWeber in 1978 (Franke et al., 1978).
The name vimentin was derived from the Latin word “vimentum,” which refers to arrays of flexible
rods that can be arranged in both ordered (e.g., lattices, filigrees, and wicker-work) and non-ordered
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(e.g., brushwood) forms. As with other types III IFs, vimentin has
a central α-helical “rod” domain flanked by the head (N-terminal)
and tail (C-terminal) domains on both sides (Chernyatina et al.,
2012). Vimentin intermediate filaments, as other intermediate
filaments, must rearrange and reorganized during physiological
and pathophysiological events that change the physical and
functional properties of a cell. These processes are primarily
driven by post-translational modifications (PTMs). PTMs of
vimentin intermediate filaments change its shape, distribution,
and interactions with other signaling molecules for the rapid
modulation of its function under different conditions (Kraxner
et al., 2021). The intrinsic polyelectrolyte nature of vimentin
intermediate filaments (Janmey et al., 2014) is associated with
non-enzymatic PTMs during redox imbalances (Perez-Sala et al.,
2015; Wilson and Gonzalez-Billault, 2015)and can be mediated
through enzymatic or non-enzymatic reactions. The interactions
of Vimentin intermediate filaments with Ca2+ and Mg2+ increase
assembly, crosslinking, and stiffness (Lin et al., 2010). Other non-
enzymatic modifications are mostly oxidizing, resulting in
glutathionylation, nitrosylation, or carbonylation of vimentin
(West et al., 2006; Huang et al., 2009; Chavez et al., 2010;
Griesser et al., 2021). The cysteine 328 (Cys 328/C328) is
targeted by various oxidative modifications (Stamatakis et al.,
2006; Gharbi et al., 2007; Perez-Sala et al., 2015). The cells
transfected with GFP- tagged C328S vimentin (mutant)
demonstrated presence of disassembled short squiggled and
dots kind of GFP positive vimentin fragments (Perez-Sala
et al., 2015). Hence, oxidation at C328 can cause disassembly
of vimentin intermediate filaments.

The most common enzymatic PTM on vimentin intermediate
filaments is phosphorylation (Sihag et al., 2007; Snider and
Omary, 2014), and is essential for spatio-temporal regulation
of its assembly, tissue-specific functions, and in some cases,
diseases pathogenesis (Omary et al., 2006; Sihag et al., 2007;
Snider and Omary, 2014; Snider et al., 2018). Multiple kinases,
various chemical compounds, growth factors, cytokine
treatments, viral infections can induce phosphorylation of
vimentin intermediate filaments, and the details on these
factors and phosphorylation sites is available at (https://www.
phosphosite.org/proteinAction.action?id=2622&showAllSites=
true). Specifically kinases such as protein kinase A (Inagaki et al.,
1987), protein kinase C (Ivaska et al., 2005), cdc2 kinase (Chou
et al., 1990; Chou et al., 1991; Chang et al., 2012), p21 activated
kinase (Eriksson et al., 2004; Li et al., 2006), Rho-associated
kinases (Goto et al., 1998; Sin et al., 1998), Akt1 (Zhu et al.,
2011; Wang et al., 2012; Li et al., 2017b), Aurora-B (Goto et al.,
2003), and CaMKIIA (Stefanovic et al., 2005) are well-known for
phosphorylating vimentin.

PTMs other than oxidation and phosphorylation, include
glycosylation (Snider et al., 2018; Tarbet et al., 2018),
ubiquitination (Zhu et al., 2017; Cheng et al., 2019),
sumoylation (Wang et al., 2010), acetylation (Guo et al., 2018)
and citrullination (Inagaki et al., 1989). These PTMs on vimentin
intermediate filaments are associated with but are not limited to
stress sensing (Perez-Sala et al., 2015; Griesser et al., 2021),
regulation of turnover of IF assembly (Herrmann et al., 2009),
cell survival (Dinsdale et al., 2004), protein-protein interactions

(Wang et al., 2012), and interaction with the nuclear membrane
(Neelam et al., 2015). Sumoylation of vimentin by Protein
Inhibitor of Activated STAT3 (PIAS3) inhibits glioma cell
migration (Wang et al., 2010) while acetylation of vimentin
intermediate filaments at K120 b SIRT5 increases metastasis in
hepatocellular carcinoma (Guo et al., 2018). Citrullination of
vimentin intermediate filaments leads to secretion of citrullinated
vimentin (Cit-Vim) as an autoantigen implicated in the
pathogenesis of rheumatoid arthritis (RA) (Vossenaar et al.,
2004). Cit-Vim interacts with B cells to result autoimmunity
in RA (Vossenaar et al., 2004; Valesini et al., 2015). Interestingly,
the immunogenic properties of Cit-Vim peptides are being
explored to develop an anti-cancer vaccine (Brentville et al.,
2020). In recent studies, the pathological role of Cit-Vim in
chronic lung diseases like COPD, pulmonary fibrosis, and
sarcoidosis have been explored (Vassallo et al., 2014; Lugli
et al., 2015; Ytterberg et al., 2015; Musaelyan et al., 2018;
Nissen et al., 2019; Li et al., 2021).

VIMENTIN INTERMEDIATE FILAMENTS IN
PATHOLOGICAL ROLES IN LUNG
DISEASES
With the widespread use of specific antibodies, high-resolution
microscopy techniques, and other advanced techniques, it has
become evident that the differential amount and forms of
vimentin and auto-antibodies to vimentin are present in the
bronchoalveolar lavages, cells, and lung tissues from patients with
various lung diseases demonstrating the pivotal role of vimentin
in their pathogenesis (Rho et al., 2009; Wahlstrom et al., 2009; Li
et al., 2017a; Musaelyan et al., 2018; Surolia et al., 2019;
Zaccardelli et al., 2019; Li et al., 2021; Zaccardelli et al., 2021).
These multiple forms of Vimentin intermediate filaments are
comprehensively shown to be involved in inflammation (Benes
et al., 2006; Dos Santos et al., 2015; Lam et al., 2018; Yu et al.,
2018; Lam et al., 2020), and host-pathogen interactions (Garg
et al., 2006; Babrak et al., 2015; Mahesh et al., 2016; Yu et al., 2016;
Zhang et al., 2020) in non-malignant acute lung injuries (trauma,
viral infections, bacterial infections, etc.) and chronic lung
diseases (IPF, autoimmune ILDs, COPD, and asthma) (Li
et al., 2017a; Musaelyan et al., 2018; Nissen et al., 2019;
Surolia et al., 2019; Li et al., 2021). Additionally, vimentin is a
gold-standard marker of epithelial–to-mesenchymal
differentiation during malignancies (Satelli and Li, 2011;
Bogush et al., 2020), and is also proposed as a diagnostic and
prognostic marker in lung cancers (Rho et al., 2009; Dauphin
et al., 2013; Rodriguez et al., 2013; Havel et al., 2015; Teocharoen
et al., 2021).

Acute Lung Injury/Acute Respiratory
Distress Syndrome
ALI is a broad term encompassing the pathophysiology of diffuse
alveolar injury by toxin inhalation or as a consequence of
systemic diseases, such as sepsis, severe shock, and trauma
(Johnson and Matthay, 2010). The activated lymphocytes,
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cytokines, and Damage-Associated Molecular Patterns (DAMPs)
weave a redundant inflammatory network for the development
and progression of ALI (Tolle and Standiford, 2013). Various
forms of vimentin regulate lymphocyte differentiation, activation,
and inflammation through inflammasomes and act as DAMPs,
signifying its multipronged role in the development of ALI
(Dellagi et al., 1983; Mor-Vaknin et al., 2003; Benes et al.,
2006; Nieminen et al., 2006; Dos Santos et al., 2015; Lam
et al., 2018; Yu et al., 2018; Su L. et al., 2019; Su L.-X. et al.,
2019; Lam et al., 2020) (Figure 1).

The differentiation of v-myb-transformed BM2 monoblasts
cells to macrophage-like cells is dependent on the expression of
vimentin (Benes et al., 2006). The migration and extravasation of

monocytes through endothelial cells rely on vimentin
intermediate filaments in inflammatory conditions (Nieminen
et al., 2006; Lam et al., 2018). Furthermore, anti-vimentin
antibodies decrease ROS generation in macrophages, inferring
that the surface vimentin is pro-inflammatory (Mor-Vaknin
et al., 2003) and are essential for killing bacteria and other
pathogens (Forman and Torres, 2001). In addition to
improving the anti-bacterial function of macrophages, a recent
study demonstrated that the extracellular vimentin modulates the
activity of LPS- activated dendritic cells and reduces Th1
differentiation (Yu et al., 2018).

Sepsis is an extreme immune response to an infection, where
overactivation of innate immune response and

FIGURE 1 |Multifaceted role of vimentin in ARDS/ALI: Increased permeability of the alveolar-capillary membrane and pro-inflammatory conditions are fundamental
characteristics of ALI. The schematic demonstrate very few epithelial cells due to increased cell death, and the intra-alveolar space depicted represents the alveolar lining
fluid that is in contact with the air. The increased expression of surface vimentin on endothelial cells enhances lymphocyte adhesion and transmigration across endothelial
cells through PSGL-1 binding on the lymphocytes, including neutrophils. Expression of vimentin and dynamics of Vimentin intermediate filaments regulate the
endosomal signaling through RabGTPase to transport VE-cadherin to the cell surface in endothelial cells for themaintenance of barrier functions. The PTM on vimentin in
neutrophils leads to neutrophil extracellular traps (NETs) via netosis. NETs disrupt the microvascular endothelial barrier, increasing edematous and permeable vessels
and causing a protein-rich fluid influx in the airspace. The increased expression of vimentin on platelets increases vitronectin and PAI-1 complex formation, which may
provide stabilization of thrombi. The fibrins and fibrinolysis-related enzymes cause the dissolution of epithelial surface proteins and denudation of the epithelial barrier
layer. Vimentin expression in fibroblasts regulates exocytosis and invasion, contributing to their proliferation in ALI. The surface vimentin on macrophage is essential for
several bacteria and viruses for the host cell invasion and phagocytosis. Secreted vimentin from dead cell debris and activated immune cells act as DAMPs. The figure
was created with BioRender.com.
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immunosuppression are responsible for complex
immunopathology that causes ARDS. The apoptosis of
lymphoid cells after the acute phase sepsis and suppression of
lymphoid cell activity contribute to infection-related
complications, seen in septic shock (Delano and Ward, 2016)
(Su L.-X. et al., 2019). The suppression of vimentin in LPS treated
macrophages showed increased inflammatory mediator, TNF-α.
In contrast, it decreases the anti-inflammatory cytokine IL-10.
Patients with sepsis and septic shock have increased levels of
vimentin in serum. The disruption of Vimentin intermediate
filaments in lymphocytes results in increased cell death and the
release of soluble vimentin into blood circulation, which is related
to the worse outcome of sepsis (Su L. et al., 2019). These
regulatory responses of vimentin in the LPS injury model
demonstrate the role of Vimentin intermediate filaments in
immunosuppression during sepsis.

Recombinant extracellular vimentin has been shown to inhibit
the infiltration of neutrophils into the lungs of the LPS-ALI
mouse model (Lam et al., 2018). Extracellular vimentin itself
acts as DAMP (Yu et al., 2018). In a pro-inflammatory
environment, vimentin can be secreted by macrophages,
monocytes (Mor-Vaknin et al., 2003), neutrophils (Kaplan,
2013), endothelial cells (Li et al., 2017a), apoptotic
lymphocytes (Boilard et al., 2003), apoptotic neutrophils
(Moisan and Girard, 2006), and injured skeletal muscle cells
(Bryant et al., 2006) can secrete extracellular vimentin due to
overexpression, traumatic cell injury, or cell death (Mellgren,
2010). As a DAMP, extracellular vimentin suppresses the pro-
inflammatory adaptive immune responses by blocking the
secretion of pro-inflammatory cytokines IL-12 and IL-6 from
LPS stimulated dendritic cells (Yu et al., 2018).

The direct role of Vimentin intermediate filaments in innate
immunity was demonstrated in a groundbreaking study showing
that the inflammasome activation has obligatory requirements of
interaction with vimentin (Dos Santos et al., 2015).
Inflammasomes are molecular complexes comprised of basic
protein units, including receptors and sensors that regulate the
activation of caspase-1 and IL-1β (Guo et al., 2015). In
macrophages, vimentin regulates innate immunity by
regulating NACHT, LRR, and PYD domains-containing
protein 3 (NLRP3) inflammasome pathway (Dos Santos et al.,
2015). The inflammasome is a complex made of NLRP3, ASC
(apoptosis-associated speck-like protein containing a CARD),
and caspase-1. Vimentin intermediate filaments act as
scaffolds to form this complex. The interaction of NLRP3 with
Vimentin intermediate filaments occurs via macrophage
inhibitor factor (MIF) (Lang et al., 2018), which activates
inflammasomes. This study demonstrated that the vimentin-
deficient mice exhibit attenuated ALI after the
lipopolysaccharide (LPS) challenge, as represented by
reductions in inflammation, IL-1β levels, and endothelial
permeability (Dos Santos et al., 2015). Inflammasome
complexes and their downstream products are involved in
viral infections, bacterial infections, COPD, asthma, and
ARDS, which have been reviewed in depth elsewhere (Dos
Santos et al., 2012; Howrylak and Nakahira, 2017; Liu et al.,
2021; Vora et al., 2021).

Acute lung injuries are associated with neutrophilia, alveolar-
capillary membrane destruction, and increased permeability
(Figure 1), mechanisms of which have been examined in
detail (Lin and Fessler, 2021). The exaggerated extravasation
and migration of leukocytes through pulmonary blood
capillaries are dependent on P-selectins. P-selectin
glycoprotein ligand-1 (PSGL-1) on leukocytes binds to
P-selectin on platelets and endothelium wherein vimentin can
act as an endogenous ligand for P-selectin. The treatment with
recombinant vimentin attenuates ALI, plausibly by occupying
P-selectin on endothelium which makes it is unavailable for the
binding to PSGL-1 of leukocytes and platelets (Lam et al., 2018;
Lam et al., 2020). Moreover, Vimentin intermediate filaments
indirectly affect neutrophil-mediated ALI by regulating non-
apoptotic neutrophil cell death, known as netosis (Brinkmann
et al., 2004). During netosis, cellular chromatin is expelled out of
the neutrophil, and the expelled chromatins are called neutrophil
extracellular traps (NETs) that are decorated with granular
proteins and proteases of neutrophils (Papayannopoulos et al.,
2010), and these NETs are responsible for increased permeability
of microvascular endothelium leading to ALI (Surolia et al.,
2021). The NETs themselves can trigger NLRP3
inflammasomes for a sterile inflammation (Allam et al., 2013).
The process of netosis is dependent on the citrullination of
vimentin intermediate filaments, which leads to their
disassembly. The disassembled of vimentin intermediate
filaments is essential for the rounding of nucleus in
neutrophils, and initiation of decondition of chromatin for
netosis (Thiam et al., 2020).

Pulmonary edema in ARDS results from increased
microvascular permeability. Vimentin intermediate filaments
can indirectly regulate permeability through their functions as
endosomal trafficking regulators. Vimentin intermediate
filaments interact with endocytosis regulator proteins, namely
Rab GTPase family proteins (Cogli et al., 2013; Margiotta et al.,
2017; Romano et al., 2021). During edema, the inter-endothelial
junctions are maintained by vascular endothelial cadherins (VE-
cadherin). Recently, a study demonstrated Rab GTPases, Rab4,
-7, and -9 regulate vascular permeability through enhanced VE-
cadherin expression at the interendothelial junction (Chichger
et al., 2016). Rab7a and Rab9 interactions with vimentin are
indispensable for efficient endosome trafficking (Cogli et al.,
2013; Margiotta et al., 2017; Romano et al., 2021). It is
reasonable to assume that the VE-cadherin exosomes require
Rab7 and Rab9 interactions with vimentin intermediate filaments
for their successful shuttling to the surface of endothelial cells.
Any modulation in the dynamics of PTMs of vimentin
intermediate filaments can hamper this endothelial endosomal
trafficking to cause edema in ALI.

ARDS/ALI patients have imbalances in coagulation and
fibrinolysis pathways, which causes the increased presence of
fibrin-rich exudates in the lumen of lung alveoli. Platelets
aggregate complexes with fibrin to form stabilized clots in
ARDS. Increased expression of vimentin on the surface of
platelets polymerizes vitronectin to form a complex with the
active form of plasminogen activator inhibitor-1 (PAI-1) (Podor
et al., 2002), which stabilizes the thrombus (Konstantinides et al.,
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2001). This increased fibrin deposition increases ALI
permeability by myriads of pathways (Bastarache, 2009).
Additionally, the formation of micro thrombi is also a
common coagulation related pathology of ARDS that affects
the microvascular endothelium. Vimentin intermediate
filaments may have an indirect role in the increased micro
thrombosis via the regulation of exocytosis (Faigle et al.,
2000). Exocytosis is a normal process that releases the cell
contents to the cell’s exterior (Sollner, 2003). The exocytosis of
abnormal VWF by endothelial cells causes micothrombosis in
ARDS. During microthrmbosis, endothelial cells exocytose von
Willebrand Factor (VWF), forming microthrombi complexes
with activated platelets.

Moreover, exocytosis is a prerequisite for the migration and
invasion of fibroblasts (Bretscher, 2008). Vimentin intermediate
filaments act as a reservoir for a vesicle docking and fusion
protein regulator, SNAP23 (Faigle et al., 2000). Vimentin
intermediate filaments associated with reservoirs has been
shown to traffic SNAP23 from the available plasma membrane
pool (Faigle et al., 2000). Any PTM or disruption in vimentin
intermediate filaments may modulate its availability to form
SNARE complexes for exocytosis Specifically, Vimentin
intermediate filaments regulated exocytosis may be necessary
for the increased migration of fibroblasts and their invasion
into fibrinous exudate alveolar spaces (Quesnel et al., 2010). It
is not surprising that the BALs from the patient with ALI
demonstrate the presence of alveolar fibroblasts, with
increased expression of vimentin that is of a persistently
activated phenotype with enhanced collagen- 1 producing and
migratory capacity (Quesnel et al., 2010). Moreover, FGFs
released from fibroblasts attenuate acute lung injury in the
LPS model of ALI (Tong et al., 2016). More investigations are
required to explore the direct role of fibroblasts in ALI.

Respiratory Viral Infections
Mounting evidence demonstrates the vital role of vimentin
intermediate filaments and their soluble forms in virus-host
cell interactions (Ramos et al., 2020; Zhang et al., 2020).
Vimentin intermediate filaments affect infection, virulence,
and replication of viruses in the host cells. For some viral
infections, expression of Vimentin intermediate filaments on
the cell surface aid at an early stage of infection as a co-
receptor for the entry into the host cell (Thomas et al., 1996;
Kim et al., 2006; Das et al., 2011; Du et al., 2014). For example, the
human immunodeficiency virus (HIV) infects the host cell by
making a pre-integration complex with vimentin present on the
cell surface. The V3 region of HIV-1 and host surface vimentin
interact to form the pre-integration complex after viral binding
on the host CD4 receptor. After forming a pre-integration
complex, the proteases from HIV-1 cleave vimentin
intermediate filaments leading to its collapse towards the
nuclear pore, thus bringing the virus into the nuclear entry
site (Thomas et al., 1996). Vimentin intermediate filaments
can modulate the replication, assembly, and egress of viruses
in the host due to their known function of regulating endosomal
trafficking via Rab7a and Polo-like kinase 1 (Plk1). Rab7a, which
is ubiquitously present in early and late endosomes (Aloisi and

Bucci, 2013; Guerra and Bucci, 2016), interacts with the insoluble
and soluble vimentin (Cogli et al., 2013; Margiotta et al., 2017).
Rab7a interacts directly with vimentin, and this interaction
modulates vimentin phosphorylation and assembly (Cogli
et al., 2013). Rab7a depleted cells have an abundance of
insoluble Vimentin intermediate filaments, and defective
endosomal trafficking (Romano et al., 2021). Phosphorylation
of Vimentin intermediate filaments at Ser459 by Polo-like kinase
1 (Plk1) inhibits the endolytic fusion during mitosis (Ikawa et al.,
2014). Altogether these interactions demonstrate vimentin as a
critical regulator of late endocytic trafficking and egress of viral
particles (Risco et al., 2002; Fay and Pante, 2013; Wu and Pante,
2016; Sabharwal et al., 2019). In another strategy, African swine
fever virus, Vaccinia virus, and Enterovirus trigger rearrangement
of Vimentin intermediate filaments as cages around the viral
replication factories (Risco et al., 2002). These viruses utilize
Vimentin intermediate filaments cages to egress and incorporate
viral proteins and DNA for its replication (Stefanovic et al., 2005;
Turkki et al., 2020). A more comprehensive elaboration on the
role of vimentin during host-virus interactions in a wide range of
viral infections is described elsewhere (Ramos et al., 2020; Zhang
et al., 2020).

Unfortunately, respiratory tract viral infections are a leading
cause of morbidity and mortality, where the symptoms can range
from mild or asymptomatic upper airway infections to severe
pneumonia. The most common respiratory viruses are SARS-
CoV-2, influenza, respiratory syncytial virus (RSV), and
adenoviruses (Figure 2).

Coronaviruses
A coronavirus classified as a member of the Coronaviridae family
was identified as SARS-CoV-1 as the causative pathogen of the
severe acute respiratory syndrome (SARS) in 2002. Since then,
MERS-CoV and SARS-CoV-2 have been identified to cause
severe illnesses in humans, such as the Middle East respiratory
syndrome (MERS) and COVID-19. Currently, SARS-CoV-2 has
precipitated a global public health crisis of our times with more
than 25million infected people up to date worldwide (Nov. 2021),
and still continues unabated. The transmembrane spike (S)
glycoprotein of SARS-CoV-2 and SARS-CoV have similar
affinities to bind on human angiotensin-converting enzyme 2
(ACE2) (Walls et al., 2020). Interestingly, cell surface vimentin is
identified as a co-receptor for binding SARS-CoV spike proteins
(Yu et al., 2016) and it also acts as a co-receptor for SARS-CoV-2
spike proteins (Suprewicz et al., 2021; Thalla et al., 2021; Amraei
et al., 2022). Recent study demonstrated that the coexpression of
vimentin with ACE2 increased SARS-CoV-2 entry in HEK-293
cells, and the inhibition of vimentin expression decreased the
SARS-CoV-2 infection of human endothelial cells (Amraei et al.,
2022). Treatment with anti-vimentin antibodies considerably
decreased the virus infection, which shows the direct role of
surface vimentin in the binding of virus spike proteins (Yu et al.,
2016). These reports do not clarify which domain of vimentin
interacts with viral spike protein. Enterovirus 71 (EP71) and
Cowpea mosaic virus (CPMV) utilized the tail region of vimentin
as a receptor for the entry in host cells (Koudelka et al., 2009; Du
et al., 2014); we postulate that the tail region of vimentin interacts
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with the SARS-CoV spike proteins. Overall, vimentin has a role in
binding to SARS Co-V and SARS-CoV2 virus (Figure 2).
Nevertheless, more in depth studies are warranted to
consolidate these findings.

Influenza
Influenza A and B infections, commonly known as flu, cause
contagious respiratory tract illness by causing upper respiratory
tract infections (URTI) and sometimes lower respiratory tract
infections (LTRI). An early study showed that disruption of
Vimentin intermediate filaments impairs virus production
(Arcangeletti et al., 1997), whereas proteomic data support the
interaction of vimentin with viral ribonucleoprotein complexes
(vRNPs) (Mayer et al., 2007). Later, a detailed study in vim−/−

cells demonstrated that vimentin regulates endosomal trafficking
to release vRNPs in the cytoplasm from the late endosomes,
maintaining pH in the endosomes (Wu and Pante, 2016). The

regulation of acidification of endosomes can be attributed to the
sorting the endosomal chloride channel-3 (ClC-3), a chloride
channel and transporter responsible for the endosomal
acidification (Hara-Chikuma et al., 2005). The sorting of ClC-
3 into the synaptic vesicles is managed by adapter protein-3 (AP-
3) (Salazar et al., 2004). Adaptor proteins are protein-binding
modules that link protein-binding partners together and facilitate
the creation of larger signaling complexes. AP-3 is an essential
adapter protein for lyso-endosomal sorting machinery (Odorizzi
et al., 1998) that interacts with vimentin intermediate filaments
for the sorting of proteins for endosomes formation and their
trafficking (Styers et al., 2004). Based on these studies, it is
established that vim−/− cells demonstrate decreased
acidification of endosomes due to a loss of Vimentin
intermediate filaments-AP-3 interactions that would have a
negative effect on the sorting and distribution of ClC-3 in the
late endosomes (LE). Hence, the decrease in the number and

FIGURE 2 |Multiple roles of vimentin in viral respiratory infections: SARS-CoV2 exploits surface vimentin co-receptor for the entry in the host cell. Influenza A virus
utilizes vimentin regulated trafficking of late endosomes for the release of vRNPs near the host nucleus. Adenoviruses bind to vimentin intermediate filaments (VimIFs)
after host cell invasion, and the viral proteases cleave vimentin intermediate filaments to shuttle viruses in the vicinity of the host nucleus, also called endosome
independent transcytoplasmic trafficking. RSV infection causes cleaving of VimIFs and accumulation of VimIF in the peri-nuclear region. Alterations in VimIFsmay be
associated with endosomal trafficking or non-endosomal trafficking for the shuttling virus next to the nucleus for its replication. The figure was created with
BioRender.com.
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virulence of virions released by vim−/−cells (Wu and Pante, 2016)
can be attributed to the decreased endosomal acidification as
discussed (Figure 2).

Adenoviruses
Adenoviruses are DNA viruses that typically cause mild
infections involving the upper or lower respiratory tract (Berk,
1991; Lynch and Kajon, 2016). Studies have shown that the
adenoviral serotypes requiring endosome independent trans-
cytoplasmic penetration routes have proteases that cleave
vimentin intermediate filaments (Belin and Boulanger, 1987;
Defer et al., 1990) (Figure 2). Although the function of
cleaved vimentin is not described in these studies, it is possible
that cleaved vimentin could transport the adenovirus directly to
the perinuclear region due to collapse of vimentin intermediate
filament network similar to HIV-1 infections (Thomas et al.,
1996).

Respiratory Syncytial Virus
RSV infects airway mucosa to cause uncomplicated upper
respiratory tract infections but can also spread to the lower
respiratory tract and are mainly associated with bronchiolitis
that can be deadly in children younger than 5 years of age (Shi
et al., 2017). Although the direct role of vimentin intermediate
filaments in the infection and the life cycle of RSV is not yet
explored, RSV infections modulate the activity and expression of
host superoxide dismutase (SOD) 1, 2, and 3; catalase, glutathione
peroxidase (GPx), and glutathione S-transferase (GST) that leads
to increased auto-oxidation of proteins in the cell (Hosakote et al.,
2009). It is reported that RSV induces cysteinyl oxidation and
decreases the expression of vimentin (Garcia-Barreno et al., 1988;
Jamaluddin et al., 2010). Cysteinyl oxidation is an example of
oxidative stress-mediated disruption of the vimentin
intermediate filaments network and may have
pathophysiological implications (Monico et al., 2019). In
another study, the RSV mediated modulations in
peroxiredoxins 1 and, 4 (Prdx-1 and Prdx-4) were shown to
be responsible for the oxidation of nuclear intermediate filament
complexes, including vimentin (Jamaluddin et al., 2010). The
oxidation of Vimentin intermediate filaments may disturb the
nuclear mechanical homeostasis (Neelam et al., 2015) in infected
cells, but further studies are required to evaluate the specific role
of oxidized Vimentin intermediate filaments in RSV infections
(Figure 2).

In addition to virus-host interactions and viral life cycle,
Vimentin intermediate filaments are associated with the
pathogenesis of viral infections mediated ALI. Studies have
demonstrated that RSV-induced netosis has a significant role
in lung injury (Muraro et al., 2018; Mutua et al., 2021). In the
above ALI section, we have discussed the possible role of
citrullination of Vimentin intermediate filaments as an
initiating step for the decondensation of chromatin and
rupturing the nucleus during netosis (Thiam et al., 2020).
Hence, Vimentin intermediate filaments have an indirect role
in promoting RSV infection mediated acute lung injury.

Of note, the versatile forms and different localization of
Vimentin intermediate filaments play a critical role in various

stages of viral life cycles and following inflammatory pathways
during viral lung infections. Targeting specific forms of vimentin
can be utilized as one of the multiple strategies to inhibit viral
entry in the host cell.

Respiratory Bacterial Infections
Bacterial infections are severe and prevalent among
immunocompromised people (Al-Saad et al., 2008; Ahmed
et al., 2011). Macrophages are the first line of defense to
phagocytize and kill bacteria (Allard et al., 2018). The host-
pathogen interaction mediated by macrophages and
lymphocytes is crucial, and any discrepancy leads to serious
bacterial infections in the lung and the development of
pneumonia and pleurisy (Al-Saad et al., 2008). This section
will describe the role of Vimentin intermediate filaments in
the host-pathogen interactions and concomitant development
of pathological features.

Mycobacterium tuberculosis (M.tb.) infections and non-
tuberculosis mycobacterium infections are common forms of
bacterial infections of the lungs in many parts of the world.
During M.tb. infections, natural killer (NK) cells kill
autologously-infected cells without prior sensitization as an
innate immune response (Perera Molligoda Arachchige, 2021).
The monocytes infected with M. tb. H37Ra have upregulated
surface expression of vimentin compared to the uninfected
monocytes. The NK cells recognize these infected cells by
binding the NKp46 ligand to vimentin expressed on M.tb.
H37Ra infected monocytes (Garg et al., 2006). Furthermore,
the same study demonstrated that the neutralization of
vimentin reduces the capacity of NK cells to lyse M.tb. H37Ra
-infected alveolar macrophages. In another study, PKA/PKC
mediated phosphorylation of vimentin was demonstrated to
differentiate monocyte to macrophage, and these newly
differentiated macrophages showed downregulation of
expression of vimentin after infection with live M.tb. H37Rv
infection via an ESAT-6 dependent mechanism (Mahesh et al.,
2016). The apparent discrepancy of these results can be explained
by the differences in the virulence of themycobacterial strain used
for the studies. M.tb. H37Ra is an attenuated Mycobacterium
strain, whereas theM.tb. H37Rv is a virulent strain.M.tb. H37Ra
exhibits significant alterations to either the genome or the
expression of virulence genes compared to the virulent variant
M.tb. H37Rv (Brosch et al., 1999; Li A. H. et al., 2010). The
differential response for vimentin expression by these strains
points towards the importance of surface vimentin expression in
the host immune cell interactions and innate immunity. Virulent
mycobacterium infection may inhibit the lysis of infected
macrophage by NK cells by downregulating vimentin
expression. Several mechanisms are altered by virulent strains
of mycobacteria for the prolonged survival in infected
macrophages to increase the intracellular bacterial burden
inside the infected macrophages.

The instrumental role of surface vimentin in the host cell
invasion has also been demonstrated in infection by M. avium
subsp. Hominissuis. In order to achieve efficient mucosal
invasion, M. avium forms microaggregates on the surface of
the host cells, facilitating bacterial microaggragate binding
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protein 1 (MBP-1) by binding and polymerizing with the host cell
surface vimentin.

The interaction of MBP-1 and host cells surface vimentin was
shown to be inhibited by anti-vimentin antibody treatment in
HEp-2 cells, suggesting that polymerized vimentin expression is
vital forM. avium adherence to the host cell (Babrak et al., 2015).
In addition to host-pathogen interactions, vimentin may also
affect the subsequent pathological features of infection in the
lung, such as granuloma formation. Granulomas are a compact
and organized structure formed by the initial aggregation of
infected macrophages and are a salient feature of tuberculosis
and non-tuberculosis mycobacterial infections (Rubin, 2009). We
and others have shown that the necrotic cell death of the infected
granulomatous macrophages is associated with the dissipation of
the bacteria by breaking the compact structure of granulomas
(Russell et al., 2009; Regev et al., 2012; Silva-Gomes et al., 2013;
Surolia et al., 2016). The breakdown of granuloma due to necrotic
core dissipates bacteria dysregulates the immune response leading to
lung tissue destruction and morbidity. Interestingly, the tight and
well-formed granuloma are found to be rich in vimentin on their
periphery (Kaarteenaho-Wiik et al., 2007). The direct role of
vimentin is not understood in these structures and can be related
to increased fibroblastic scar formation around the infected
macrophages and lymphocytes aggregates (Kaarteenaho-Wiik
et al., 2007). Recently, computational experimentation and wet-
lab experimental approaches demonstrated the possibility of
transforming vimentin-rich macrophages, which can differentiate
into the myofibroblasts like cells around the macrophage aggregates
in the later stages of granuloma formation (Evans et al., 2020).

Sarcoidosis is an idiopathic lung disease that features
granuloma formation (Heinle and Chang, 2014). There is no
clinical observation-based evidence for intracellular pathogen
inside the sarcoidosis granuloma, yet few studies have
demonstrated the plausible presence of dormant
mycobacterium (Esteves et al., 2016) in vimentin-positive
antigen-presenting cells (Wahlstrom et al., 2007; Chen et al.,
2008; Wahlstrom et al., 2009). The discovery of the presence of
residual mycobacterium antigens such as catalase-peroxidase
(mKatG), superoxide dismutase A (Sod A), ESAT6, and M.
tuberculosis heat shock proteins (Mtb-HSP) in the
granulomatous lymphocytes roots to the hypothesis for the
presence of a dormant form of mycobacterium. Vimentin
intermediate filaments are well-recognized auto-antigens in
sarcoidosis (Kinloch et al., 2018) and are shown to cause
clonal expansion of lung-specific Vα2.3 + Vβ22 + CD4 + T
lymphocytes in the granuloma (Kinloch et al., 2018). These
observations suggest that the presence of surface vimentin on
the host cells may be involved in granuloma formation, and
future studies are warranted in this understudied area. Overall,
these scattered observations namely, the differential expression of
vimentin in infected cells, polymerization of vimentin on the cell
surface, presence of vimentin as antigen in granuloma presenting
lymphocytes, and presence of Vimentin intermediate filaments
rich cells in the peripheral fibroblastic case around aggregated
lymphocytes, may have an inter-dependent or independent role
of vimentin in the granuloma formation and progression of the
disease.

Chronic Lung Diseases
Owing to its importance as a mesenchymal marker, the
expression of vimentin is extensively demonstrated during
lung remodeling as one of the driver for the pathogenesis of
chronic lung diseases (Kage and Borok, 2012; Rout-Pitt et al.,
2018). Different PTMs on Vimentin intermediate filaments have
been explored for their regulatory role in development of chronic
lung diseases. The post-translational modification of Vimentin
intermediate filaments such as citrullination, carbamylation, and
phosphorylation is associated with the pathogenesis of chronic
lung diseases namely, idiopathic pulmonary fibrosis (IPF) (Li
et al., 2017a; Li et al., 2021), chronic obstructive pulmonary
disease (COPD) (Lugli et al., 2015; Nissen et al., 2019),
rheumatoid arthritis-associated interstitial lung disease (RA-
ILD) (Lugli et al., 2015), and asthma (Zaccardelli et al., 2019;
Zaccardelli et al., 2021).

Role of Vimentin in Lung Fibrosis
Interstitial lung diseases (ILD) refer to a collection of disorders
characterized by varying degrees of inflammation and fibrosis in
the lung interstitium. The most common form of idiopathic ILD
is IPF. The firsthand evidence of extracellular and autoimmune
forms of vimentin in IPF came from our study showing the
presence of anti-vimentin antibodies that were associated with
the worse clinical outcomes in the patients with IPF (Li et al.,
2017a). We demonstrated that the binding of this anti-vimentin
antibodies on HLA-DR was associated with the proliferation of
CD4 T cells and enhanced IL-4, IL-17, and TGF-β1 levels (Li
et al., 2017a). The transplant-free survival was higher in the
patients with lower anti-vimentin autoantibodies. Furthermore,
our study also demonstrated that environmental cadmium (Cd)
exposures and smoking increased citrullinated vimentin in the
bronchoalveolar lavages and serum of patients with IPF (Li et al.,
2021) suggesting that citrullinated vimentin acts as a spearhead of
inflammatory reactions that over time give rise to fibrotic scar
formation of the lung and cause IPF. The peptidyl arginine
deiminase 2 (PAD2) mediated citrullination of vimentin
solubilizes and secrets vimentin from macrophages in the
extracellular space, which in turn acts as DAMPs and activates
Toll-like receptors 4 (TLR4)/NF-kB pathway in lung fibroblasts.
These fibroblasts secrete pro-fibrotic cytokines TGF-β1, CTGF,
and IL-8 (Baran et al., 2007).

The extrinsic risk factors for IPF include smoking,
environmental exposures, and air pollution (Zaman and Lee,
2018). Cd, a heavy metal present in cigarette smoke, is found in
high levels in the lungs of smokers (Ganguly et al., 2018). The
phosphorylated forms of vimentin at Ser 38 and Ser 55 (P-Ser38
and P-Ser55 vim) resulted in Cd mediated peribronchial fibrosis
in mice lungs. Our group has demonstrated that Cd-induced
AKT and cdc2 activation increase phosphorylation of vimentin
intermediate filaments Ser 38 (P-Ser38Vim). The P-Ser38Vim
complexes with 14-3-3 for the release of YAP-1 for the
translocation in nucleus triggering SMAD2/3 regulated
transcription of pro-fibrotic genes in the fibroblasts around the
airways (Li et al., 2017b). 14-3-3 is a conserved and regulatory
phospho-binding protein with diverse roles in several signaling
pathways (Pennington et al., 2018) and utilizes vimentin as a
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“sink” that sequester 14-3-3 away from binding partners (Tzivion
et al., 2000; Pan et al., 2012; Sluchanko et al., 2017). 14-3-3
regulates autophagy through its interactions with Vimentin
intermediate filaments. 14-3-3 forms autophagy-inhibitory
Beclin1/14-3-3/vimentin intermediate filament complex for the
pathogenesis of cancer (Wang et al., 2012). The dysregulation of
autophagy is one of the pathogenic phenomena in IPF (Patel
et al., 2012). The increased Vimentin intermediate filaments
complexes with Beclin-1 to inhibit the clearance of CollagenI
by autophagy in myofibroblasts. Increased ECM deposition and
intemperate invasive capacity of myofibroblasts are hallmarks of
IPF disease and are related to Vimentin intermediate filaments
formation. Vimentin intermediate filaments are essential for
invadopodia formation (Helfand et al., 2011). Moreover, we
demonstrated that increased Vimentin intermediate filaments
in myofibroblasts of fibrotic foci in the lungs of patients with IPF
are related to the increased invasiveness of myofibroblasts and
disease progression (Surolia et al., 2019). Overall, the ability of
Vimentin intermediate filaments for interacting with other
signaling molecules to form complexes regulates various pro-
fibrotic pathways.

Role of Vimentin in COPD
Chronic inflammation leads to fixed narrowing of small airways
(peribronchial fibrosis) and alveolar wall destruction
(emphysema) in COPD. The chronic inflammation in COPD
is characterized by increased numbers of alveolar macrophages,
neutrophils, cytotoxic T-lymphocytes (O’Donnell et al., 2006).
The increased activity of PAD2 in the macrophages
(Makrygiannakis et al., 2008), likely contribute to the
increased levels of citrullinated vimentin in the lungs and
serum of COPD patients (Wood et al., 2011; Lugli et al., 2015;
Nissen et al., 2019). However, patients with COPD have a specific
form of vimentin which is believed to be a metalloproteases
cleaved citrullinated form of vimentin (VICM) (Nissen et al.,
2019). Neutrophil-specific protease membrane-type 6 matrix
metalloproteinase (MT6- MMP) on neutrophil membrane
utilizes vimentin as one of their substrate (Starr et al., 2012).
Taken together, increased PADs and MMP activity on vimentin
in the patients with COPD are the reason for increased levels of
VICM. The downstream effects of VICM are not explored yet. In
physiological conditions, the cleaved form of extracellular
vimentin increases neutrophil and monocyte chemotaxis,
generating “eat-me” signals that can potentially increase
phagocytic removal of neutrophils to resolve inflammation. On
the other hand, lungs from COPD patients are known to have
compromised resolution of inflammation (Bozinovski et al.,
2014). VICM may have differential responses on neutrophil
and monocyte chemotaxis, phagocytosis, and the resolution of
inflammation, which in part may be responsible for the frequent
acute and chronic bacterial infections. For example, patients with
COPD also have a higher prevalence of invasive pulmonary
aspergillosis (IPA) (Bulpa et al., 2007; Samarakoon and
Soubani, 2008) than those without COPD. Increased VICM
levels can be plausible reason for the increased prevalence of
Aspergillus species colonization in COPD patients. Non-TLR
receptor, Dectin-1 has been explored in Aspergillus infections

in the lungs (Lilly et al., 2012; Dutta et al., 2020). Dectin-1
contributes to respiratory burst, phagocytosis, and TNF-α
production (Brown, 2006) and recognizes vimentin as a
substrate (Thiagarajan et al., 2013). We think that prevalence
of IPA in COPD may be associated with discrepancies in the
binding of VICM to Dectin-1. These hypotheses are needed to be
further tested.

Role of Vimentin in Autoimmunity Associated
Interstitial Lung Diseases
Citrullinated vimentin was first recognized as an antigen for the
autoimmunity in RA (Chen et al., 2015), among other
citrullinated protein groups that cause anti-citrullinated
peptide antibody production (ACPA). It is believed that the
production of APCA initiates in the mucosa of the lungs
before the onset of RA (Klareskog and Catrina, 2015;
Zaccardelli et al., 2019). These observations indicate the
possible connection of Cit-Vim antibodies to ILD development
in RA patients (Chen et al., 2015; Reid and Guler, 2021). We infer
that citrullinated vimentin may have a similar role as DAMP for
developing RA-ILD based on the other research in IPF, but
further investigation is necessary. One other form of post-
translationally modified vimentin is recognized as a
carbamylated-vimentin associated with cigarette smoking in
patients with RA (Ospelt et al., 2017). Carbamylation is
homocitrullination of proteins, where carbamylations are
formed by the interaction of isocyanate (HNCO) with α-
amino and ε-amino groups of proteins, among them, α-
carbamylation, when α-amino groups of amino acids are
involved, and ε-carbamylation, which is formed by the
interaction of isocyanate with the ε-amino group of lysine
(Jaisson et al., 2011). Although carbamylation is well-
recognized in patients with RA, it is an APCA-independent
process. The direct role of the carbamylated form of vimentin
is not known in RA-ILD, IPF, and COPD. Interestingly, a recent
study demonstrated that the global carbamylation of proteins by
eosinophil peroxidase in the asthmatic airways participates in
asthma exacerbations and altered inflammatory responses (Wang
Z. et al., 2016). Recent research also has identified that elevated
APCA levels were associated with asthma before the onset of RA
disease (Zaccardelli et al., 2019). The direct role of citrullinated
vimentin antigen and antibody in mucosal inflammation and
asthma needs to be explored.

Role of Vimentin in Asthma
Asthmatic lungs have airway narrowing, and obstruction is
intricately associated with EMT (Hackett, 2012). Inhaled
environmental allergens promote EMT pathways via multiple
mechanisms in the asthmatic airway. Hence, vimentin has been
demonstrated in various airway epithelial cell types upon
exposure to various allergens and other stimulants for EMT
(Hackett, 2012).

Lung Cancers
Vimentin is crucial for the EMT, metastasis, and invasion of
mesenchymal cells (Satelli and Li, 2011; Usman et al., 2021).
Hence, no wonder that most studies designated the significance of
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vimentin as a biomarker in cancers with clinical relevance in
several types of cancers (Ben-Ze’ev and Raz, 1985; Hu et al., 2004;
Jin et al., 2010; Li M. et al., 2010; Wei et al., 2008; Bogush et al.,
2020) and the more in depth information can be found elsewhere
(Satelli and Li, 2011; Zhao et al., 2013; Polioudaki et al., 2015;
Mogre et al., 2022). In lung cancers, vimentin has been shown to
be the target of various regulating factors that control expression
or cause post-translational modification of vimentin. For
example, increased activity of PARP-1 on the promoter of the
vimentin gene increases the expression levels of vimentin
(Rodriguez et al., 2013). In another study, cancer stem cell-
derived exosomal miR-210-3p bind and inhibit fibroblast growth
factor receptor-like 1 (FGFRL-1) to increase vimentin expression in
lung cancer cells (Walls et al., 2020). Increased vimentin provides
stability to FAK through VAV2-mediated Rac1 activation that
increases the motility and invasiveness in non-small cell lung
cancer (Havel et al., 2015). The decreased levels of post-
translationally modified glycosylated-vimentin intermediate
filaments are associated with the progression of adenocarcinoma
(Rho et al., 2009). A recent study demonstrated that reduced
glycosylation of vimentin increase the soluble form of vimentin
[unit-length filaments (ULFs)] which is crucial for its self-
assembly. (Tarbet et al., 2018). Expression of vimentin can also
regulate the Slug signaling pathways for the pathogenesis of
cancer (Vuoriluoto et al., 2011). These studies signify vimentin as
an important driver and biomarker of EMT, increasedmigration, and
metastasis in lung cancers.

In recent years, our understanding of the role of Vimentin
intermediate filaments as a crucial player in the development of
cancers by regulating non-EMT-dependent pathways has also
evolved. Interaction of vimentin intermediate filaments with
Beclin-1 inhibits autophagy enhancing tumorigenesis. The Akt1
mediated phosphorylated vimentin interact with 14-3-3 and
complexes with Beclin1. The unavailability of Beclin1 for
autophagosomal complex results in autophagy inhibition and cell
survival in cancer (Wang et al., 2012). Similar work demonstrated that
the interaction of Beclin1 with vimentin affects its USP14 mediated
de-ubiquitination leading to abrogated degradationwhich provides an
increased ability of cell migration in lung cancer (Cheng et al., 2019).
These studies suggested that the formation of protein complexes by
vimentin intermediate filaments can regulate new unconventional
pro-tumor functions in the cell. Vimentin-associated intergenic
cytoplasmic non-coding RNA inhibits Trim16 dependent
polyubiquitination and degradation of vimentin intermediate
filaments (Tian et al., 2020). These long-lived (unubiquitinated)
vimentin intermediate filaments activate AKT-driven metastasis of
adenocarcinoma (Tian et al., 2020).Overall, these few studies spotlight
the regulatory role of vimentin intermediate filaments in
unconventional ways, and more research is warranted to fully
understand the role of vimentin in tumor metastasis.

VIMENTIN AS A BIOMARKER AND AS A
DRUG TARGET FOR THE LUNG DISEASES

The aforementioned studies present evidence for the crucial role
of Vimentin intermediate filaments in the development of lung

diseases and prove that vimentin is a potential target for their
treatment. Withaferin A and Ajoene are utilized as anti-vimentin
strategies to treat in vitro and in vivo models of lung diseases.
Withaferin A and Ajoene, both are plants compounds that inhibit
the assembly of Vimentin intermediate filaments (Kaschula et al.,
2019). Withaferin A, an alkaloid, is demonstrated to have anti-
cancer effects review: Singh et al. (2021). Furthermore,
Withaferin A decreased the invasiveness of IPF lung-derived
3D organoid models and mitigated lung fibrosis in the
bleomycin mouse model (Surolia et al., 2019). Studies have
shown that Withaferin A reduced inflammation in cellular
models of cystic fibrosis (Maitra et al., 2009), and an
ovalbumin mouse model of allergy and asthma (Zhao et al.,
2019). Similarly, Ajoene which is a garlic compound has anti-
cancer effects (Taylor et al., 2006; Wang Y. et al., 2016). Overall,
these compounds or their derivatives have the potential as anti-
vimentin targets for treating various lung diseases.

Although no direct anti-vimentin molecule is approved for the
treatment of any lung disease, there are several clinical trials
utilizing interventions that decrease the expression of vimentin.
The value of amplified expression of vimentin is recognized as a
prognostic marker is critical in non-small cell lung cancer
(NSCLC) (Al-Saad et al., 2008; Dauphin et al., 2013; Ye et al.,
2016; Teocharoen et al., 2021). The expression levels of vimentin
were used as a prognostic indicator for the treatment efficacy for
patients with NSCLC with erlotinib, erlotinib/bevacizumab (EB)
or cisplatin/gemcitabine/bevacizumab (PGB) (Richardson et al.,
2012; Villalobos et al., 2019). A phase I trial for FAK inhibitor
drugs, namely VS-6063 and RO5126766, will use expression
levels of vimentin as a biomarker in patients with NSCLC
(NCT03875820).

There are new clinical trials for non-malignant lung diseases
using vimentin as a biomarker and/or drug target
(NCT03253146, NCT03584802). One of the studies is focused
on the clinical value of vimentin and the mechanism of vimentin-
mediated immune cell apoptosis during sepsis development. This
trial will determine whether the vimentin can be a new target for
sepsis diagnosis and treatment (NCT03253146). In an
interventional clinical trial study, the autoantibodies to
vimentin are being assessed as outcomes for the use of
therapeutic plasma exchange, Rituximab, and IV IgG in the
patients with severe acute exacerbation of IPF admitted in
ICU (NCT03584802).

Simvastatin, a FDA-approved drugs have anti-vimentin effects
(Trogden et al., 2018). Statins inhibits the isoprenylation of
proteins which activates caspases. Vimentin is a well-known
substrate for caspases (Byun et al., 2001). Simvastatin has anti-
viral effects for Zika and HIV viruses (Esposito et al., 2016;
Espano et al., 2019). Interestingly, vimentin has an important role
in the invasion and replication of HIV and Zika viruses in host
cells (Thomas et al., 1996; Cortese et al., 2017). As mentioned
earlier, of vimentin has a plausible role in the host cell invasion
during COVID infections (Ramos et al., 2020; Vora et al., 2021).
Currently, the role of Ruxolitinib and Simvastatin therapy are
being studied for the prevention and treatment of respiratory
failure associated with COVID-19 (NCT04348695). A
randomized double-blind placebo-controlled single-center trial
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has also demonstrated that Simvastatin significantly prolonged
the time to first COPD exacerbation and reduced exacerbation
rate (Schenk et al., 2021), NCT00680641).

Pritumumab (Glassy and Hagiwara, 2009; Babic et al., 2018)
also known as CLNH11, CLN-IgG, and ACA-11, is the first anti-
vimentin monoclonal antibody drug. It is a human IgG1 kappa
antibody that binds to tumor cell ectodomain vimentin antigen
for its anti-cancer effects. This drug is in clinical trial phase II, and
showing beneficial effects against glioma (NCT04396717).
Interestingly, testing of Pritumumab as a potential strategy for
the anti-COVID 19 effects has been reported recently. Blocking
the interaction of SARS-CoV2 spike proteins with surface
vimentin co-receptor via the Pritumumab reduced the cell
surface binding of the virus and cellular infection (Suprewicz
et al., 2021).

Concluding remarks
Cytoskeletal filament research areas are expanding to understand
the emerging versatile role of intermediate filaments, specifically
Vimentin intermediate filaments. Due to technological
advancements in the last 30 years, Vimentin intermediate
filaments have gained recognition not only as building blocks
for the support, compartmentalization, and trafficking in the cells
but also as signaling molecules. Blocking/cleavage of extracellular
pathological forms, and overexpressing cell surface forms of
vimentin by decoy peptides or antibodies can be one of the

strategies to target vimentin in lung diseases such as autoimmune
diseases, cancer, and infections. Nevertheless, it is challenging to
develop explicit strategies to target the pathological forms of
vimentin due to its pleiotropic functions and spatiotemporal
distribution. A plethora of research studies demonstrate the
beneficial effects of anti-vimentin strategies in the treatment of
models of various lung diseases. We strongly believe that further
in-depth studies are much needed, particularly to understand
both the beneficial and deleterious effects of each of the forms of
vimentin. These studies will evolve the understanding of the
pleotropic effects of all different forms of vimentin, which will aid
in the development of novel drug molecules to target vimentin
with greater efficiency and without side effects.
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