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Abstract
1.	 Animal movement is often modelled in discrete time, formulated in terms of 

steps taken between successive locations at regular time intervals. Steps are 
characterized by the distance between successive locations (step lengths) and 
changes in direction (turn angles). Animals commonly exhibit a mix of directed 
movements with large step lengths and turn angles near 0 when travelling be-
tween habitat patches and more wandering movements with small step lengths 
and uniform turn angles when foraging. Thus, step lengths and turn angles will 
typically be cross-correlated.

2.	 Most models of animal movement assume that step lengths and turn angles are 
independent, likely due to a lack of available alternatives. Here, we show how 
the method of copulae can be used to fit multivariate distributions that allow for 
correlated step lengths and turn angles.

3.	 We describe several newly developed copulae appropriate for modelling animal 
movement data and fit these distributions to data collected on fishers (Pekania 
pennanti). The copulae are able to capture the inherent correlation in the data 
and provide a better fit than a model that assumes independence. Further, we 
demonstrate via simulation that this correlation can impact movement patterns 
(e.g. rates of dispersion overtime).

4.	 We see many opportunities to extend this framework (e.g. to consider auto-
correlation in step attributes) and to integrate it into existing frameworks for 
modelling animal movement and habitat selection. For example, copulae could 
be used to more accurately sample available locations when conducting habitat-
selection analyses.

1  |  INTRODUC TION

Advances in sensor technologies have led to the proliferation of ani-
mal location data at fine temporal and spatial scales (Kays et al., 2015), 
which in turn has led to the development of a plethora of new meth-
ods and software for modelling animal movements (see e.g. Hooten 
et al., 2017 for an overview of statistical methods and Joo et al., 2020 
for a review of the R packages for modelling animal movement). 

Although movement is inherently a continuous process, we usually 
observe it at discrete points in time, and the time interval between 
successive locations is also often, though not always, constant (e.g. 
global positioning systems are typically programmed to collect data 
at fixed intervals). Thus, it is easier to conceptualize movement in dis-
crete time, deconstructed into a series of ‘steps’ between successive 
locations (McClintock et al., 2014). These steps can be characterized 
by the distance between locations (step length) and the change in 
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direction from the previous step (turn angle). When modelling move-
ment in discrete time, it is important to consider the following charac-
teristics of observed movement trajectories: (a) over short time-scales, 
animals will tend to move in a consistent direction; (b) left and right 
turns are equally likely in the absence of environmental heterogeneity; 
and (c) animals will tend to move large distances with little change in 
direction when travelling between habitat patches and short distances 
with many changes in direction when foraging. These characteristics, 
in turn, suggest that: (a) the distribution of turn angles is likely to have 
a mode at 0 (indicative of directional persistence); (b) the distribution 
of turn angles should be symmetric around 0; and (c) step lengths and 
turn angles are likely to be correlated. Commonly used circular dis-
tributions (e.g. wrapped Cauchy and von Mises) allow for symmetric 
angles about a mode of 0 and mixtures of circular distributions can 
accommodate multimodal angular densities. Thus, these distributions 
satisfy the first two conditions noted above. The third characteristic 
is more challenging to address. Correlation between direction and 
speed (equivalent to distance when observations are equally spaced 
in time) is an inherent property of continuous-time models (Calabrese 
et al.,  2016; Gurarie et al.,  2017; Johnson et al.,  2008; McClintock 
et al., 2014) and discrete-time models formulated in terms of a veloc-
ity process (i.e. changes in position between successive time points; 
Jonsen et al., 2005). Yet, it is more common to parameterize discrete-
time models using step lengths and turn angles that are statistically 
independent conditional on environmental covariates or behavioural 
states (McClintock et al., 2012, 2014; Morales et al., 2004). The main 
reason for assuming independence has been a lack of available analyt-
ical solutions that allow for proper modelling of this correlation. The 
broad goal of this paper is to address this limitation.

Correlation is easily accommodated when data are distributed 
according to a multivariate normal distribution, but our interest lies 
in modelling correlation between a linear (i.e. non-periodic) variable 
that can only take on positive values (step length), modelled using, 
for example, a gamma or Weibull distribution, and a circular variable 
(turn angle), which is often modelled using a von Mises or other cir-
cular distribution (Avgar et al.,  2016; Morales et al.,  2004; Signer 
et al., 2019). Here, we show how copulae (Nelsen, 2006), cumulative 
distribution functions (CDFs) with uniform marginals on the interval 
[0,1], can be used to develop multivariate distributions that allow 
for correlation between step lengths and turn angles while preserv-
ing these intended marginal distributions. Specifically, we introduce 
several new circular–linear copulae with properties appropriate for 
modelling movement in discrete time together with corresponding 
methods for estimating parameters and simulating data. Functions 
for implementing these methods are available in our open-source 
R package cylcop (Hodel & Fieberg, 2021; R Core Team, 2022), 
which can be seen as an extension of the copula package (Hofert 
et al., 2020; Jun Yan, 2007; Kojadinovic & Yan, 2010; Marius Hofert 
and Martin Mächler, 2011; Hofert et al., 2018) and is freely avail-
able from the Comprehensive R Archive Network (CRAN) at https://
CRAN.R-proje​ct.org/packa​ge-cylcop. Finally, we have also devel-
oped an app which allows the reader to interactively visualize all 

copulae introduced in this paper. The app can be accessed at https://
cylcop.shiny​apps.io/cylco​p-graph​s/.

We begin by providing a motivating example using GPS data 
collected on fishers (Pekania pennanti) from LaPoint et al.  (2013a, 
2013b). We expect most ecologists will be unfamiliar with copulae, 
so we follow this example with a short introduction to the basic 
theory (Section 3) before presenting new methods for producing 
circular–linear copulae suitable for animal movement data (Section 
4). In Section 5, we describe methods for estimating parameters of 
copulae. In Section 6, we apply the introduced copulae and estima-
tion methods to the fisher data. Finally, in the last section, we discuss 
possible future research directions.

2  |  MOTIVATING E X AMPLE

To illustrate typical correlation in movement data, we will consider 
tracking data from fishers (Pekania pennanti) available through 
Movebank (Brown et al.,  2012; LaPoint et al.,  2013a, 2013b). The 
data, displayed in Figure 1a, consist of a total of 4,350 step lengths 
and turn angles of six individuals, resampled to an interval of 10 min 
with a tolerance of 1 min using the track_resample function in the 
R package amt (Signer et al., 2019). The marginal density of the turn 
angles is symmetric around 0 and has modes at 0 and 180 degrees. 
The mode at 180 degrees could be due to the animals' movements 
being influenced by linear features in the environment (Mckenzie 
et al., 2012), or GPS measurement errors (Hurford, 2009). To evalu-
ate measurement error as a potential explanation, we visualized the 
distribution of turn angles after excluding steps shorter than 25 m 
(Hurford,  2009), but this did not change the general shape of the 
distribution. Therefore, rather than excluding short steps, we will 
consider models that can accommodate multiple modes. The cor-
relation between turn angles and step lengths can be seen in panel 
b of Figure  1. For the lower quintiles of step lengths, the circular 
medians and modes of the corresponding turn angles are close to � , 
whereas in the fourth and fifth quintiles, the medians and modes of 
the corresponding turn angles are close to 0. Thus, in this dataset, 
step lengths and turn angles are clearly not independent.

3  |  COPUL A

A bivariate copula C (u, v) is the CDF of a pair of random variables 
(U,V) with uniform marginals and its domain restricted to the unit 
square, (u, v) ∈

[
0, 1

]2. Although we focus on bivariate copulae (re-
ferred to hereafter as ‘copulae’), extensions to more than two di-
mensions are straightforward. The main properties of copulae can 
be directly derived from well-known properties of general CDFs:

1.	 Any CDF must vanish at the lower limits and reach 1 at 
the upper limits of the domains of its random variables, 
C (u, 0) = C (0, v) = 0 and C (1, 1) = 1, ∀u, v ∈

[
0, 1

]
.

https://CRAN.R-project.org/package-cylcop
https://CRAN.R-project.org/package-cylcop
https://cylcop.shinyapps.io/cylcop-graphs/
https://cylcop.shinyapps.io/cylcop-graphs/
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2.	 The CDF of a uniform random variable (and hence the marginal 
CDFs of a copula) is equal to the values of the random variable, 
C (u, 1) = u and C (1, v) = v, ∀u, v ∈

[
0, 1

]
.

3.	 A bivariate CDF of a pair of random variables (U,V) cannot de-
crease with either increasing u or v, that is, the probability of 
(U,V) taking a value from any subset of the entire domain must be 
non-negative.

To illustrate the usefulness of copulae, let X and Y be any two ran-
dom variables with CDFs FX (x) = P (X ≤ x) and FY (y) = P (Y ≤ y) . 
Sklar's theorem (Sklar, 1959) states that with marginal CDFs as ar-
guments, a copula returns the CDF of a multivariate distribution, 
FX ,Y (x, y).

Thus, we can describe the joint distribution of X and Y using their 
specified marginal distributions together with a copula. All information 
about correlation between X and Y is ‘encoded’ in the copula, and dif-
ferent copulae give different joint distributions for two specified mar-
ginal distributions. Consequently, when modelling data, we can focus 
separately on describing: (a) the marginal distributions of X and Y; and 
(b) modelling their dependence structure.

To further demonstrate, note that Equation 1 can be used to de-
fine new copulae from a given joint distribution and its marginals, 
since, using the probability integral transform, we can rewrite it as 
C (u, v) = FX ,Y

(
F−1
X

(u) F−1
Y

(v)
)
, where U and V are again uniform ran-

dom variables. As an example, consider the joint CDF Φ� of a bivar-
iate normal distribution with correlation � and both variances equal 
to one. Its marginal distributions are both standard normal distribu-
tions with CDF Φ. From this, we can generate a Gaussian or normal 
copula

Now, let X and Y be some (non-standard) normally distributed random 
variables with CDFs FX (x) and FY (y). One possible joint distribution 
with marginals FX (x) and FY (y) is then

It can be easily shown that FX ,Y (x, y; �) is a bivariate normal distribution 
with correlation � (see Figure 2c). However, if we had instead chosen X to 
follow a gamma and Y an exponential distribution, we could still obtain a 
valid joint CDF FX ,Y (x, y; �) from a Gaussian copula, but the resulting joint 
distribution would then not be bivariate normal (see Figure 2e). Although 
the parameter � would continue to capture the correlation between X and 
Y, the exact Pearson correlation coefficient between X and Y would not 
be �, but a function of �. There are many other ways of generating copulae 
besides using known joint distributions, and as long as the obtained func-
tion fulfils the three conditions described above, it is a copula.

The probability density function (PDF), fX ,Y (x, y), of a joint distri-
bution can also be obtained with the copula

where fX (x) and fY (y) denote the marginal PDFs of X and Y, respectively, 
and c (u, v) is the copula density, that is a PDF of a distribution with uni-
form marginals corresponding to the CDF C (u, v). Hereafter, we will use 
‘copula’ to refer to C (u, v) and ‘copula density’ to refer to its derivative, 
c (u, v) =

�2C(u,v)

�u�v
. To draw samples from a copula, which can then be used 

to draw samples from a joint distribution with pre-specified marginals, we 
follow a procedure based on conditional distributions (Johnson, 2013). 
The conditional distribution of a copula is defined as

(1)C
(
FX (x) FY (y)

)
= FX ,Y (x, y) .

(2)
Cnorm (u, v; �) = Φ�

(
Φ−1 (u) Φ−1 (v)

)
, � ∈ ( − 1, 1) , (u, v) ∈

[
0, 1

]2
.

(3)
FX ,Y (x, y; �) = Cnorm

(
FX (x) FY (y) �

)
, � ∈ ( − 1, 1) , (x, y) ∈ ℝ

2.

(4)fX ,Y (x, y) = c
(
FX (x) FY (y)

)
fX (x) fY (y) ,

(5)

Cu (v) =Pr
[
V ≤v|U=u

]

=
�

�u
C (u, v)

=�
v

0

c (u, t) dt.

F I G U R E  1  Left: Scatter plot of step lengths (x, in meters) and turn angles (� ) of six fishers from (LaPoint et al., 2013a, 2013b). Kernel 
density approximations of the marginal densities are plotted in red and blue next to the axes. The step lengths are separated into five 
quantiles as marked by the colour bar below the x-axis. Right: Circular box plots of the same data. For each of the five step length quantiles, 
a box plot of the corresponding angles is shown. The sample medians are defined as the centre of the shortest arc that connects all points; in 
other words, the angle around which the spread of the data is minimal. Outliers, that is values outside 1.5 times the inter quartile range, are 
marked in red
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To illustrate, we will draw samples from a Gaussian copula and a 
Clayton copula (left and right columns of Figure  2 respectively). A 
definition of the Clayton copula, together with other copulae of the 
Archimedean family can be found in the Appendix Section A2. To gen-
erate a sample from C (u, v), we first draw u from a uniform distribution 
and then draw v from Cu (v). The pair (u, v) is then a sample from C (u, v) . 
To draw v from Cu (v), we draw z from a uniform distribution and use 
the probability integral transform to obtain v = C−1

u
(z). We repeat this 

process n times to generate a sample of size n from C (u, v) (Figure 2a,b). 
We can then transform this sample (u, v) from the copula to a sample 
from a bivariate distribution, (x, y), with non-uniform marginal CDFs, 
FX (x) and FY (y), via x = F−1

X
(u) , y = F−1

Y
(v) (Figure 2, second row, for 

normally distributed margins and third row for gamma and exponen-
tially distributed margins).

Finally, any copula is bounded by the Fréchet–Hoeffding bounds 
(Fréchet, 1935; Fréchet, 1951; Hoeffding, 1940)

W and M are themselves copulae (at least in the bivariate case). 
However, some copulae do not attain one or either bound, in which 
case they are not capable of capturing strong positive or negative cor-
relations. The Gaussian copula, for example, approaches the lower and 
upper Fréchet–Hoeffding bounds for � → − 1 and � → 1, respectively, 

and is equal to the product copula for � = 0 (see Figure A1); the prod-
uct copula Π (u, v) = uv is a copula corresponding to independent ran-
dom variables. The Clayton copula, on the other hand, cannot reach 
the lower Fréchet–Hoeffding bound, approaches the upper bound 
as � → ∞ and approaches the product copula as � → 0 (from above 
or below). For those interested in learning more about copulae, we 
recommend the following excellent reviews (in our subjective order 
of increasing mathematical difficulty): Trivedi and Zimmer  (2007), 
Nelsen  (2006), Joe  (2014); for readers with a working knowledge of 
measure theory, we recommend Durante and Sempi (2015).

3.1  |  Circular–linear copulae

Our main objective is to develop appropriate copulae for modelling 
joint turn-angle and step-length distributions. Circular–circular cop-
ulae and circular–linear copulae without the restriction of symmetry 
(see below) have been a subject of statistical literature starting with 
Johnson and Wehrly  (1977) and Johnson and Wehrly  (1978), who, 
however, did not yet use the term ‘copula’. With these copulae still 
being an active area of research, we will also draw inspiration from 
more recent reviews (e.g. Jones et al., 2015) and applied studies (e.g. 
García-Portugués et al., 2013). Let Θ be a continuous circular random 
variable and X a continuous linear one. While X has support on the 

(6)W (u, v) = max (u + v − 1, 0) ≤ C (u, v) ≤ min (u, v) = M (u, v) .

F I G U R E  2  Samples from copulae 
and corresponding joint distributions 
with non-uniform margins. Left column: 
Gaussian copula with � = 0.6. Right 
column: Clayton copula with � = 3. First 
row: samples drawn from the copulae. 
Second row: samples drawn from the 
joint distribution obtained with the 
corresponding copula and normal margins 
with means 0 and standard deviations 2 
and 5. Third row: samples drawn from 
the joint distribution obtained with the 
corresponding copula, a marginal gamma 
distribution with shape = 5 and scale = 1 
(x-direction) and marginal exponential 
distribution with rate = 3 (y-direction)
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real line, x ∈ ℝ, Θ has support on the unit circle, � ∈ �
1, which we will 

view as having support on some interval of length 2�, 
[
a, a + 2�). The 

PDF then needs to fulfil the boundary condition 

This condition is somewhat different from (though equivalent to) 
the definitions found in standard references, such as Mardia and 
Jupp (2000), where they view � ∈ �

1 as having support on the entire 
real line, which means that the PDF needs to be 2�-periodic. The 
first definition is more convenient for our purposes, as it mirrors the 
definition of the density of a circular–linear copula (see Equation 8). 
Examples of circular distributions commonly used in movement 
studies include von Mises and wrapped Cauchy distributions (see 
Mardia & Jupp, 2000; McClintock et al., 2012; Watson, 1983).

Any continuous bivariate circular–linear PDF has support on (a 
subset of) the cylinder, 𝕊1 × ℝ. From Equation 4, it is evident that 
this means that also the domain of the corresponding circular–linear 
copula is the surface of a cylinder of unit height and unit circum-
ference (instead of the unit square as for linear–linear copulae) and 

For the remainder of the text, we will define u to be the circular and v 
the linear dimension of the copula density, and for the sake of brevity, 
we will refer to copulae with densities fulfilling Equation 8 as ‘periodic 
in u’ or just as ‘periodic’.

We will set the support of the turn angle Θ to [ − ��), with neg-
ative angles corresponding to left turns and positive angles to right 
turns. The support of the linear random variable X, the step length, is 
restricted to the non-negative real numbers. Turn angles are some-
what different from other circular variables in that it often makes 
sense to assume that an animal has no inherent bias to turn left or 
right. This can be achieved with a marginal PDF that is symmetric 
around � = 0 and a copula that has not only a periodic density (see 
Equation 8), but also a symmetric one in direction u around u = 0.5

For the sake of brevity, we will refer to copulae having the property 
in Equation 9 as ‘symmetric in u’ or just as ‘symmetric’, even though 
there are many other possible symmetries for copulae (see Hodel & 
Fieberg, 2021; Nelsen, 2006). Finally, note that any copula that is ‘sym-
metric’ will also be ‘periodic’.

4  |  CONSTRUC TING CIRCUL AR–LINE AR 
COPUL AE

Johnson and Wehrly  (1978) showed that circular–linear densities 
with given marginals can be obtained via 

where g (�) is a 2�-periodic density function on the circle. Thus, many 
have recognized that c (u, v) = 2�g

[
2� (u − v)

]
 is a circular–linear copula 

density (see e.g. García-Portugués et al., 2013). We have implemented 
this copula using a von Mises density for g (�) (see cyl-vonmises in 
our cylcop package; Hodel & Fieberg, 2021). However, there is no 
obvious way to obtain symmetric joint densities using this approach, 
which makes it less useful for movement data. We will therefore intro-
duce in the following sections other methods of obtaining copulae with 
densities not only periodic, but also symmetric in u.

4.1  |  Copulae with quadratic or cubic sections

The section in v at u0 of a copula C (u, v) is a curve su0 (v) = C
(
u0v

)
 

that is defined by the vertical cross-section of the copula where u 
is held constant at u = u0. Consider the following class of circular–
linear copulae, for which the sections in the linear dimension v are 
quadratic functions 

 

 

It is easy to see that c (u, v) is not only periodic in u, but also symmetric 

Similarly, the class of circular–linear copulae, below, with cubic sections 
in the linear dimension v will also be periodic and symmetric in the cir-
cular direction u 

 

 

since cos (2�u) = cos (2� (1 − u)). Copulae with quadratic and cubic 
sections are implemented in the cylcop package as cyl_quadsec 
and cyl_cubsec; further details including the derivation of their 
densities and conditional distribution functions are given in Hodel and 
Fieberg  (2021). An example of a copula with quadratic sections in v 
is displayed in Figure 3 and an example of one with cubic sections is 
shown in Figure 6b. To fully appreciate the difference between copu-
lae with quadratic and cubic sections, we refer the reader to our app as 
well as Hodel and Fieberg (2021).

(7)fΘ (a) = lim
t→ 2�

fΘ (a + t) .

(8)c (u = 0, v) = c (u = 1, v) , ∀v ∈
[
0, 1

]
.

(9)c (u, v) = c (1 − u, v) , ∀u, v ∈
[
0, 1

]
.

(10)fΘ,X (�x) = 2�g
[
2�

(
FΘ (�) − FX (x)

)]
fΘ (�) fX (x) ,

(11)C (u, v) = uv + asin (2�u) v (1 − v) ,

(12)c (u, v) = 1 + a2�cos (2�u) (1 − 2v)

(13)a ∈

[
−

1

2�

1

2�

]
.

(14)

c (u, v) =1+a2�cos (2�u) (1−2v)

=1+a2�cos (2�−2�u) (1−2v)

= c (1−u, v) .

(15)C (u, v) = v (1 − v)
[
asin (2�u) (1 − v) − bsin (2�u) v

]
,

(16)
c (u, v) = 1 + a2�cos (2�u)

(
1 − 4v + 3v2

)
+ b2�cos (2�u)

(
2v − 3v2

)
,

(17)a, b ∈

[
−

1

2�

1

2�

]
,
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4.2  |  Combinations of Copulae

A second way to generate circular–linear copulae that are symmetric 
in u is to combine two or more linear–linear copulae. In doing so, we 
will make use of the following properties of copulae (Nelsen, 2006): 

1.	 Any convex linear combination of copulae is a copula.
2.	 Orthogonal reflections of a copula density c (u, v) with respect to 

the lines u = 0.5 or v = 0.5 are again densities of a copula.

4.2.1  |  Linear combinations of reflected Copulae

In some special cases, orthogonal reflections can also be seen as rota-
tions by a multiple of 0.5� (see Hodel & Fieberg, 2021). It is therefore 
common (see e.g. Hofert et al., 2018; Patton, 2012; Yoshiba, 2016) to 
denote a copula obtained by reflecting the density of copula C along 
the line u = 0.5 by C0.5�, along the line v = 0.5 by C1.5� and along both 
lines u = 0.5 and v = 0.5 by C�; these copulae are often referred to as 
‘rotated copulae’.

The density and distribution of the copula generated by reflect-
ing c (u, v) with respect to u = 0.5 are 

The CDF can be derived easily by integrating the PDF and taking care 
of the boundary conditions of a copula (see Hodel & Fieberg, 2021). 
Taking the arithmetic mean between any linear–linear copula C and 
C0.5� produces a circular–linear copula 

with a density that is not only periodic but also symmetric in u. This 
density, which usually has an X-shaped appearance, can also be ‘pe-
riodically shifted’ by 0.5 in the u-direction, which gives a copula 
with diamond-shaped density that is also symmetric and periodic 
(Figure A5). The structure of the correlation captured by such copulae 
in the context of movement data is as follows: Small values of step 
lengths correlate with turn angles around � or, equivalently, − �, step 
lengths close to the median (i.e. step lengths close to relative rank 0.5) 

correspond to turn angles close to 0 and large step lengths correlate 
again with large turn angles around � or − �. For the shifted, ‘diamond-
shaped’ copulae, the opposite is true, with small and large step lengths 
associated with small turn angles. This approach is implemented in the 
cylcop package as cyl_rot_combine (Hodel & Fieberg, 2021). For 
further illustrations, we refer the reader to our app (https://cylcop.
shiny​apps.io/cylco​p-graph​s/).

4.2.2  |  Rectangular patchworks of Copulae

The last method for generating symmetric circular–linear copu-
lae entails partitioning the unit square into rectangular regions, 
each containing an appropriately transformed copula. To construct 
such rectangular patchworks of copulae, we follow the proce-
dure outlined in Durante et al.  (2009). Specifically, we define two 
rectangles that are symmetric about u = 0.5: R1 =

[
u1u2

]
×
[
0, 1

]
 

and R2 =
[
1 − u21 − u1

]
×
[
0, 1

]
 with 0 ≤ u1 < u2 ≤ 0.5. Next, let 

Cbg (u, v) (‘bg’ for background) be a copula and Fi (u, v) :Ri →
[
0, 1

]
 a 

2-increasing function obtained by some transformation of a copula 
Ci (u, v) so that Fi = Cbg at the boundaries of each rectangle, Ri. The 
patchwork copula is then 

To generate a copula Cpatch that is periodic and symmetric in u, the two 
copulae from which the functions Fi are derived must be reflections 
of each other with respect to the line u = 0.5. This can be achieved by 
defining C2 (u, v) = C1,0.5� (u, v) = v − C1 (1 − u, v). With this condition 
satisfied, we then either set u1 = 0, u2 = 0.5 (see upper row of Figure 4) 
or we can choose a copula that is periodic and symmetric in u for Cbg and 
use any values of u1 and u2 that we desire (see lower row of Figure 4). 
For illustrative purposes, we have chosen copulae with quite extreme 
parameter values. For a rectangular patchwork copula with smoother 
density, which is usually more appropriate for movement data, see 
Figure A9f. The explicit distribution of a general patchwork copula (of 
which the above-described copula is a special case) is given in theorem 
2.2 in Durante et al. (2009). The equations and derivations for our two-
rectangle-copulae can be found in Hodel and Fieberg (2021), and they 
are implemented in the cylcop package as cyl_rect_combine.

(18)
c0.5� (u, v) = c (1−u, v) ,

C0.5� (u, v) =v−C (1−u, v) .

(19)
Ccyl (u, v) =0.5

[
C (u, v) +v−C (1−u, v)

]
,

ccyl (u, v) =0.5
[
c (u, v) +c (1−u, v)

]
,

(20)Cpatch (u, v) =

⎧
⎪⎨⎪⎩

Fi (u, v) if (u, v) ∈Ri

Cbg (u, v) otherwise.

F I G U R E  3  Left: linear (x) and 
circular (�) samples drawn from a joint 
distribution obtained using a copula 
with quadratic sections in v (Equation 
12, with a = 1∕ (2�)), a marginal gamma 
distribution (shape = 3, scale = 1) and a 
marginal von Mises distribution (� = 0, 
� = 1). Right: PDF of the quadratic section 
copula with a = 1∕ (2�)

https://cylcop.shinyapps.io/cylcop-graphs/
https://cylcop.shinyapps.io/cylcop-graphs/
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5  |  PAR AMETER ESTIMATION AND 
DEPENDENCE

Although it is possible, in principle, to estimate parameters of the two 
assumed marginal distributions and the copula simultaneously by maxi-
mizing the log-likelihood using the joint PDF of Equation 4, this leads to 
a complex optimization problem. Further, the estimators of copula pa-
rameters can be sensitive to mis-specification of the marginal distribu-
tions, and the estimators of parameters in the marginal distribution can 
be influenced by mis-specification of the copulae. Instead, we imple-
ment a maximum pseudo-likelihood estimator (MPLE, see Oakes, 1994; 
Genest et al., 1995; Shih & Louis, 1995; Tsukahara, 2005). We begin by 
finding the optimal parameters of the marginal distributions via maxi-
mum likelihood estimation. Next, we calculate a nonparametric esti-
mate for each marginal distribution and then use the resulting empirical 
marginal CDFs, F̂Θ (�) and F̂X (x) , to transform the set of n i.i.d. observa-
tions of step lengths and turn angles 

(
�ixi

)
 to the pseudo-observations (

ui = F̂Θ

(
�i
)
vi = F̂X

(
xi
))

, that is values drawn from the empirical cop-
ula. Finally, we use MPLE to fit the parameters � of our selected copula 
family to the pseudo-observations by maximizing 

Compared to maximum likelihood estimations using the full joint distri-
bution, this MPLE approach reduces the number of parameters that have 
to be optimized simultaneously. It is important to provide ‘good’ start-
ing parameter values for MPLE, especially for rugged parameter hyper-
surfaces, and we obtain them by comparing circular–linear correlation 
measures for the empirical and parametric copula with different param-
eter values (see Hodel & Fieberg, 2021 for further details). For rectangu-
lar patchwork copulae with rectangles spanning the entire unit square, 
parameter values (i.e. starting values for MPLE) can be derived analyt-
ically from Kendall's tau of the empirical copula (Genest, 1987; Genest 
& Rivest, 1993; Oakes, 1982). Finally, model selection can be performed 
using Akaike's information criterion, which is a common (e.g. Chen & 
Fan, 2005; McNeil et al., 2015; Joe, 2014), but for MPLE not uncontro-
versial approach (see Grønneberg & Hjort, 2014, but also Jordanger & 
Tjøstheim, 2014).

To assess how well a copula fits the data and to measure the ‘dif-
ference’ between copulae, we implemented a function in our cylcop 
package (Hodel & Fieberg, 2021) to calculate the Wasserstein distance 
(Villani, 2008) between copula PDFs as well as between copula PDFs 
and pseudo-observations (Del Barrio et al., 1999; Hallin et al., 2021; 
Marti et al., 2016; Schuhmacher et al., 2020). Interestingly, the calcu-
lation of the Wasserstein distance itself is also intimately related to 
the concept of copulae (Alfonsi & Jourdain, 2014; Benth et al., 2021; 
Marti et al., 2016).

(21)� (�) =

n∑
i=1

log
[
c
(
uivi�

)]
.

F I G U R E  4  Left column: linear (x) and circular (θ) samples drawn from joint distributions obtained with cyl_rect_combine-copulae, a 
marginal gamma distribution (shape = 3, scale = 1) and a von Mises distribution (� = 0, � = 1). Right column: PDFs of cyl_rect_combine-
copulae. Upper row: the rectangular patchwork of the copula consists of the two rectangles— R1 =

[
0,0.5

]
×
[
0, 1

]
 and R2 =

[
0.5,1

]
×
[
0, 1

]
. 

The function in the lower rectangle is obtained by a transformation of a Frank copula (Frank, 1979) with � = 8 and the function in the upper 
rectangle by transforming a 90 degrees rotated Frank copula with � = 8. Lower row: the rectangular patchwork of the copula consists of the 
two rectangles—R1 = [0.1, 0.4] × [0, 1] and R2 =

[
0.6,0.9

]
×
[
0, 1

]
. The function in the lower rectangle is obtained by a transformation of a 

Frank copula (� = 8) and the function in the upper rectangle by transforming a 90 degrees rotated Frank copula with � = 8. The ‘background 
copula’ is a cyl_quadsec copula with parameter a = 1∕ (2�)
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5.1  |  Direction of correlation

For all symmetric copulae introduced in this paper, periodically 
shifting the density by 0.5 in u-direction leads again to a symmetric 
copula. This ‘shifting’ is implemented differently in all copulae: for 
copulae with quadratic or cubic sections, it means multiplying their 
parameters by −1. For the patchwork copulae, it means reflecting 
or rotating by 90 degrees c1 and c2 (and adapting the background 
copula, if applicable). Finally, for the copulae obtained by taking the 
arithmetic mean of a linear–linear copula and its reflected counter-
part, we implemented the ‘shifting’ explicitly to go from an x-shaped 
to a diamond-shaped density, as mentioned in Section 4.2.1. In any 
case, periodically shifting the density reverses the correlation be-
tween the two random variables. If a copula captures, for example, 
a correlation of large step lengths with small absolute angles, the 
shifted copula corresponds to a correlation of small step lengths 
with small absolute angles.

6  |  APPLIC ATION TO FISHER LOC ATION 
DATA

6.1  |  Methods

We fitted bivariate distributions to the fisher data displayed in 
Figure 1 using the copulae and methods introduced in the previous 
sections. We considered several different linear and circular mar-
ginal distributions (see Tables A1 and A2) and selected the appropri-
ate ones using AIC. Next, we considered several different copulae 
based on the characteristics of the data. With our assumption that 
an animal has no inherent bias to turn left or right, we can ignore 
the (only briefly mentioned) circular–linear copula by Johnson and 
Wehrly (1978), since it is not symmetric in u. A visual inspection of 
the data further excludes copulae obtained from linear combina-
tions of reflected copulae with their x- or diamond-shaped densi-
ties. We therefore decided to fit copulae with quadratic (quad_sec) 
and cubic sections (cub_sec), as well as three rectangular patch-
work copulae. The latter were restricted to consist of two symmet-
ric rectangles, together covering the entire unit square. They were 
based on Clayton (rect_combine_Clayton), Gumbel (rect_com-
bine_Gumbel) and Frank copulae (rect_combine_Frank), three 
commonly used Archimedean copulae (see Appendix, Section A2 
for a quick overview of their properties). The functions in the lower 
rectangles were derived directly from those copulae, the ones in the 
upper rectangles from their 90 degree rotations. We also attempted 
to fit a rectangular patchwork copula based on the Frank copula, 
again with two symmetric rectangles but this time with their lower 
and upper bound as tuneable parameters and a quadratic sections 
copula as the background copula.

We generated preliminary estimates of copula parameters using 
measures of circular–linear correlation (see Hodel & Fieberg, 2021), 
which we then used as starting values for MPLEs. We determined 
starting values for quad_sec and cub_sec using a grid search, 

choosing parameter values that gave the best match to the circular–
linear correlation coefficient of the data; starting values for the 
rect_combine copulae were chosen to match Kendall's tau of 
the underlying linear–linear copulae to the data and could be cal-
culated analytically. When fitting the rectangular patchwork copula 
with lower and upper bounds as tuneable parameters, the MPLE 
converged either to rect_combine_Frank or to quad_sec de-
pending on the starting values. Therefore, purely for illustrative 
purposes, we fixed the rectangles to R1 =

[
0.0,0.3

]
×
[
0, 1

]
 and 

R2 =
[
0.7,1.0

]
×
[
0, 1

]
, and optimized the parameters of the Frank 

and the quadratic sections copula (rect_combine_Frank-quad_
sec). We compared copulae using AIC and visually investigated their 
properties and the properties of the corresponding joint distribu-
tions using various plots. We also generated trajectories of differ-
ent lengths and estimated diffusion coefficients, D, by regressing 
mean-square displacement against time for the cub_sec copula and 
for simulations using independent samples of turn angles and step 
lengths (Appendix, Section A4.2).

Since both marginal distributions were best described by mixture 
distributions with two components (see below), we decided to also 
fit a two-state hidden Markov model (HMM) to the data (McClintock 
et al.,  2020; McClintock & Michelot,  2018; Morales et al.,  2004; 
Patterson et al., 2008). The joint PDF of step lengths and turn angles 
can then be obtained from the HMM using the steady-state tran-
sition probabilities and by assuming independence between step 
lengths and turn angles, conditional on the state. Using Equation 4, 
we calculated a copula density from the marginal and joint densities 
estimated with the HMM and compared it to the copulae described 
above. This comparison was done visually, as well as by calculating 
the second Wasserstein distance (using the Euclidean distance) be-
tween the pseudo-observations and the different copula densities.

6.2  |  Results

The marginal distribution of the step lengths was best described by 
a mixed gamma distribution with two components and with shape 
parameters 1.47 and 1.70, scale parameters 10.6 and 110.6 and 
mixing proportions of 0.59 and 0.41. As already remarked in the 
Introduction, the marginal distribution of the turn angles is bimodal 
and the smallest AIC score was achieved with a mixture of two von 
Mises distributions. We fixed the location parameters at 0 and � 
and estimated the concentration parameters to be 0.48 and 6.31, 
respectively, with mixing proportions of 0.78 and 0.22 (see Tables 
A1 and A2).

Of the copulae we considered, the cubic sections copula (cub_
sec) had the lowest AIC score (Table  1). To visualize it, we simu-
lated 4350 step lengths and turn angles from the cub_sec copula 
and from the independence copula (Figures 5 and 6; data simulated 
with the other copulae can be found in the Figure A7). Visually, it is 
clear that the data generated with cub_sec (Figure  5a) provide a 
better match to the ‘real’ fisher data (Figure 1a) than the data simu-
lated with independent turn angles and step lengths (Figure 5c). The 



    |  1009Methods in Ecology and Evolu
onHODEL and FIEBERG

effect of the correlation structure can also be seen from the circular 
box plots of the turn angles (Figures 1b and 5b,d). We calculated the 
pseudo-observations of the fisher data and smoothed them using 
a two-dimensional kernel density estimator (KDE) with a bivariate 

Gaussian kernel. While this KDE is a helpful visualization, note that 
it is mathematically not a valid empirical, nonparametric (circular–
linear) copula (see Section 7). The KDE and the density of cub_sec 
both highlight that large step lengths tend to be associated with 

Copula ΔAIC Starting value MPLE

a cub_sec 0.0 a = 0.11

b = − 0.14

a = 0.07

b = − 0.16

b quad_sec 75.5 a = 0.11 a = 0.12

c rect_combine, Frank + quad_sec 131.5 NA � = 0.64

a = 0.12

d rect_combine, Frank 147.0 � = 1.84 � = 1.83

e rect_combine, Gumbel 281.2 � = 1.25 � = 1.19

f rect_combine, Clayton 451.7 � = 0.49 � = 0.20

Independence 545.8

TA B L E  1  AIC relative to the lowest 
AIC (cub _ sec) and maximum pseudo-
likelihood parameter estimates for six 
copulae fit to the fisher data. Starting 
values for copulae a and b were 
determined using a grid search, choosing 
parameter values that gave the best 
match to the circular–linear correlation 
coefficient of the data; starting values 
for copulae d–f were chosen to match 
Kendall's tau of the data

F I G U R E  5  Top row: 4,350 step lengths 
(x, in metres) and turn angles (�) sampled 
from a joint distribution obtained with 
the cubic sections copula cub_sec. 
Bottom row: 4,350 step lengths and 
turn angles sampled independently from 
their marginal distributions. Left column: 
scatter plots of step lengths and turn 
angles. Maximum likelihood estimates 
of the marginal densities are plotted in 
red and blue next to the axes. The step 
lengths are separated into five quantiles 
as marked by the colour bar below the 
x-axis. Right column: circular box plots 
of the same data. For each of the five 
step length quantiles, a box plot of the 
corresponding angles is shown

F I G U R E  6  (a) Kernel density estimate of the pseudo-observations of the fisher data. (b) Density of the cubic sections copula cub_sec. 
(c) Copula density obtained from the HMM
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turn angles near 0 and small step lengths with turn angles near ± � 
(Figure 6). Plots of copula densities for the other copulae (Table 1) 
can be found in Figure A9. The cub_sec copula resulted in a dif-
fusion coefficient, D = 12.8m2 ∕s, smaller than the diffusion coeffi-
cient assuming independent steps and turns, D = 17.7m2 ∕s .

The estimate of the parameter b of the cub_sec copula was 
on the boundary, and its circular–linear correlation coefficient was 
slightly lower than the coefficient for the actual fisher data (0.085 vs. 
0.102). These results suggest that a closer fit might be possible using 
a copula with a correlation structure similar to the cub_sec copula, 
but with a wider range of possible dependencies. The copulae con-
sisting of rectangular patchworks can potentially capture any degree 
of correlation between both Fréchet–Hoeffding bounds and a wide 
range of joint density shapes. Thus, it may be beneficial to consider 
other correlation structures beyond the three Archimedean copulae 
we selected. The main drawback of these type of copulae, however, 
is that they can be difficult to optimize since one has to choose and 
compare copulae for the patches and the background, and estimate 
parameters for each of these copulae. Introducing more than two 
rectangular patches is straightforward but would further complicate 
optimization.

Comparing the cub_sec copula to an HMM with two states 
described by gamma and von Mises distributions, we find that the 
former provides a better fit to the data. The second Wasserstein dis-
tance between the pseudo-observations and the copula density of 
cub_sec was 0.019, whereas the Wasserstein distance between the 
pseudo-observations and the copula density of the HMM was 0.028. 
To put these numbers in context, if we assume independence be-
tween step lengths and turn angles, that is have a copula density that 
is 1 everywhere on the unit square, the Wasserstein distance be-
tween the pseudo-observations and that density is 0.052. Although 
the marginal distributions obtained from the HMM describe the data 
well (the null hypothesis that the data come from the corresponding 
mixed distributions cannot be rejected at the 0.05 level of signifi-
cance according to Cramér–von Mises tests of goodness-of-fit), the 
copula densities from the HMM were not able to fully capture the 
correlation as can be seen visually from Figure 6c. In particular, the 
HMM results in a ‘striped’ copula density due to assuming indepen-
dence between step lengths and turn angles after conditioning on 
the latent state.

7  |  DISCUSSION AND FUTURE RESE ARCH

The observed correlation between step lengths and turn angles in 
our applied example is typical of many modern-day telemetry data-
sets. We have shown that this correlation can be captured by new 
circular–linear copulae that we have developed to also mimic the 
characteristics of animal movement data (e.g. symmetric turn angle 
distributions). We have demonstrated methods for estimating copu-
lae parameters and for simulating data from fitted models. Lastly, we 
have shown that this correlation can impact movement patterns (e.g. 
dispersion over time).

Copulae have parameters that directly quantify the strength of 
dependence, which is allowed to vary continuously in (u, v) space. 
Thus, one nice feature of copulae is that they can inform us as to 
where the dependence is strongest and may also provide insights 
into the mechanisms that lead to particular copula structures (e.g. 
asymmetric tail associations; see Ghosh et al., 2020). In our applica-
tion, the dependencies were strongest in two regions: (a) the region 
with large step lengths and turn angles near 0, reflecting highly di-
rected movements; and (b) the region with small step lengths and 
turn angles near +/− �. We suspect the dependencies in the latter 
region may be driven, in part, by measurement error that is magni-
fied during time periods when the animals are resting (e.g. as a result 
of non-optimal collar orientation or signal interruption when animals 
are sleeping/denning).

HMMs are also capable of capturing correlation between step 
lengths and turn angles through their dependence on one or more 
latent states. Yet, we expect that HMMs may sometimes require 
a large number of states to fully capture the range of correlations 
present in movement data. In our applied example, we found 
that an HMM with two states did not fit the data as well as the 
cub_sec copula with the same assumed marginal distributions. 
Furthermore, given the lack of separation between marginals and 
correlation when modelling data with HMMs, we expect there will 
be a trade-off between modelling the marginal distribution and 
the correlation correctly, particularly when the marginal distribu-
tions are unimodal. We note, however, that it is also possible to 
fit HMMs with state-dependent copulae (e.g. Nasri et al.,  2020; 
Ötting et al.,  2021). In the future, we plan to further compare 
these various approaches to modelling correlation in movement 
data.

We see several other opportunities to expand on our work, in-
cluding opportunities for both theoretical and methodological ad-
vances as well as research that will allow copulae to be incorporated 
into existing frameworks for modelling animal movement and hab-
itat use. One of the main characteristics of movement data, which 
we have so far neglected, is temporal autocorrelation. Although 
turn-angle distributions with modes at 0 allow steps to be autocor-
related (i.e. they allow individuals to maintain a consistent direction), 
the copulae we have considered do not allow turn angles or step 
lengths themselves to be autocorrelated. To incorporate this fea-
ture, our MPLE procedure would need adapting to allow for non-i.i.d. 
data. Often, covariates are recorded along with movement metrics, 
and the target of modelling is the joint distribution of step lengths 
and turn angles conditional on the covariates, or, in other words, re-
gression. Similarly, in time-series analysis one is often interested in 
the distribution of a random vector conditional on past instances. 
Both issues can be tackled using conditional copulae (Fermanian & 
Wegkamp, 2012; Patton, 2006).

We have focused this paper on parametric copulae with pa-
rameters estimated using frequentist methods. Distributions of 
copula parameters could also be estimated in a fully Bayesian frame-
work. Alternatively, copulae can be estimated nonparametrically 
by smoothing the empirical copula using, for example, Bernstein 
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polynomials (Janssen et al., 2012; Sancetta & Satchell, 2004). This has 
already been done in the general circular–linear case (see Carnicero 
et al.,  2013; García-Portugués et al.,  2013, 2014) and would need 
only slight adaptation for our symmetric circular–linear data.

Other areas where additional research might be rewarding in-
clude the development of graphical tools to assess goodness-of-fit 
or to visualize dependence, such as Chi-plots (Fisher & Switzer, 1985, 
2001) or K-plots (Genest & Boies,  2003). These could be imple-
mented along with a cross-validation procedure for assessing 
goodness-of-fit (Grønneberg & Hjort, 2014). A more thorough inves-
tigation of correlation measures applicable to movement data and 
the possibility of estimating copula parameters from them could help 
in pre-selecting copula families and provide better initial guesses for 
MPLE. Lastly, we see many opportunities for integrating these meth-
ods into existing frameworks for modelling animal movement. In 
particular, copula could be used to more accurately sample available 
steps when conducting step-selection analyses (Fieberg et al., 2021; 
Forester et al., 2009; Fortin et al., 2005; Thurfjell et al., 2014) or to 
better capture movement modes in hidden Markov or state space 
models (McClintock et al.,  2020; McClintock & Michelot,  2018; 
Morales et al., 2004; Patterson et al., 2008).
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